Supporting Information

for

Computer-Assisted Designed "selenoxy-chinolin": New Catalytic Mechanism of GPx-like and inhibition of metal-free and metal-associated $A\beta$ aggregation

Zhiren Wang, Yali Wang, Wenrui Li, Zhihong Liu, Zonghua Luo, Yang Sun, Ruibo Wu, Ling

Huang,* Xingshu Li*

School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China

Contents

- S2-S10 Computation Design
- S11-S25 Chemistry-Synthesis
- S26-S28 Coupled Reductase Assay
- S29-S64 Determination of the Catalytic Parameters
- S65-S73 Scavenging peroxide by GSH in the Presence of Compound
- S74-S96 Mechanism of the GPx-like Catalytic Cycle
- S97-S98 UV Spectrum of Metal binding
- **S99-S101** Tables of Results for the PAMPA
- S102-S102 References

1. Computation Design

All calculations were performed by using the Gaussian 09 suite of quantum chemical programs. The computational models are fully optimized using DFT calculations at B3LYP/6-311+g(d,p) level of theory and characterized by frequency calculation. As glutathione was very flexible, the G group replaced with a Me group according to the reported method in literature.^{1, 2}

C	-2.283129 3.331776 -1.154235	С	-2.352845 2.885724 -0.676168
C	-3.509477 2.892992 -0.655782	С	-3.509754 2.166446 -0.386504
C	-3.650346 1.596875 -0.174630	С	-3.488096 0.789845 -0.215782
C	-2.572090 0.708001 -0.173913	С	-2.284416 0.090857 -0.322849
Se	-2.777207 -1.135991 0.447457	Se	-2.242838 -1.857364 -0.143080
S	-4.885172 -1.102739 1.248349	S	-4.326084 -2.272124 0.603816
C	-5.870990 -1.590131 -0.222875	С	-4.158671 -2.031319 2.416109
Η	1.701387 -1.340000 -2.175717	Cl	-5.038068 3.020718 -0.256799
Н	3.843043 -2.589180 -2.230204	Н	2.284536 -0.859371 -2.433886
Η	6.433449 1.232146 2.406519	Н	4.588077 -1.745614 -2.657117
Н	4.316127 2.524016 2.722871	Н	6.513438 1.282992 2.813840
Η	2.345602 1.986965 1.325301	Н	4.223809 2.162042 3.301556
Η	6.528404 -1.594750 -0.120216	Η	2.374978 1.668836 1.735360
Н	1.171022 1.769657 -0.648453	Н	7.064143 -0.874910 -0.256380
Η	-0.258738 2.808292 -1.556013	Н	1.273509 1.714325 -0.250412
Η	-2.174944 4.333225 -1.556173	Η	-0.265512 2.749376 -1.037858
Н	-4.366468 3.559216 -0.650398	Н	-2.392007 3.956096 -0.834491
Η	-4.607050 1.271034 0.215592	Н	-4.408272 0.255052 -0.014810
Η	-6.903772 -1.690472 0.117853	Н	-5.117341 -2.316614 2.854337
Η	-5.824559 -0.831030 -1.003636	Н	-3.952660 -0.988971 2.658831
Η	-5.531109 -2.546593 -0.617392	Н	-3.375080 -2.670346 2.820552

Selenenyl sulfides for 11c

Selenenyl sulfides for 11d

Electronic Energy = -4175.8337781			Electronic Energy = -3815.4809875				
С	2.763137	-0.826068	-1.649568	С	2.775407	-0.754078	-1.637807
С	4.052127	-1.366400	-1.820546	С	4.048497	-1.347135	-1.739528
С	5.052049	-1.080309	-0.919039	С	5.038559	-1.026532	-0.838486
С	4.765882	-0.254432	0.208322	С	4.757238	-0.110824	0.218566
С	3.449906	0.262547	0.403193	С	3.455326	0.460086	0.344405
С	2.450089	-0.021394	-0.572628	С	2.467215	0.137061	-0.630265
Ν	5.795470	-0.020200	1.061808	Ν	5.775900	0.153636	1.076391
С	5.569370	0.710100	2.132822	С	5.550699	0.967414	2.085730
С	4.299852	1.247080	2.441887	С	4.292858	1.564671	2.325211

C	3.249484 1.020976 1.583784	С	3.254028 1.309008 1.461409
0	6.301247 -1.565861 -1.073964	0	6.274043 -1.561131 -0.929046
Ν	1.161450 0.557711 -0.423214	Ν	1.193100 0.762478 -0.555545
C	-0.035979 -0.067013 -0.657014	С	-0.017455 0.131239 -0.695500
0	-0.116282 -1.248001 -0.981385	0	-0.111577 -1.083814 -0.847405
C	-1.272687 0.750209 -0.474987	С	-1.238307 0.981973 -0.632618
C	-1.248562 2.151687 -0.543502	С	-1.204963 2.365125 -0.870491
C	-2.411736 2.882923 -0.366593	С	-2.349227 3.146524 -0.806943
C	-3.620439 2.237138 -0.123266	С	-3.543039 2.509550 -0.499242
C	-3.654307 0.849266 -0.075885	С	-3.631766 1.147909 -0.279422
C	-2.498835 0.085193 -0.259305	С	-2.479867 0.364036 -0.354685
Se	-2.565392 -1.870138 -0.251510	Se	-2.574147 -1.573520 -0.106858
S	-4.645180 -2.232329 0.531767	S	-4.684664 -1.809781 0.643555
C	-4.404867 -2.159359 2.350187	С	-4.502487 -1.514380 2.446196
Cl	-2.359971 4.636462 -0.467319	F	-4.671981 3.249810 -0.429089
Н	1.998416 -1.055553 -2.379541	Н	2.017845 -1.010998 -2.366771
Н	4.268611 -2.000008 -2.672715	Н	4.261642 -2.048733 -2.537549
Η	6.414356 0.881896 2.794564	Н	6.386528 1.161341 2.753004
Η	4.163743 1.819769 3.352385	Н	4.156531 2.205722 3.188975
Η	2.265245 1.405285 1.830235	Н	2.276454 1.738652 1.653465
Н	6.827094 -1.239146 -0.321392	Н	6.794580 -1.197054 -0.190055
Η	1.127303 1.495660 -0.057976	Н	1.180566 1.739933 -0.313271
Н	-0.333976 2.683879 -0.778007	Н	-0.275230 2.848734 -1.152101
Н	-4.529584 2.811811 0.010526	Н	-2.329138 4.211795 -1.001642
Η	-4.600531 0.349238 0.095114	Н	-4.596563 0.701573 -0.068312
Η	-5.365973 -2.418718 2.799201	Н	-5.481812 -1.704459 2.890376
Η	-4.120678 -1.157021 2.670144	Н	-4.213267 -0.483443 2.649677
Η	-3.653394 -2.879554 2.670420	Н	-3.773712 -2.198282 2.878796

C	4.917243 -1.179902 -0.845816	C 4.692012 -1.748116 -0.436211
С	4.669152 -0.266879 0.221716	C 4.669894 -0.453188 0.161171
С	3.377682 0.320531 0.377668	C 3.458424 0.300621 0.196886
С	2.365216 0.015597 -0.578792	C 2.288102 -0.248002 -0.409824
Ν	5.708924 -0.020449 1.059269	N 5.840915 -0.013646 0.689626
С	5.516844 0.791662 2.076665	C 5.862344 1.164096 1.276348
С	4.272864 1.404747 2.345303	C 4.718430 1.983975 1.392392
С	3.212547 1.166637 1.502797	C 3.526856 1.552500 0.858357
0	6.143589 -1.729856 -0.964743	O 5.848622 -2.444104 -0.446911
Ν	1.105484 0.662807 -0.472937	N 1.112882 0.548887 -0.435519
C	-0.120975 0.086742 -0.682473	C -0.172554 0.097332 -0.356487
0	-0.260246 -1.105060 -0.939704	O -0.440566 -1.100235 -0.248391
С	-1.312997 0.977468 -0.560409	C -1.296321 1.083931 -0.402199
C	-1.212655 2.370007 -0.712640	C -1.161683 2.469738 -0.572585
С	-2.341297 3.154714 -0.592251	C -2.215759 3.354952 -0.633041
С	-3.585836 2.605182 -0.326392	C -3.503615 2.83823 -0.5148200
С	-3.691495 1.225905 -0.193988	C -3.701886 1.476216 -0.335426
С	-2.574604 0.394096 -0.316210	C -2.622440 0.591948 -0.272128
Se	-2.746220 -1.552915 -0.187457	Se -2.930973 -1.324547 -0.011622
S	-4.840520 -1.753415 0.613925	S -5.180394 -1.381636 0.225270
С	-4.593709 -1.580480 2.424763	C -5.390078 -1.091693 2.026399
F	-2.227576 4.495556 -0.752234	F 0.090335 3.017961 -0.694454
Η	1.866543 -1.118950 -2.311698	Н 1.458856 -1.930371 -1.420351
Η	4.092193 -2.181141 -2.534412	Н 3.553477 -3.246715 -1.430938
Η	6.369363 0.971056 2.726628	H 6.815164 1.488452 1.686842
Η	4.163271 2.044185 3.213994	H 4.787011 2.936289 1.906185
Η	2.246524 1.609874 1.720925	H 2.640226 2.168148 0.965741
Η		H 6 515456 -1 88921 -0 0030110
Н	6.68416/ -1.3/62/3 -0.235133	11 0.515450 -1.00721 -0.0050110
	6.684167 -1.376273 -0.235133 1.114699 1.619983 -0.159963	H 1.240602 1.541001 -0.549494
Н	6.684167 -1.376273 -0.235133 1.114699 1.619983 -0.159963 -0.277759 2.854631 -0.970915	H 0.515450 -1.00921 -0.0050110 H 1.240602 1.541001 -0.549494 H -2.021261 4.411352 -0.772446
H H	6.684167 -1.376273 -0.235133 1.114699 1.619983 -0.159963 -0.277759 2.854631 -0.970915 -4.456164 3.246313 -0.243429	H 0.515450 -1.00921 -0.0050110 H 1.240602 1.541001 -0.549494 H -2.021261 4.411352 -0.772446 H -4.358428 3.504384 -0.566232
H H H	6.684167-1.376273-0.2351331.1146991.619983-0.159963-0.2777592.854631-0.970915-4.4561643.246313-0.243429-4.6627420.785018-0.002959	H 0.515450 -1.00921 -0.0030110 H 1.240602 1.541001 -0.549494 H -2.021261 4.411352 -0.772446 H -4.358428 3.504384 -0.566232 H -4.708978 1.085887 -0.257562
H H H H	6.684167-1.376273-0.2351331.1146991.619983-0.159963-0.2777592.854631-0.970915-4.4561643.246313-0.243429-4.6627420.785018-0.002959-5.565690-1.7629802.888034	H0.515450-1.00921-0.0050110H1.2406021.541001-0.549494H-2.0212614.411352-0.772446H-4.3584283.504384-0.566232H-4.7089781.085887-0.257562H-6.453668-1.2175472.239208
H H H H H	6.684167-1.376273-0.2351331.1146991.619983-0.159963-0.2777592.854631-0.970915-4.4561643.246313-0.243429-4.6627420.785018-0.002959-5.565690-1.7629802.888034-4.258713-0.5759292.682812	H0.515450-1.00921-0.0030110H1.2406021.541001-0.549494H-2.0212614.411352-0.772446H-4.3584283.504384-0.566232H-4.7089781.085887-0.257562H-6.453668-1.2175472.239208H-5.088209-0.0815952.303390

Selenenyl sulfides for 11h

Selenenyl sulfides for 11g

Electronic Energy = -4053.3875676	Electronic Energy = -4779.4812504			
C 3.457253 -0.596870 -1.646513	C -2.994920 -0.675034 -1.636472			
C 4.808322 -0.970807 -1.776404	C -4.305562 -1.167882 -1.786107			
C 5.746028 -0.511995 -0.879149	C -5.294313 -0.793718 -0.904800			
C 5.334671 0.322488 0.202516	C -4.975197 0.073828 0.181187			
C 3.959382 0.670990 0.356678	C -3.637722 0.540902 0.356059			
C 3.023427 0.211076 -0.614990	C -2.648453 0.167771 -0.599826			
N 6.309564 0.729959 1.054767	N -5.995139 0.395388 1.018165			
C 5.970920 1.473566 2.086269	C -5.737433 1.164881 2.054119			
C 4.636647 1.852788 2.354377	C -4.445083 1.657277 2.343031			
C 3.640137 1.451306 1.496204	C -3.404588 1.344088 1.500244			
O 7.049939 -0.836385 -0.995477	O -6.564195 -1.231579 -1.041105			
N 1.666801 0.622185 -0.511794	N -1.335372 0.694143 -0.476545			
C 0.568448 -0.173742 -0.706375	C -0.168370 -0.018335 -0.620999			
O 0.650265 -1.375055 -0.941633	O -0.165632 -1.233305 -0.805519			
C -0.768375 0.484632 -0.596678	C 1.106440 0.737313 -0.525623			
C -0.939280 1.862527 -0.793645	C 1.179928 2.124845 -0.696442			
C -2.185579 2.461453 -0.689186	C 2.378251 2.822207 -0.611511			
C -3.289661 1.664991 -0.384961	C 3.552435 2.108250 -0.346748			
C -3.1486520 0.292407 -0.209693	C 3.507534 0.719401 -0.193113			
C -1.898247 -0.317730 -0.324634	C 2.310231 0.025804 -0.290065			
Se -1.706227 -2.255562 -0.141810	Se 2.263477 -1.925242 -0.126419			
S -3.732840 -2.819677 0.653843	S 4.366755 -2.358606 0.553834			
C -3.547275 -2.548804 2.460003	C 4.259162 -2.118275 2.370687			
C -4.646336 2.295602 -0.202916	O 4.784115 2.670318 -0.236433			
F -4.760396 3.464048 -0.872925	C 4.919405 4.073442 -0.420588			
F -4.891218 2.572721 1.104122	Н -2.238477 -0.972771 -2.350738			
F -5.647294 1.494259 -0.621925	Н -4.547532 -1.833981 -2.606115			
Н 2.741455 -0.959327 -2.372415	Н -6.574855 1.406318 2.703797			
Н 5.121101 -1.611296 -2.592716	Н -4.284946 2.263953 3.227353			
Н 6.774188 1.785949 2.748485	Н -2.402741 1.691934 1.729054			

Н	4.411036 2.443929 3.234837	Н	-7.075352	-0.846659	-0.306238
Н	2.609378 1.713345 1.711070	Н	-1.256323	1.660978	-0.206693
Н	7.515681 -0.409775 -0.253316	Н	0.287798	2.692030	-0.943937
Н	1.5014360 1.571024 -0.216732	Н	2.385508	3.893281	-0.764592
Н	-0.0948230 2.482595 -1.076237	Η	4.437734	0.192417	-0.015831
Н	-2.300004 3.524650 -0.858648	Н	5.228197	-2.412036	2.779853
Н	-4.019355 -0.317551 0.000429	Н	3.482343	-2.749921	2.799368
Н	-4.473915 -2.899419 2.919112	Н	4.069439	-1.074114	2.619291
Н	-3.414886 -1.491644 2.689430	Н	5.978795	4.287030	-0.294034
Н	-2.711112 -3.124548 2.853964	Η	4.606942	4.375248	-1.425213
		Η	4.345970	4.631438	0.326514

Selenenyl sulfides for 11i

Selenenyl sulfides for 11j

Electronic Energy = -3830.7638115					Elec	etronic Ene	ergy = -394	5.3145056	
	С	2.784981	-0.945341	-1.601612	С	-3.162981	-1.248460	1.268978	
	С	4.062576	-1.512768	-1.771850	С	-4.467696	-1.763247	1.397382	
	С	5.101888	-1.144081	-0.948123	С	-5.522825	-1.153782	0.757866	
	С	4.869078	-0.204425	0.099578	С	-5.281570	-0.012236	-0.062234	
	С	3.565308	0.341311	0.295713	С	-3.954087	0.486750	-0.223934	
	С	2.522682	-0.031725	-0.601415	С	-2.890916	-0.144539	0.486288	
	Ν	5.935339	0.106623	0.880771	Ν	-6.365300	0.533529	-0.671946	
	С	5.756755	0.943221	1.880831	С	-6.184196	1.567888	-1.465145	
	С	4.503332	1.518779	2.187007	С	-4.911849	2.124929	-1.722745	
	С	3.416702	1.216461	1.400493	С	-3.806673	1.584816	-1.108075	
	0	6.341762	-1.653800	-1.105122	0	-6.786205	-1.613204	0.884308	
	Ν	1.240833	0.564319	-0.457882	Ν	-1.583731	0.401527	0.388976	
	С	0.043048	-0.103891	-0.480886	С	-0.418606	-0.310988	0.257525	
	0	-0.025903	-1.324880	-0.589450	0	-0.415526	-1.540441	0.179747	
	С	-1.196448	0.715778	-0.338589	С	0.855463	0.445658	0.191744	
	С	-1.202447	2.093287	-0.580400	С	0.940696	1.831724	0.418576	
	С	-2.359325	2.854090	-0.423621	С	2.126578	2.531597	0.311796	
	С	-3.532381	2.220834	-0.007008	С	3.297601	1.829104	-0.054601	
	С	-3.536564	0.846018	0.216064	С	3.239017	0.451001	-0.244797	

C -2.394507 0.068492 0.040372	C 2.039988 -0.252675 -0.116102
Se -2.423394 -1.872438 0.303599	Se 1.989349 -2.192821 -0.373714
S -4.502333 -2.173345 1.120740	S 4.163680 -2.628393 -0.827550
C -5.484145 -2.475050 -0.402248	C 4.854288 -2.9235690 0.848893
O -2.242080 4.185390 -0.700992	O 2.109960 3.891718 0.479680
C -3.396112 5.005685 -0.583454	C 2.843569 4.405198 1.597896
Н 1.986764 -1.240205 -2.270325	O 4.423031 2.571851 -0.203509
Н 4.239317 -2.232860 -2.562309	C 5.613514 1.930938 -0.653423
Н 6.629474 1.174121 2.486348	Н -2.352597 -1.737904 1.792141
H 4.408219 2.180024 3.041019	Н -4.650963 -2.635658 2.013820
H 2.443434 1.629185 1.643859	Н -7.071257 1.983627 -1.936199
Н 6.899352 -1.257068 -0.411297	Н -4.817572 2.960408 -2.407363
Н 1.215947 1.550822 -0.256353	Н -2.822339 1.986887 -1.323674
Н -0.320189 2.612345 -0.939235	Н -7.351707 -1.034512 0.341266
Н -4.450120 2.776921 0.139355	Н -1.515955 1.405571 0.386686
Н -4.453900 0.374107 0.547779	Н 0.074824 2.421336 0.701500
Н -6.495386 -2.724432 -0.073304	Н 4.129650 -0.096925 -0.523675
Н -5.075807 -3.312686 -0.965831	Н 5.892699 -3.231986 0.709825
Н -5.522471 -1.588423 -1.035052	Н 4.310629 -3.720141 1.354810
Н -3.077064 6.008479 -0.860846	Н 4.826863 -2.017449 1.454306
Н -4.189764 4.677493 -1.262547	Н 2.671202 5.480580 1.599977
Н -3.775025 5.018266 0.443715	Н 2.467865 3.973992 2.532002
	H 3.910988 4.203619 1.498153
	Н 5.959952 1.184584 0.067414
	Н 5.462441 1.457289 -1.627175
	Н 6.355776 2.721434 -0.743069
Selenenyl sulfides for 11k Electronic Energy = -3791.4860181	Selenenyl sulfides for 12k Electronic Energy = -4251.0722251
C 2.580291 -1.113833 -1.480216	C -2.453572 -0.851912 -0.958881
C 3.814/14 -1.782951 -1.588602	C -3.766441 -1.350163 -0.844315
C 4.886055 -1.394853 -0.816599	C = -4.711326 = -0.709278 = -0.071016
C 4.729445 -0.328026 0.117272	C -4.320878 0.463554 0.641453

C 3.467900 0.324758 0.254629	C -2.985649 0.957554 0.56373
C 2.392144 -0.075794 -0.590568	C -2.055502 0.281068 -0.281432
N 5.823175 -0.004372 0.853900	N -5.289587 1.045233 1.394240
C 5.713681 0.950597 1.752780	C -4.980266 2.112118 2.100286
C 4.506081 1.642486 1.995511	C -3.683364 2.669587 2.121727
C 3.392527 1.328643 1.252345	C -2.694459 2.091861 1.359550
O 6.086478 -2.003314 -0.918493	O -5.975005 -1.153173 0.036987
N 1.157872 0.623088 -0.511915	N -0.750367 0.812108 -0.423854
C -0.087791 0.050430 -0.489296	C 0.414130 0.092762 -0.545512
O -0.252396 -1.166582 -0.497244	O 0.442206 -1.132149 -0.491680
C -1.259981 0.972024 -0.423503	C 1.671046 0.876898 -0.722646
C -1.153508 2.329676 -0.756843	C 1.655722 2.183381 -1.230370
C -2.247685 3.178496 -0.659706	C 2.834368 2.899913 -1.392020
C -3.469195 2.669113 -0.218223	C 4.048169 2.305238 -1.045582
C -3.589337 1.320344 0.092421	C 4.073244 1.003067 -0.561215
C -2.506382 0.446999 -0.018619	C 2.900283 0.264740 -0.397681
Se -2.693608 -1.463776 0.370698	Se 2.945809 -1.589893 0.233396
S -4.807663 -1.545406 1.151528	S 5.067605 -1.747908 0.965712
C -5.779105 -1.859961 -0.375559	C 4.954798 -1.082809 2.673001
O -2.062677 4.488860 -1.011197	O 2.736501 4.167645 -1.898392
Н 1.756718 -1.428176 -2.107709	Cl -4.201109 -2.794026 -1.723121
Н 3.933020 -2.599386 -2.291463	Н -1.751708 -1.382084 -1.586413
Н 6.607015 1.187992 2.324750	Н -5.778805 2.554940 2.689790
Н 4.465999 2.401870 2.768380	Н -3.477544 3.534511 2.741964
H 2.453281 1.833811 1.451381	Н -1.688726 2.497407 1.394225
Н 6.6777310 -1.569574 -0.276639	Н -6.434447 -0.537774 0.638003
Н 1.208616 1.622705 -0.401269	Н -0.663433 1.814099 -0.376041
Н -0.231449 2.753828 -1.139113	Н 0.736691 2.656246 -1.559350
Н -4.334654 3.320778 -0.123382	Н 4.981387 2.849760 -1.169088
Н -4.543065 0.942677 0.441316	Н 5.025826 0.549727 -0.312651
Н -6.813450 -2.009500 -0.058251	Н 5.940519 -1.217924 3.123512
Н -5.427069 -2.758960 -0.879381	Н 4.216133 -1.633020 3.254041
Н -5.733913 -1.012312 -1.059313	Н 4.707748 -0.021234 2.666735
Н -2.891224 4.977489 -0.939261	Н 3.613071 4.551242 -2.021029

Se	lenenyl sulfides for 13k
Ele	ectronic Energy = -3802.2265049
С	-1.955010 -0.187471 0.533886
C	-3.307601 -0.450012 0.234005
C	-4.079798 0.484628 -0.421016
C	-3.476224 1.718087 -0.817333
C	-2.100686 1.974096 -0.551723
C	-1.351514 0.994281 0.161605
Ν	-4.286511 2.592236 -1.467018
C	-3.772976 3.729927 -1.885763
C	-2.415717 4.074332 -1.702855
C	-1.586084 3.199003 -1.041343
0	-5.377181 0.281542 -0.706226
Ν	0.001521 1.264145 0.498100
C	1.057126 0.410734 0.287966
0	0.919156 -0.676339 -0.263522
C	2.403558 0.872709 0.734517
C	2.555478 1.908743 1.666813
C	3.815846 2.346276 2.050663
C	4.945179 1.745823 1.493143
C	4.803577 0.703823 0.585199
C	3.545579 0.235818 0.202468
Se	3.349555 -1.266595 -1.039257
S	5.490213 -1.609092 -1.653874
C	6.058728 -2.847340 -0.421831
0	3.879090 3.357392 2.971353
Ι	-4.165358 -2.293101 0.828000
Н	-1.377342 -0.932641 1.063289
Н	-4.447752 4.409036 -2.400257
Н	-2.040789 5.014085 -2.092157
Н	-0.535256 3.438167 -0.917790
Н	-5.688078 1.079861 -1.173082
Н	0.209239 2.183286 0.853972
Η	1.701795 2.371709 2.149424
Н	5.940827 2.083088 1.771662
Н	5.691225 0.255155 0.155321
Н	7.069707 -3.135294 -0.718230
Н	5.418409 -3.728042 -0.435613
Н	6.086550 -2.426951 0.583366
Н	4.796790 3.556426 3.192016

2. Chemistry-Synthesis

The NMR spectra were recorder using TMS (¹H, ¹³C NMR) as the internal standard and Me₂Se (⁷⁷Se NMR) as external standards on a Bruker AvanceIII spectrometer at 400.13 (¹H NMR), 100.61 (¹³C NMR) and 76.31 (⁷⁷Se NMR) MHz. MS spectra were generated on an Agilent LC-MS 6120 instrument with an ESI and APCI mass selective detector. The high-resolution mass spectra were obtained using a Shimadzu LCMS-IT-TOF or LTQ Orbitrap XL (Thermo Scientific) mass spectrometer. The melting points were determined using an SRS-Opti Melt automated melting point instrument. The reactions were followed by thin-layer chromatography (TLC) on glass-packed precoated silica gel plates and visualized in an iodine chamber or with a UV lamp. Flash column chromatography was performed using silica gel (200-300 mesh) purchased from Qingdao Haiyang Chemical Co. Ltd. The purity (≥95%) of the samples was determined by HPLC, conducted on a Shimadzu LC-20AT series system, TC-C18 column (4.6×250 mm, 5 µm), eluted with CH₃OH/PBS (25 mM NaH₂PO₄ pH 3.0), 30/70, at a flow rate of 0.5 mL/min.

5-Nitroquinolin-8-ol (2)

Compound **2** were synthesised according to the literature.^{3, 4} ¹H NMR (400 MHz, DMSO) δ 9.14 (d, *J* = 8.8 Hz, 1H), 9.02 (d, *J* = 3.5 Hz, 1H), 8.54 (d, *J* = 8.7 Hz, 1H), 7.88 (dd, *J* = 8.7, 3.9 Hz, 1H), 7.21 (d, *J* = 8.8 Hz, 1H).

Tert-butyl (5-nitroquinolin-8-yl) carbonate (3a)

Compound **3a** was synthesised by following a previously reported procedure.⁵ 94% yield. ¹H NMR (400 MHz, CDCl₃) δ 9.06 (d, *J* = 8.9 Hz, 1H), 9.03 (s, 1H), 8.44 (d, *J* = 8.4 Hz, 1H), 7.68 (dd, *J* = 5.5, 3.3 Hz, 1H), 7.62 (d, *J* = 8.4 Hz, 1H), 1.60 (s, 9H).

General Procedures for the Synthesis of 3b-3c

DMAP (2.10 g, 17.20 mmol) and DIPEA (12 mL, 68.90 mmol) were added at room temperature to a stirred suspension of nitroxoline (10.0 g, 34.45 mmol) and di-*tert*-butyl dicarbonate (15.03 g, 68.90 mmol) in a 1:2 mixture of hexanes-DCM (500 mL). The mixture was stirred for 72 h at 50 °C, filtered, and concentrated under reduced pressure to provide a crude product which was purified by flash column chromatography on silica gel (eluent: petroleum ether /DCM = 8:2).

Tert-butyl (7-chloro-5-nitroquinolin-8-yl) carbonate (3b)

Yellow solid, 62% yield. R_f = 0.58 (petrolem/EtOAc=10/1). ¹H NMR (400 MHz, CDCl₃) δ 9.05 (d, *J* = 8.8 Hz, 2H), 8.50 (s, 1H), 7.62 (dd, *J* = 8.7, 4.1 Hz, 1H), 1.59 (s, 9H).

Tert-butyl (7-iodo-5-nitroquinolin-8-yl) carbonate (3c)

Yellow solid, 76% Yield. $R_f = 0.67$ (petrolem/EtOAc=10/1). ¹H NMR (400 MHz, CDCl₃) δ 9.04 (dd, J = 8.7, 1.3 Hz, 1H), 8.98 (d, J = 2.5 Hz, 1H), 8.82 (s, 1H), 7.64 (dd, J = 8.8, 4.1 Hz, 1H), 1.66 (s, 9H).

5-Aminoquinolin-8-yl *tert*-butyl carbonate (4a)⁵

Tert-butyl(5-nitroquinolin-8-yl) carbonate (**3a**) (14.0 g, 66.8 mmol) was dissolved in 200 mL of ethyl acetate, 8.0 equiv of $SnCl_2 2H_2O$ (120 g, 535.1 mmol) was added to the solution in one portion, and the reaction was stirred at room temperature for 3 h.

The solution was adjusted to pH=8 with a saturated NaHCO₃ solution, extracted (ethyl acetate), washed (brine), and dried over anhydrous Na₂SO₄. Evaporation of the solvent afforded the pure product as a yellow solid in 78% yield. Mp 172.4-173.3 °C. $R_f = 0.32$ (CH₂Cl₂/CH₃OH=20/1). ¹H NMR (400 MHz, CDCl₃) δ 8.90 (s, 1H), 8.20 – 8.05 (m, 1H), 7.38 – 7.29 (m, 2H), 6.72 (dd, *J* = 7.9, 3.4 Hz, 1H), 4.12 (s, 2H), 1.59 (s, 9H). LC/MS (ESI): 261.1 [M+H]⁺.

General Procedures for the Synthesis of 4b-4c

To a solution of *tert*-butyl (7-chloro-5-nitroquinolin-8-yl) carbonate (**3b**) or *tert*-butyl(7-iodo-5-nitroquinolin-8-yl) carbonate (**3c**) (1.0 equiv) in 20 mL of ethanol was added 5.0 equiv of Na₂S 9H₂O in one portion. The mixture was stirred at room temperature for 3 h.

5-Amino-7-chloroquinolin-8-yl *tert*-butyl carbonate (4b)

Yellow solid, 86% Yield. $R_f = 0.54$ (petrolem/EtOAc=5/1). ¹H NMR (400 MHz, CDCl₃) δ 8.89 (dd, J = 4.1, 1.4 Hz, 1H), 8.08 (dd, J = 8.5, 1.5 Hz, 1H), 7.30 (dd, J = 8.5, 4.1 Hz, 2H), 6.81 (s, 1H), 1.50 (s, 9H). LC/MS (ESI): 251.1 [M–CO₂+H]⁺.

5-Amino-7-iodoquinolin-8-yl *tert*-butyl carbonate (4c)

Yellow solid, 84% Yield. Mp 123.8-124.9 °C. $R_f = 0.67$ (petrolem/EtOAc=5/1).¹H NMR (400 MHz, CDCl₃) δ 8.86 (dd, J = 4.0, 1.5 Hz, 1H), 8.08 (dd, J = 8.5, 1.5 Hz, 1H), 7.34 (dd, J = 8.5, 4.1 Hz, 1H), 7.23 (s, 1H), 3.96 (s, 2H), 1.57 (s, 9H). LC/MS (ESI): 343.0 [M-CO₂+H]⁺.

General Procedures for the Synthesis of 6a-6l and 7a-7l

Compound **6a-61** and **7a-71** were synthesized according to literature procedures.⁶

General Procedures for the Synthesis of 8a-8k, 9k and 10k

To a solution of 20 mL of anhydrous DCM, 10.0 equiv of anhydrous triethylamine and 1.0 equiv of (**4**), a solution of 1.5 equiv of the corresponding chloride in 2 mL of anhydrous DCM was added dropwise. The reaction was stirred at room temperature for 16 h. Saturated NaHCO₃ was added to the mixture, which was then extracted with DCM, washed with brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by silica-column chromatography.

Tert-butyl (5-(3-oxobenzo[*d*][1,2]selenazol-2(3*H*)-yl)quinolin-8-yl) carbonate (8a) White solid, 81% yield. $R_f = 0.51$ (CH₂Cl₂/CH₃OH=20/1). ¹H NMR (400 MHz, CDCl₃) δ 9.03 – 8.82 (m, 1H), 8.16 (d, *J* = 7.8 Hz, 1H), 8.08 (dd, *J* = 8.6, 1.3 Hz, 1H), 7.73 – 7.56 (m, 4H), 7.51 (t, *J* = 7.4 Hz, 1H), 7.42 (dd, *J* = 8.6, 4.1 Hz, 1H), 1.62 (s, 9H). LC/MS (ESI):443.0 [M+H]⁺.

Tert-butyl (5-(6-chloro-3-oxobenzo[*d*][1,2]selenazol-2(3*H*)-yl)quinolin-8-yl) carbonate (8b)

Pale yellow solid, 78% yield. $R_f = 0.57 (CH_2Cl_2/CH_3OH=20/1)$. ¹H NMR (400 MHz, CDCl₃) δ 8.92 (dd, J = 4.1, 1.3 Hz, 1H), 8.02 (dd, J = 12.8, 4.8 Hz, 2H), 7.73 (d, J = 1.6 Hz, 1H), 7.57 (q, J = 8.1 Hz, 2H), 7.46 (dd, J = 8.3, 1.5 Hz, 1H), 7.40 (dd, J = 8.6, 4.2 Hz, 1H), 1.61 (s, 9H). LC/MS (ESI): 477.0 [M+H]⁺.

Tert-butyl (5-(5-chloro-3-oxobenzo[*d*][1,2]selenazol-2(3*H*)-yl)quinolin-8-yl) carbonate (8c)

Pale yellow solid, 84% yield. $R_f = 0.58 (CH_2Cl_2/CH_3OH=20/1)$. ¹H NMR (400 MHz, CDCl₃) δ 9.02 – 8.91 (m, 1H), 8.15 (s, 1H), 8.06 (d, *J* = 8.5 Hz, 1H), 7.71 – 7.62 (m,

3H), 7.59 (d, *J* = 8.1 Hz, 1H), 7.47 (dd, *J* = 8.6, 4.2 Hz, 1H), 1.62 (s, 9H). LC/MS (ESI): 477.0 [M+H]⁺.

Tert-butyl (5-(6-fluoro-3-oxobenzo[d][1,2]selenazol-2(3H)-yl)quinolin-8-yl) carbonate (8d)

White solid, 89% yield. $R_f = 0.53$ (CH₂Cl₂/CH₃OH=20/1). ¹H NMR (400 MHz, CDCl₃) δ 8.97 (dd, J = 4.2, 1.6 Hz, 1H), 8.14 (dd, J = 8.6, 5.2 Hz, 1H), 8.08 (dd, J = 8.6, 1.6 Hz, 1H), 7.64 (d, J = 8.1 Hz, 1H), 7.60 (s, 1H), 7.46 (dd, J = 8.6, 4.2 Hz, 1H), 7.42 (dd, J = 7.8, 2.2 Hz, 1H), 7.23 (dd, J = 8.6, 2.2 Hz, 1H), 1.62 (s, 9H). . LC/MS (ESI): 461.0 [M+H]⁺.

Tert-butyl (5-(5-fluoro-3-oxobenzo[*d*][1,2]selenazol-2(3*H*)-yl)quinolin-8-yl) carbonate (8e)

White solid, 80% yield. $R_f = 0.56 (CH_2Cl_2/CH_3OH=20/1)$. ¹H NMR (400 MHz, CDCl₃) δ 8.94 (t, J = 3.6 Hz, 1H), 8.11 (dt, J = 8.8, 4.9 Hz, 1H), 8.05 (dd, J = 8.5, 3.2 Hz, 1H), 7.59 (ddd, J = 17.3, 8.0, 4.8 Hz, 2H), 7.43 (dd, J = 8.3, 4.6 Hz, 2H), 7.25 – 7.17 (m, 1H), 1.62 (s, 9H). LC/MS (ESI): 461.0 [M+H]⁺.

Tert-butyl (5-(4-fluoro-3-oxobenzo[*d*][1,2]selenazol-2(3*H*)-yl)quinolin-8-yl) carbonate (8f)

Pale yellow solid, 71% yield. R_f = 0.51 (CH₂Cl₂/CH₃OH=20/1). ¹H NMR (400 MHz, CDCl₃) δ 8.97 (dd, *J* = 4.2, 1.6 Hz, 1H), 8.13 (dd, *J* = 8.6, 1.6 Hz, 1H), 7.68 – 7.64 (m, 1H), 7.63 (d, *J* = 2.9 Hz, 1H), 7.59 (d, *J* = 8.1 Hz, 1H), 7.49 (d, *J* = 3.0 Hz, 1H), 7.48 – 7.45 (m, 1H), 7.17 (dd, *J* = 9.6, 8.4 Hz, 1H), 1.62 (s, 9H). LC/MS (ESI): 461.0 [M+H]⁺.

Tert-butyl

(5-(3-oxo-6-(trifluoromethyl)benzo[*d*][1,2]selenazol-2(3*H*)-yl)quinolin-8-yl) carbonate (8g)

yellow solid, 82% yield. $R_f = 0.59$ (CH₂Cl₂/CH₃OH=20/1). ¹H NMR (400 MHz, CDCl₃) δ 8.97 (dd, J = 4.2, 1.6 Hz, 1H), 8.28 (d, J = 8.2 Hz, 1H), 8.07 – 8.01 (m, 2H), 7.77 (dd, J = 8.2, 0.8 Hz, 1H), 7.62 (dd, J = 20.8, 8.1 Hz, 2H), 7.46 (dd, J = 8.6, 4.2 Hz, 1H), 1.62 (s, 9H). LC/MS (ESI): 510.0 [M+H]⁺.

Tert-butyl (5-(5-methoxy-3-oxobenzo[*d*][1,2]selenazol-2(3*H*)-yl)quinolin-8-yl) carbonate (8i)

Pale yellow solid, 77% yield. $R_f = 0.54$ (CH₂Cl₂/CH₃OH=20/1). ¹H NMR (400 MHz, CDCl₃) δ 8.96 (dd, J = 4.1, 1.5 Hz, 1H), 8.09 (dd, J = 8.6, 1.6 Hz, 1H), 7.65 (dd, J = 5.3, 2.7 Hz, 2H), 7.58 (dd, J = 8.4, 4.2 Hz, 2H), 7.45 (dd, J = 8.6, 4.2 Hz, 1H), 7.34 (dd, J = 8.7, 2.7 Hz, 1H), 3.92 (s, 3H), 1.62 (s, 9H). LC/MS (ESI): 473.0 [M+H]⁺.

Tert-butyl (5-(5,6-dimethoxy-3-oxobenzo[*d*][1,2]selenazol-2(3*H*)-yl)quinolin-8-yl) carbonate (8j)

White solid, 69% yield. $R_f = 0.55$ (CH₂Cl₂/CH₃OH=20/1). ¹H NMR (400 MHz, CDCl₃) δ 8.97 (d, J = 4.1 Hz, 1H), 8.10 (d, J = 8.6 Hz, 1H), 7.65 (d, J = 8.0 Hz, 1H), 7.58 (t, J = 3.9 Hz, 2H), 7.46 (dd, J = 8.2, 4.1 Hz, 1H), 7.13 (s, 1H), 4.02 (s, 3H), 4.00 (s, 3H), 1.62 (s, 9H). LC/MS (ESI): 503.1 [M+H]⁺.

2-(8-((*Tert*-butoxycarbonyl)oxy)quinolin-5-yl)-3-oxo-2,3-dihydrobenzo[*d*][1,2]sele nazol-5-yl acetate (8k) Pale yellow solid, 76% yield. $R_f = 0.49 (CH_2Cl_2/CH_3OH=20/1)$. ¹H NMR (400 MHz, CDCl₃) δ 8.97 (dd, J = 4.2, 1.6 Hz, 1H), 8.09 (dd, J = 8.6, 1.6 Hz, 1H), 7.90 (d, J = 2.3 Hz, 1H), 7.72 (d, J = 8.5 Hz, 1H), 7.65 (d, J = 8.1 Hz, 1H), 7.59 (d, J = 8.1 Hz, 1H), 7.52 – 7.45 (m, 2H), 2.37 (s, 3H), 1.62 (s, 9H). LC/MS (ESI): 501.1 [M+H]⁺.

Tert-butyl (5-(5-hydroxy-3-oxobenzo[*d*][1,2]selenazol-2(3*H*)-yl)quinolin-8-yl) carbonate (8l)

The solution of 1.0 equiv of **8k**, 1.0 equiv of anhydrous potassium carbonate in 20mL of methyl alcohol was stirred at room temperature and monitored by TLC. After the completion of the reaction, the mixture was adjusted to pH=7 with acetic acid, 150mL of water was added, filtrated, and the product was recrystallized from ethyl acetate to afford a white solid, 78% yield. $R_f = 0.38$ (CH₂Cl₂/CH₃OH=20/1). ¹H NMR (400 MHz, CDCl₃) δ 8.92 (dd, *J* = 4.1, 1.5 Hz, 1H), 8.07 (dd, *J* = 8.6, 1.5 Hz, 1H), 7.67 (d, *J* = 2.4 Hz, 1H), 7.65 (d, *J* = 8.1 Hz, 1H), 7.58 (d, *J* = 8.1 Hz, 1H), 7.45 (d, *J* = 8.2 Hz, 1H), 7.43 – 7.40 (m, 1H), 7.14 (dd, *J* = 8.6, 2.4 Hz, 1H), 1.60 (s, 9H). LC/MS (ESI): 459.0 [M+H]⁺.

2-(8-((*Tert*-butoxycarbonyl)oxy)-7-chloroquinolin-5-yl)-3-oxo-2,3-dihydrobenzo[d][1,2]selenazol-5-yl acetate (9k)

White solid, 71% yield. $R_f = 0.34$ (petrolem/EtOAc=5/1). ¹H NMR (400 MHz, CDCl₃) δ 8.95 (dd, J = 4.0, 1.6 Hz, 1H), 8.00 (dd, J = 8.5, 1.6 Hz, 1H), 7.89 (d, J = 2.2 Hz, 1H), 7.72 (d, J = 8.6 Hz, 1H), 7.67 (s, 1H), 7.49 (dd, J = 8.6, 2.4 Hz, 1H), 7.40 (dd, J = 8.5, 4.1 Hz, 1H), 2.37 (s, 3H), 1.59 (s, 9H). LC/MS (ESI): 491.0 [M–CO₂+H]⁺.

Tert-butyl

(7-chloro-5-(5-hydroxy-3-oxobenzo[*d*][1,2]selenazol-2(3*H*)-yl)quinolin-8-yl) carbonate (9l)

To a solution 1.0 equiv of **9k** in 20 mL of methyl alcohol containing, 1.0 equiv of anhydrous potassium carbonate was added in portion. The reaction was stirred at room temperature and monitored by TLC. After the completion of the reaction, the mixture was adjusted to pH 7 with acetic acid. Water (150 mL) was added, extracted by ethyl acetate, washed with brine, dried over anhydrous Na₂SO₄, evaporated the solvent under reduced pressure, purified by silica-column chromatography to afford a white solid, 82% yield. $R_f = 0.34$ (petrolem/EtOAc=2/1). ¹H NMR (400 MHz, CDCl₃) δ 8.93 (dd, J = 4.1, 1.6 Hz, 1H), 7.99 (dd, J = 8.5, 1.6 Hz, 1H), 7.68 (s, 1H), 7.67 (d, J = 2.5 Hz, 1H), 7.46 (d, J = 8.6 Hz, 1H), 7.37 (dd, J = 8.5, 4.1 Hz, 1H), 7.16 (dd, J = 8.6, 2.5 Hz, 1H), 1.58 (s, 9H). LC/MS (ESI): 449.0 [M–CO₂+H]⁺.

2-(8-((*Tert*-butoxycarbonyl)oxy)-7-iodoquinolin-5-yl)-3-oxo-2,3-dihydrobenzo[*d*][1,2]selenazol-5-yl acetate (10k)

Pale yellow solid, 84% yield. $R_f = 0.39$ (petroleum/EtOAc=5/1). ¹H NMR (400 MHz, CDCl₃) δ 8.91 (d, J = 2.1 Hz, 1H), 8.02 (s, 1H), 7.99 (dd, J = 8.4, 1.3 Hz, 1H), 7.88 (d, J = 1.8 Hz, 1H), 7.72 (d, J = 8.4 Hz, 1H), 7.49 (dd, J = 8.2, 1.5 Hz, 1H), 7.42 (dd, J = 8.4, 3.7 Hz, 1H), 2.37 (s, 3H), 1.66 (s, 9H). LC/MS (ESI): 583.0 [M–CO₂+H]⁺.

Tert-butyl

(5-(5-hydroxy-3-oxobenzo[*d*][1,2]selenazol-2(3*H*)-yl)-7-iodoquinolin-8-yl) carbonate (10l)

The procedure are same as **91**. Pale yellow solid, 76% yield. $R_f = 0.35$ (petroleum/EtOAc=2/1). ¹H NMR (400 MHz, CDCl₃) δ 8.89 (dd, J = 4.0, 1.6 Hz, 1H), 8.01 (s, 1H), 7.97 (dd, J = 8.5, 1.6 Hz, 1H), 7.67 (d, J = 2.5 Hz, 1H), 7.48 (d, J = 8.6Hz, 1H), 7.39 (dd, J = 8.5, 4.1 Hz, 1H), 7.19 (dd, J = 8.6, 2.6 Hz, 1H), 1.64 (s, 9H). LC/MS (ESI): 541.0 [M-CO₂+H]⁺.

General Procedure for the Synthesis of 11a-11c, 11e, 11i and 11j

Piperidine (1.5 equiv) was added to a solution of 5 mL anhydrous DCM containing 1.0 equiv of 8a, 8b, 8c, 8e, 8i or 8j at ambient temperature. After 20 minutes, the mixture was filtered, washed with DCM, and dried under reduced pressure to obtain the pure product.

General Procedures for the Synthesis of 11d, 11f, 11g, 11k, 12k and 13k

To a solution of 300 mg of **8**, **9** or **10** in 12 mL CH_2Cl_2 , HCl gas was bubbled at room temperature for 4 h. The reaction was stirred under an HCl atmosphere overnight at 0 °C. The mixture was filtered and dried under reduced pressure to yield the product.

2-(8-Hydroxyquinolin-5-yl)benzo[d][1,2]selenazol-3(2H)-one (11a)

Yellow solid, 86% yield. Mp 247.4-248.1 °C. $R_f = 0.19$ (CH₂Cl₂/CH₃OH=5/1). ¹H NMR (400 MHz, d_6 -DMSO) δ 8.91 (d, J = 3.9 Hz, 1H), 8.13 (d, J = 8.1 Hz, 1H), 7.94 (s, 1H), 7.93 – 7.90 (m, 1H), 7.73 (t, J = 7.6 Hz, 1H), 7.59 (dd, J = 8.4, 4.1 Hz, 1H), 7.53 (t, J = 8.1 Hz, 2H), 7.15 (d, J = 8.1 Hz, 1H). ¹³C NMR (101 MHz, d_6 -DMSO) δ

166.40, 153.51, 148.58, 140.42, 138.48, 132.13, 128.37, 127.99, 127.04, 126.19, 125.94, 125.24, 122.34, 110.61. ⁷⁷Se NMR (d_6 -DMSO): δ = 886 ppm. HRMS (ESI) m/z [M+Cl]⁻ for C₁₆H₁₀N₂O₂Se pred. 376.9602, meas. 376.9586; HPLC purity: 99.45%.

6-Chloro-2-(8-hydroxyquinolin-5-yl)benzo[d][1,2]selenazol-3(2H)-one (11b)

Yellow solid, 88% yield. Mp 244.6-245.1 °C. $R_f = 0.22$ (CH₂Cl₂/CH₃OH=5/1). ¹H NMR (400 MHz, d_6 -DMSO) δ 8.88 (s, 1H), 8.15 (s, 1H), 7.90 (t, J = 7.3 Hz, 2H), 7.55 (d, J = 7.2 Hz, 2H), 7.49 (d, J = 8.0 Hz, 1H), 7.13 (d, J = 7.9 Hz, 1H). ¹³C NMR (101 MHz, d_6 -DMSO) δ 165.48, 153.65, 148.58, 142.06, 138.47, 137.13, 132.11, 129.46, 128.44, 126.62, 126.17, 126.11, 125.32, 124.86, 122.39, 110.61. ⁷⁷Se NMR (d_6 -DMSO): $\delta = 864$ ppm. HRMS (ESI) m/z [M+Cl]⁻ for C₁₆H₉N₂O₂ClSe pred. 410.9210, meas. 410.9205; HPLC purity: 98.80%.

5-Chloro-2-(8-hydroxyquinolin-5-yl)benzo[*d*][1,2]selenazol-3(2*H*)-one (11c)

Yellow solid, 81% yield. Mp 248.3-249.4 °C. $R_f = 0.21$ (CH₂Cl₂/CH₃OH=5/1). ¹H NMR (400 MHz, d_6 -DMSO) δ 8.91 (dd, J = 3.9, 1.3 Hz, 1H), 8.15 (dd, J = 8.5, 3.2 Hz, 1H), 7.94 (dd, J = 6.4, 2.1 Hz, 1H), 7.89 (d, J = 2.2 Hz, 1H), 7.83 – 7.75 (m, 1H), 7.59 (dd, J = 8.5, 4.1 Hz, 1H), 7.52 (dd, J = 7.4, 2.8 Hz, 1H), 7.16 (dd, J = 8.1, 3.6 Hz, 1H). ¹³C NMR (101 MHz, d_6 -DMSO) δ 165.15, 153.68, 148.57, 139.10, 138.48, 132.12, 131.93, 131.34, 128.89, 128.34, 127.92, 127.12, 126.08, 124.91, 122.37, 110.59. ⁷⁷Se NMR (d_6 -DMSO): $\delta = 870$ ppm. HRMS (ESI) m/z [M+Cl]⁻ for C₁₆H₉N₂O₂ClSe pred. 410.9210, meas. 410.9188; HPLC purity: 99.35%.

5-Fluoro-2-(8-hydroxyquinolin-5-yl)benzo[d][1,2]selenazol-3(2H)-one (11e)

Yellow solid, 75% yield. Mp 249.1-250.3 °C. $R_f = 0.20$ (CH₂Cl₂/CH₃OH=5/1). ¹H NMR (400 MHz, d_6 -DMSO) δ 8.91 – 8.86 (m, 1H), 8.04 – 7.81 (m, 3H), 7.57 (dd, J = 8.4, 3.9 Hz, 1H), 7.50 (d, J = 8.1 Hz, 1H), 7.36 (t, J = 8.7 Hz, 1H), 7.13 (d, J = 8.1 Hz, 1H). ¹³C NMR (101 MHz, d_6 -DMSO) δ 165.56 (d, $J_{C-F} = 17.9$ Hz), 163.15 (s), 153.60 (s), 148.56 (s), 142.52 (d, $J_{C-F} = 11.0$ Hz), 138.47 (s), 132.11 (s), 130.17 (d, $J_{C-F} = 9.3$ Hz), 128.46 (s), 126.22 (s), 125.01 (s), 123.87 (s), 122.37 (s), 114.45 (d, $J_{C-F} = 23.6$ Hz), 112.46 (d, $J_{C-F} = 26.1$ Hz), 110.59 (s). ⁷⁷Se NMR (d_6 -DMSO): $\delta = 933$ ppm. HRMS (ESI) m/z [M+Cl]⁻ for C₁₆H₉N₂O₂FSe pred. 394.9508, meas. 394.9464; HPLC purity: 95.14%.

6-Fluoro-2-(8-hydroxyquinolin-5-yl)benzo[d][1,2]selenazol-3(2H)-one

hydrochloride (11d)

Yellow solid, 92% yield. Mp 237.4-238.6 °C. $R_f = 0.25$ (CH₂Cl₂/CH₃OH=5/1). ¹H NMR (400 MHz, d_6 -DMSO) δ 9.17 (dd, J = 5.2, 1.0 Hz, 1H), 8.77 (dd, J = 8.6, 0.9 Hz, 1H), 8.51 (dd, J = 10.0, 2.4 Hz, 1H), 8.08 (dd, J = 8.6, 5.3 Hz, 1H), 7.93 (dd, J = 8.5, 5.6 Hz, 1H), 7.77 (d, J = 8.3 Hz, 1H), 7.64 (d, J = 8.3 Hz, 1H), 7.33 (td, J = 8.6, 2.4 Hz, 1H). ¹³C NMR (101 MHz, d_6 -DMSO) δ 165.38 (d, J = 28.3 Hz), 162.77 (s), 147.38 (s), 144.46 (s), 144.33 (d, J = 10.5 Hz), 143.24 (s), 130.29 (s), 129.58 (d, J = 9.6 Hz), 128.80 (s), 127.66 (s), 127.06 (s), 125.34 (s), 122.49 (s), 115.73 (s), 113.96 (d, J = 12.6 Hz), 113.70 (d, J = 9.0 Hz). ⁷⁷Se NMR (d_6 -DMSO): $\delta = 860$ ppm. HRMS (ESI) m/z [M+H]⁺ for C₁₆H₉N₂O₂FSe pred. 360.9887, meas. 360.9871; HPLC purity: 98.23%.

4-Fluoro-2-(8-hydroxyquinolin-5-yl)benzo[d][1,2]selenazol-3(2H)-one

hydrochloride (11f)

Yellow solid, 92% yield. Mp 274.1-275.0 °C. $R_f = 0.18$ (CH₂Cl₂/CH₃OH=5/1). ¹H NMR (400 MHz, d_6 -DMSO) δ 9.13 (dd, J = 5.2, 1.2 Hz, 1H), 8.75 (dd, J = 8.6, 1.0 Hz, 1H), 8.41 (d, J = 8.1 Hz, 1H), 8.04 (dd, J = 8.6, 5.2 Hz, 1H), 7.76 (d, J = 8.3 Hz, 1H), 7.63 (td, J = 8.1, 5.0 Hz, 1H), 7.56 (d, J = 8.3 Hz, 1H), 7.24 (dd, J = 10.6, 8.2 Hz, 1H). ¹³C NMR (101 MHz, d_6 -DMSO) δ 163.72 (d, $J_{C-F} = 3.1$ Hz), 161.84 (d, $J_{C-F} = 259.8$ Hz), 147.58 (s), 144.53 (s), 144.21 (s), 143.13 (s), 131.88 (d, $J_{C-F} = 8.3$ Hz), 130.58 (s), 128.94 (s), 127.21 (d, $J_{C-F} = 8.7$ Hz), 123.41 (d, $J_{C-F} = 3.3$ Hz), 122.58 (s), 116.13 (d, $J_{C-F} = 10.8$ Hz), 115.59 (s), 112.47 (d, $J_{C-F} = 19.8$ Hz). ⁷⁷Se NMR (d_6 -DMSO): $\delta = 879$ ppm. HRMS (ESI) m/z [M+H]⁺ for C₁₆H₉FN₂O₂Se pred. 360.9886, meas. 360.9886; HPLC purity: 98.21%.

2-(8-Hydroxyquinolin-5-yl)-6-(trifluoromethyl)benzo[*d*][1,2]selenazol-3(2*H*)-one (11g)

Yellow solid, 96% yield. Mp 251.1-252.0 °C. $R_f = 0.23$ (CH₂Cl₂/CH₃OH=5/1). ¹H NMR (400 MHz, d_6 -DMSO) δ 9.16 (dd, J = 5.3, 1.3 Hz, 1H), 9.13 (s, 1H), 8.78 (dd, J = 8.6, 1.3 Hz, 1H), 8.12 – 8.08 (m, 1H), 8.08 – 8.05 (m, 1H), 7.81 (dd, J = 8.2, 1.4 Hz, 1H), 7.79 (d, J = 8.3 Hz, 1H), 7.62 (d, J = 8.3 Hz, 1H). ¹³C NMR (101 MHz, d_6 -DMSO) δ 165.27 (s), 147.48 (s), 144.49 (s), 143.28 (s), 142.93 (s), 132.26 (s), 131.08 (q, J = 31.5 Hz), 130.21 (s), 128.81 (s), 128.36 (s), 127.47 (s), 126.93 (s), 124.74 (d, J = 4.0 Hz), 124.12 (q, J = 273.0 Hz), 122.54 (s), 122.24 (d, J = 3.0 Hz),

115.71 (s). ⁷⁷Se NMR (d_6 -DMSO): $\delta = 855$ ppm. HRMS (ESI) m/z [M+H]⁺for C₁₇H₉N₂O₃F₃Se pred. 410.9855, meas. 410.9836; HPLC purity: 99.73%.

2-(8-Hydroxyquinolin-5-yl)-6-methoxybenzo[d][1,2]selenazol-3(2H)-one

hydrobromide (11h)

To a solution of 20mL hydrobromic acid (47%) 100mg of **10h** was added. After refluxed for 24h, the mixture was filtrated and dried under reduced pressure to get the product as a brown solid. 62% yield. Mp 316.3-317.2 °C. R_f = 0.16 (CH₂Cl₂/CH₃OH=5/1). ¹H NMR (400 MHz, d_6 -DMSO) δ 9.13 (dd, J = 5.2, 1.3 Hz, 1H), 8.68 (dd, J = 8.6, 1.1 Hz, 1H), 8.08 (d, J = 2.3 Hz, 1H), 8.05 (dd, J = 8.7, 5.2 Hz, 1H), 7.79 (dd, J = 15.1, 8.4 Hz, 2H), 7.51 (d, J = 8.3 Hz, 1H), 7.08 (dd, J = 8.6, 2.4 Hz, 1H), 3.88 (s, 3H). ¹³C NMR (101 MHz, d_6 -DMSO) δ 166.05, 162.18, 147.44, 144.65, 142.92, 142.64, 130.58, 129.05, 128.78, 127.70, 127.24, 122.63, 120.86, 115.46, 113.95, 111.24, 55.61. ⁷⁷Se NMR (d_6 -DMSO): δ = 899 ppm. HRMS (ESI) m/z [M+H]⁺for C₁₇H₁₂N₂O₃Se pred. 373.0086, meas. 373.0086; HPLC purity: 98.76%.

2-(8-Hydroxyquinolin-5-yl)-5-methoxybenzo[d][1,2]selenazol-3(2H)-one (11i)

Yellow solid, 72%yield. Mp 225.5-226.2 °C. $R_f = 0.18$ (CH₂Cl₂/CH₃OH=5/1). ¹H NMR (400 MHz, d_6 -DMSO) δ 8.90 (d, J = 3.6 Hz, 1H), 8.00 (d, J = 8.8 Hz, 1H), 7.91 (d, J = 8.3 Hz, 1H), 7.58 (dd, J = 8.5, 4.0 Hz, 1H), 7.50 (d, J = 8.1 Hz, 1H), 7.43 (d, J = 2.5 Hz, 1H), 7.37 (dd, J = 8.7, 2.5 Hz, 1H), 7.15 (d, J = 8.2 Hz, 1H), 3.87 (s, 3H). ¹³C NMR (101 MHz, d_6 -DMSO) δ 166.17, 158.48, 153.66, 148.50, 138.55, 132.13, 131.26, 128.23, 128.06, 126.91, 126.13, 125.35, 122.27, 121.14, 110.59, 110.29,

55.50. ⁷⁷Se NMR (d_6 -DMSO): $\delta = 941$ ppm. HRMS (ESI) m/z [M+Cl]⁻ for C₁₇H₁₂N₂O₃Se pred. 406.9708, meas. 406.9701; HPLC purity: 99.40%.

2-(8-Hydroxyquinolin-5-yl)-5,6-dimethoxybenzo[*d*][1,2]selenazol-3(2*H*)-one (11j) Yellow solid, 83% yield. Mp 276.5-277.1 °C. R_f = 0.18 (CH₂Cl₂/CH₃OH=5/1). ¹H NMR (400 MHz, *d*₆-DMSO) δ 8.90 (d, *J* = 3.8 Hz, 1H), 7.88 (d, *J* = 8.4 Hz, 1H), 7.64 (s, 1H), 7.59 (dd, *J* = 8.4, 4.0 Hz, 1H), 7.49 (d, *J* = 8.1 Hz, 1H), 7.36 (s, 1H), 7.14 (d, *J* = 8.1 Hz, 1H), 3.89 (s, 3H), 3.86 (s, 3H). ¹³C NMR (101 MHz, *d*₆-DMSO) δ 166.39, 153.42, 152.93, 148.53, 138.48, 132.94, 132.14, 128.37, 126.28, 125.54, 122.28, 119.05, 110.55, 109.05, 107.49, 55.80, 55.65. ⁷⁷Se NMR (*d*₆-DMSO): δ = 938 ppm. HRMS (ESI) m/z [M+Cl]⁻ for C₁₈H₁₄N₂O₄Se pred. 436.9814, meas. 436.9778; HPLC purity: 98.16%.

5-Hydroxy-2-(8-hydroxyquinolin-5-yl)benzo[d][1,2]selenazol-3(2H)-one

hydrochloride (11k)

Yellow solid, 83% yield. Mp 294.4-294.9 °C. $R_f = 0.24$ (CH₂Cl₂/CH₃OH=3/1). ¹H NMR (400 MHz, d_6 -DMSO) δ 9.12 (dd, J = 5.1, 1.2 Hz, 1H), 8.65 (dd, J = 8.6, 0.9 Hz, 1H), 8.20 (d, J = 8.7 Hz, 1H), 8.02 (dd, J = 8.6, 5.2 Hz, 1H), 7.74 (d, J = 8.3 Hz, 1H), 7.54 (d, J = 8.3 Hz, 1H), 7.31 (d, J = 2.6 Hz, 1H), 7.17 (dd, J = 8.7, 2.7 Hz, 1H). ¹³C NMR (101 MHz, d_6 -DMSO) δ 166.31, 156.22, 147.41, 144.48, 143.14, 130.27, 130.26, 128.88, 128.79, 128.01, 127.81, 127.00, 122.50, 120.53, 115.63, 112.79. ⁷⁷Se NMR (d_6 -DMSO): δ = 899 ppm. HRMS (ESI) m/z [M+H]⁺ for C₁₆H₁₀N₂O₃Se pred. 358.9929, meas. 358.9928; HPLC purity: 98.73%.

2-(7-Chloro-8-hydroxyquinolin-5-yl)-5-hydroxybenzo[*d*][1,2]selenazol-3(2*H*)-one hydrochloride (12k)

Yellow solid, 95% yield. Mp 262.3-263.6 °C. $R_f = 0.28$ (CH₂Cl₂/CH₃OH=5/1). ¹H NMR (400 MHz, d_6 -DMSO) δ 9.05 (dd, J = 4.5, 1.3 Hz, 1H), 8.28 (d, J = 8.4 Hz, 1H), 8.23 (d, J = 8.7 Hz, 1H), 7.80 (dd, J = 8.5, 4.6 Hz, 1H), 7.71 (s, 1H), 7.32 (d, J = 2.4 Hz, 1H), 7.17 (dd, J = 8.6, 2.5 Hz, 1H). ¹³C NMR (101 MHz, d_6 -DMSO) δ 166.38, 156.22, 146.86, 145.31, 139.79, 133.19, 130.34, 129.58, 128.88, 128.78, 128.04, 125.76, 122.48, 120.57, 119.61, 112.82. ⁷⁷Se NMR (d_6 -DMSO): $\delta = 903$ ppm. HRMS (ESI) m/z [M+H]⁺ for C₁₆H₉ClN₂O₃Se pred. 392.9540, meas. 392.9543; HPLC purity: 98.89%.

5-Hydroxy-2-(8-hydroxy-7-iodoquinolin-5-yl)benzo[*d*][1,2]selenazol-3(2*H*)-one hydrochloride (13k)

Yellow solid, 92% yield. Mp 229.4-230.1 °C. $R_f = 0.27$ (CH₂Cl₂/CH₃OH=5/1). ¹H NMR (400 MHz, d_6 -DMSO) δ 8.95 (d, J = 4.2 Hz, 1H), 8.11 (d, J = 8.7 Hz, 1H), 8.05 (d, J = 8.4 Hz, 1H), 7.84 (s, 1H), 7.69 (dd, J = 8.5, 4.3 Hz, 1H), 7.31 (d, J = 2.5 Hz, 1H), 7.18 (dd, J = 8.7, 2.6 Hz, 1H). ¹³C NMR (101 MHz, d_6 -DMSO) δ 166.29, 156.22, 151.17, 147.59, 137.07, 136.65, 134.01, 130.10, 128.73, 128.61, 127.85, 126.28, 122.56, 120.62, 112.79, 83.06. ⁷⁷Se NMR (d_6 -DMSO): $\delta = 925$ ppm. HRMS (ESI) m/z [M+H]⁺ for C₁₆H₉IN₂O₃Se pred. 484.8896, meas. 484.8897; HPLC purity: 99.31%.

3. Coupled Reductase Assay

Procedure: Phosphate buffer solutions of pH 7.5, GSH, NADPH, GR were added into cuvette contained buffer solution. Finally, peroxide was added to initiate the reaction in a cuvette having mixture of all and immediately start the experiment for the control values in absence of any catalyst. For the test samples, solution was made in appropriate solvent and added into cuvette containing the mixture of buffer solution, GSH, NADPH and GR. Now, peroxide was added to initiate the reaction. Each of the measurement was carried out in triplicates. The initial reduction rate (5-10% consumption of NADPH) was expressed as μ M of NADPH depleting per minute (μ M/min) after the addition of peroxide. A plot of inverse of initial reaction rate v_0 inverse of GSH and peroxide concentration gave the catalytic parameters such as maximum velocities (V_{max}), Michaelis constants (K_m), catalytic constants (k_{cat}) and catalytic efficiencies (η) for the reduction of peroxide by GSH in presence of compound.

Initial reaction rate (v_0) = $\Delta A/6.22 \times 1000 \ (\mu M \cdot min^{-1})$

$$\frac{1}{v_0} = \frac{K_m}{V_{max}} \cdot \frac{1}{[S]} + \frac{1}{V_{max}}$$

$$k_{cat} = \frac{V_{max}}{[S]_0}$$

$$\eta = \frac{k_{cat}}{K_m}$$
Slope = $\frac{K_m}{V_{max}}$
Intercept = $\frac{1}{V_{max}}$

Where, $\Delta A = Difference$ in absorbance for one minute obtained from the initial 5-10%

of the NADPH consumption measured at 340 nm. It is obtained from the graph of absorbance in the first 10 s.

 v_0 = Initial reaction rate

 η = Catalytic efficiency

 k_{cat} = Catalytic constant

 $K_{\rm m}$ = Michaelis constant

 $[S]_0$ = The concentration of catalyst

material	Sample (µL)	Control (µL)
PBS	140	150
GSH	20	20
NADPH	5	5
GR	5	5
Catalyst	10	0
Peroxide	20	20

Total volume of the solution was taken 200 µL. GSH (2 mM), NADPH (0.4 mM), GR

(1.3 unit/mL), catalyst (80 μ M) and peroxide (1.6 mM).

Effect of increasing GSH on initial rate for the reduction of $\rm H_2O_2$

Figure S1. Effect of increasing GSH on initial rate for the reduction of H_2O_2 (1.6 mM) in the presence of 11f and 12k (80 μ M).

4. Determination of the Catalytic Parameters

Table S1.	Summary	for the ef	fect of sub	ostrate (H ₂ O	2) concentra	ation on tl	ne initial	rate
6101								
of 12k								

[H ₂ O ₂]	$v_0(\mu M \cdot \min^{-1})$	Mean	1/[H ₂ O ₂]	$1/v_0$
(mM)		$v_0(\mu M \cdot min^{-1})$	(mM^{-1})	$(\mu M^{-1} min)$
	198.88			
1.6	211.34	200.96 ±9.51	0.6250	0.0049761
	192.66			
	187.75			
1.4	184.33	187.33 ±2.82	0.7142	0.0053379
	189.93			
	182.40			
1.2	182.14	182.40 ±0.26	0.8333	0.0054824
	182.66			
	169.35			
1.0	172.41	172.84 ±3.73	1.0000	0.0057854
	176.78			
	158.62			
0.8	165.86	162.70 ± 3.70	1.2500	0.0061460
	163.64			
0.4	118.95	115.36 ±7.96	2.5000	0.0086682

120.90		
106.24		

Assay conditions: phosphate buffer (100 mM), pH 7.5, with EDTA (1 mM), GSH (2 mM),

NADPH (0.4 mM), GR (1.3 unit/mL), H_2O_2 (variable) and 12k (80 μ M).

Figure S2. The Lineweaver-Burk (double-reciprocal) plots obtained for 12k with the variation of H₂O₂ at the fixed concentration of GSH.

Intercept = 0.00398 ± 0.0000362 Slop = 0.00185 ± 0.0000274 $V_{\text{max}} = 251.25 \pm 1.24$ $K_{\text{m}} = 0.46 \pm 0.02$ $k_{\text{cat}} = 3.14 \pm 0.01$ $\eta = 6.83 \pm 0.04$

Table S2. Summary for the effect of substrate (t-BuOOH) concentration on the initial

rate of 12k

[t-BuOOH]	$v_0(\mu M \cdot min^{-1})$	Mean	1/[<i>t</i> -BuOOH]	$1/v_0$
(mM)		$v_0(\mu M \cdot \min^{-1})$	$(\mathbf{m}\mathbf{M}^{-1})$	$(\mu M^{-1} min)$
	70.04			
1.6	67.45	69.90 ±2.38	0.6250	0.014306
	72.21			
	69.23			
1.4	60.41	65.92 ±4.80	0.7142	0.015169
	68.13			
	69.77			
1.2	61.47	65.49 ±4.15	0.8333	0.015268
	65.24			
	60.24			
1.0	61.21	60.32 ±0.84	1.0000	0.016576
	59.53			
	54.02			
0.8	52.79	54.16 ±1.45	1.2500	0.018461
	55.69			
	37.97			
0.4	30.78	34.64 ±4.06	2.5000	0.028868
	35.17			

Assay conditions: phosphate buffer (100 mM), pH 7.5, with EDTA (1 mM), GSH (2 mM),

NADPH (0.4 mM), GR (1.3 unit/mL), t-BuOOH (variable) and 12k (80 µM).

Figure S3. The Lineweaver-Burk (double-reciprocal) plots obtained for **12k** with the variation of *t*-BuOOH at the fixed concentration of GSH.

Intercept = 0.00884 ± 0.000489 Slop = 0.00854 ± 0.000371 $V_{\text{max}} = 113.12 \pm 4.42$ $K_{\text{m}} = 0.96 \pm 0.03$ $k_{\text{cat}} = 1.41 \pm 0.05$ $\eta = 1.46 \pm 0.05$

 Table S3. Summary for the effect of substrate (Cum-OOH) concentration on the

 initial rate of 12k

[Cum-OOH]	$v_0(\mu \mathrm{M}\cdot\mathrm{min}^{-1})$	Mean	1/[Cum-OOH]	$1/v_0$
(mM)		$v_0(\mu M \cdot \min^{-1})$	(mM^{-1})	$(\mu M^{-1} min)$

	186.78			
1.6	188.01	188.79 ±2.49	0.6250	0.0052968
	191.58			
	184.73			
1.4	180.91	180.65 ±4.21	0.7142	0.0055354
	176.32			
	173.02			
1.2	178.55	173.33 ±5.06	0.8333	0.0057691
	168.44			
	167.93			
1.0	168.99	168.64 ±0.61	1.0000	0.0059296
	169.01			
0.8	151.62			
	153.45	151.98 ±1.32	1.2500	0.0065798
	150.87			
0.4	103.14			
	98.50	100.82 ± 2.32	2.5000	0.0099183
	100.83			

Assay conditions: phosphate buffer (100 mM), pH 7.5, with EDTA (1 mM), GSH (2 mM),

NADPH (0.4 mM), GR (1.3 unit/mL), Cum-OOH (variable) and 12k (80 μ M).

Figure S4. The Lineweaver-Burk (double-reciprocal) plots obtained for **12k** with the variation of Cum-OOH at the fixed concentration of GSH.

Intercept = 0.00375 ± 0.000106

Slop = 0.00238 ± 0.0000806 $V_{\text{max}} = 266.67 \pm 3.51$ $K_{\text{m}} = 0.63 \pm 0.08$ $k_{\text{cat}} = 3.33 \pm 0.04$

 $\eta = 5.28 \pm 0.06$

Table S4. Summary for the effect of substrate (H₂O₂) concentration on the initial rate

of **11f**

[H ₂ O ₂]	$v_0(\mu M \cdot \min^{-1})$	Mean	1/[H ₂ O ₂]	$1/v_0$
(mM)		$v_0(\mu M \cdot \min^{-1})$	(mM^{-1})	$(\mu M^{-1} min)$
1.6	253.08	251.09 ±4.79	0.6250	0.0039826

	254.57			
	245.63			
	190.38			
1.4	198.10	194.93 ±4.02	0.7142	0.0051300
	196.32			
	169.24			
1.2	168.46	168.90 ±0.40	0.8333	0.0059206
	169.01			
	154.42			
1.0	156.27	156.01 ±1.47	1.0000	0.0064098
	157.34			
	127.85			
0.8	120.66	125.72 ±4.40	1.2500	0.0079541
	128.65			
	81.37			
0.4	81.90	82.98 ±2.34	2.5000	0.0120511
	85.67			

Assay conditions: phosphate buffer (100 mM), pH 7.5, with EDTA (1 mM), GSH (2 mM),

NADPH (0.4 mM), GR (1.3 unit/mL), H_2O_2 (variable) and **11f** (80 μ M).

Figure S5. The Lineweaver-Burk (double-reciprocal) plots obtained for 11f with the variation of

 H_2O_2 at the fixed concentration of GSH.

Intercept = 0.00211 ± 0.000429

Slop = 0.00419 ± 0.000326 $V_{\text{max}} = 473.93 \pm 8.01$ $K_{\text{m}} = 1.98 \pm 0.15$ $k_{\text{cat}} = 5.92 \pm 0.10$ $\eta = 2.99 \pm 0.05$

Table S5. Summary for the effect of substrate (t-BuOOH) concentration on the initial

rate of 11f

[t-BuOOH]	$v_0(\mu M \cdot \min^{-1})$	Mean	1/[<i>t</i> -BuOOH]	$1/v_0$
(mM)		$v_0(\mu M \cdot \min^{-1})$	(mM^{-1})	$(\mu M^{-1} min)$
1.6	58.22	64.53 ±5.69	0.6250	0.0154966
	69.27			
-----	-------	-------------	--------	------------
	66.12			
	56.82			
1.4	55.34	55.12 ±1.81	0.7142	0.0181422
	53.22			
	56.82			
1.2	44.98	49.04 ±6.73	0.8333	0.02039151
	45.33			
	30.78			
1.0	47.26	39.00 ±8.24	1.0000	0.0256410
	38.98			
	27.88			
0.8	33.76	31.36 ±3.08	1.2500	0.0318877
	32.44			
	13.94			
0.4	12.97	13.59 ±0.54	2.5000	0.0735835
	13.88			

Assay conditions: phosphate buffer (100 mM), pH 7.5, with EDTA (1 mM), GSH (2 mM),

NADPH (0.4 mM), GR (1.3 unit/mL), *t*-BuOOH (variable) and 11f (80 μ M).

Figure S6. The Lineweaver-Burk (double-reciprocal) plots obtained for **11f** with the variation of *t*-BuOOH at the fixed concentration of GSH.

Intercept = -0.00512 ± 0.00113

Slop = 0.03118 ± 0.000856 $V_{\text{max}} = 195.31 \pm 8.10$ $K_{\text{m}} = 6.08 \pm 0.25$ $k_{\text{cat}} = 2.44 \pm 0.10$ $\eta = 0.40 \pm 0.10$

 Table S6. Summary for the effect of substrate (Cum-OOH) concentration on the

 initial rate of 11f

[Cum-OOH]	$v_0(\mu M \cdot \min^{-1})$	Mean	1/[Cum-OOH]	$1/v_0$
(mM)		$v_0(\mu M \cdot \min^{-1})$	(mM^{-1})	$(\mu M^{-1} min)$
1.6	182.49	180.91 ±1.62	0.6250	0.0055276

	180.99			
	179.24			
	150.04			
1.4	148.99	151.82 ±4.03	0.7142	0.0066370
	156.44			
	133.99			
1.2	126.01	131.97 ±5.25	0.8333	0.0075774
	135.92			
	122.68			
1.0	129.61	123.67 ±5.50	1.0000	0.0080860
	118.73			
	105.84			
0.8	104.35	105.11 ±0.74	1.2500	0.0095138
	105.14			
	55.51			
0.4	57.96	57.61 ±1.95	2.5000	0.0173580
	59.36			

Assay conditions: phosphate buffer (100 mM), pH 7.5, with EDTA (1 mM), GSH (2 mM),

NADPH (0.4 mM), GR (1.3 unit/mL),Cum-OOH (variable) and 11f (80 $\mu M).$

Figure S7. The Lineweaver-Burk (double-reciprocal) plots obtained for **11f** with the variation of Cum-OOH at the fixed concentration of GSH.

Intercept = 0.00191 ± 0.000274

Slop = 0.0063 ± 0.000208 $V_{\text{max}} = 523.56 \pm 10.21$ $K_{\text{m}} = 3.30 \pm 0.06$ $k_{\text{cat}} = 6.54 \pm 0.12$ $\eta = 1.98 \pm 0.03$

Table S7. Summary for the effect of substrate (H₂O₂) concentration on the initial rate

of **ebselen**

[H ₂ O ₂]	$v_0(\mu M \cdot \min^{-1})$	Mean	1/[H ₂ O ₂]	$1/v_0$
(mM)		$v_0(\mu M \cdot \min^{-1})$	(mM^{-1})	$(\mu M^{-1} min)$
1.6	128.64	129.25 ±0.66	0.6250	0.0077369

	129.17			
	129.96			
	128.38			
1.4	124.70	128.64 ±4.08	0.7142	0.0077736
	132.85			
	116.72			
1.2	116.63	114.55 ± 3.67	0.8333	0.0087298
	110.31			
	109.70			
1.0	113.03	111.38 ±1.66	1.0000	0.0089782
	111.42			
	111.45			
0.8	99.44	105.29 ± 6.01	1.2500	0.0094975
	104.98			
	65.24			
0.4	61.12	63.13 ±2.06	2.5000	0.0158277
	63.04			

Assay conditions: phosphate buffer (100 mM), pH 7.5, with EDTA (1 mM), GSH (2 mM),

NADPH (0.4 mM), GR (1.3 unit/mL), H_2O_2 (variable) and **ebselen** (80 μ M).

Figure S8. The Lineweaver-Burk (double-reciprocal) plots obtained for ebselen with the variation of H_2O_2 at the fixed concentration of GSH.

Intercept = 0.00449 ± 0.0001593

Slop = 0.00595 ± 0.000175 $V_{\text{max}} = 222.71 \pm 3.46$ $K_{\text{m}} = 1.32 \pm 0.04$ $k_{\text{cat}} = 2.78 \pm 0.20$ $\eta = 2.10 \pm 0.1$

Table S8. Summary for the effect of substrate (t-BuOOH) concentration on the initial

[t-BuOOH]	$v_0(\mu M \cdot \min^{-1})$	Mean	1/[<i>t</i> -BuOOH]	$1/v_0$
(mM)		$v_0(\mu M \cdot \min^{-1})$	(mM^{-1})	$(\mu M^{-1} min)$
1.6	52.04	51.75 ±2.30	0.6250	0.0193236

rate of **ebselen**

	49.32			
	53.89			
	49.02			
1.4	39.81	42.17 ±6.01	0.7142	0.0237090
	37.70			
	32.35			
1.2	33.14	33.37 ±1.15	0.8333	0.0299640
	34.63			
	27.44			
1.0	30.69	28.04 ± 2.40	1.0000	0.0356633
	25.99			
	17.62			
0.8	14.90	17.53 ±2.59	1.2500	0.05703422
	20.08			
	6.84			
0.4	9.03	8.26 ±1.23	2.5000	0.12096774
	8.93			

Assay conditions: phosphate buffer (100 mM), pH 7.5, with EDTA (1 mM), GSH (2 mM),

NADPH (0.4 mM), GR (1.3 unit/mL), *t*-BuOOH (variable) and **ebselen** (80 µM).

Figure S9. The Lineweaver-Burk (double-reciprocal) plots obtained for **ebselen** with the variation of *t*-BuOOH at the fixed concentration of GSH.

Intercept = -0.01708 ± 0.00198

Slop = 0.05694 ± 0.0015 $V_{\text{max}} = 58.55 \pm 3.00$ $K_{\text{m}} = 3.33 \pm 0.17$ $k_{\text{cat}} = 0.73 \pm 0.03$ $\eta = 0.22 \pm 0.01$

Table S9. Summary for the effect of substrate (Cum-OOH) concentration on the

[Cum-OOH]	$v_0(\mu M \cdot \min^{-1})$	Mean	1/[Cum-OOH]	$1/v_0$
(mM)		$v_0(\mu M \cdot \min^{-1})$	(mM^{-1})	$(\mu M^{-1} min)$
1.6	87.60	86.41 ±1.33	0.6250	0.0115727

	84.97			
	86.66			
	73.66			
1.4	83.04	80.35 ±5.83	0.7142	0.0124455
	84.35			
	77.69			
1.2	77.97	78.42 ±1.04	0.8333	0.0127507
	79.62			
	62.96			
1.0	65.06	63.04 ±1.97	1.0000	0.0158612
	61.12			
	59.45			
0.8	56.12	57.28 ±1.87	1.2500	0.0174560
	56.29			
	39.63			
0.4	38.32	37.64 ±2.39	2.5000	0.0265651
	34.98			

Assay conditions: phosphate buffer (100 mM), pH 7.5, with EDTA (1 mM), GSH (2 mM),

NADPH (0.4 mM), GR (1.3 unit/mL),Cum-OOH (variable) and ebselen (80 μ M).

Figure S10. The Lineweaver-Burk (double-reciprocal) plots obtained for **ebselen** with the variation of Cum-OOH at the fixed concentration of GSH.

Intercept = 0.00707 ± 0.000546

Slop = 0.0079 ± 0.000414 $V_{\text{max}} = 141.44 \pm 8.10$ $K_{\text{m}} = 1.11 \pm 0.06$ $k_{\text{cat}} = 1.77 \pm 0.10$ $\eta = 1.59 \pm 0.09$

Table S10. Summary for the effect of substrate (GSH) concentration on the initial rate

of 11f•HCl.

[GSH]	$v_{0}(\mu \mathrm{M}\cdot\mathrm{min}^{-1})$	Mean	1/[GSH]	$1/v_0$
(mM)		$v_0(\mu M \cdot \min^{-1})$	$(\mathrm{m}\mathrm{M}^{-1})$	$(\mu M^{-1} min)$
0.2	70.68	72.98 ±2.28	5.0000	0.0137023

	75.24			
	73.02			
	130.57			
0.4	132.06	131.89 ±1.24	2.5000	0.0075818
	133.05			
	150.65			
0.5	154.32	151.50 ± 2.50	2.0000	0.00660151
	149.54			
	213.97			
1	209.32	213.64 ±4.17	1.0000	0.00468062
	217.65			
	215.98			
1.5	210.22	215.69 ±5.34	0.6667	0.00463614
	220.89			
	240.28			
2	233.96	244.49 ±13.15	0.5000	0.00409014
	259.23			

Assay conditions: phosphate buffer (100 mM), pH 7.5, with EDTA (1 mM), GSH (variable),

NADPH (0.4 mM), GR (1.3 unit/mL), H_2O_2 (1.6 mM) and 111+HCl (80 $\mu M).$

Figure S11. The Lineweaver-Burk (double-reciprocal) plots obtained for 11f-HCl with the variation of GSH at the fixed concentration of H₂O₂.

Intercept = 0.00277 ± 0.00028

Slop = 0.00212 ± 0.00011 $V_{\text{max}} = 361.01 \pm 7.21$ $K_{\text{m}} = 0.76 \pm 0.01$ $k_{\text{cat}} = 4.51 \pm 0.09$ $\eta = 5.90 \pm 0.12$

 Table S11. Summary for the effect of substrate (GSH) concentration on the initial rate

 of 11f•HCl.

[GSH]		Mean	1/[GSH]	$1/v_0$
(mM)	$v_0(\mu M \cdot min^2)$	$v_0(\mu \mathrm{M}\cdot\mathrm{min}^{-1})$	(mM^{-1})	$(\mu M^{-1} min)$

	10.12			
0.2	12.34	10.45 ±1.74	5.0000	0.09569378
	8.89			
	15.87			
0.4	17.65	15.90 ± 1.72	2.5000	0.06286672
	14.20			
	19.11			
0.5	21.57	19.33 ±2.13	2.0000	0.05172413
	17.32			
	23.32			
1	24.81	23.53 ±4.06	1.0000	0.04250495
	22.45			
	30.78			
1.5	39.11	32.47 ±5.97	0.6667	0.03079449
	27.53			
	37.18			
2	30.95	34.19 ±3.12	0.5000	0.02924261
	34.46			

Assay conditions: phosphate buffer (100 mM), pH 7.5, with EDTA (1 mM), GSH (variable),

NADPH (0.4 mM), GR (1.3 unit/mL), t-BuOOH (1.6 mM) and 11f•HCl (80 μ M).

Figure S12. The Lineweaver-Burk (double-reciprocal) plots obtained for **11f**•**H**Cl with the variation of GSH at the fixed concentration of *t*-BuOOH.

Intercept = 0.02124 ± 0.00152

Slop = 0.01593 ± 0.00061 $V_{\text{max}} = 62.77 \pm 0.30$ $K_{\text{m}} = 0.75 \pm 0.01$ $k_{\text{cat}} = 0.78 \pm 0.01$ $\eta = 1.05 \pm 0.01$

 Table S12. Summary for the effect of substrate (GSH) concentration on the initial rate

 of 11f•HCl.

[GSH]	$\dots (\dots \mathbf{M} \dots \mathbf{m}^{-1})$	Mean	1/[GSH]	$1/v_0$
(mM)	$v_0(\mu M \cdot min^2)$	$v_0(\mu M \cdot \min^{-1})$	$({\rm mM}^{-1})$	$(\mu M^{-1} min)$

	55.51			
0.2	48.40	55.41 ±6.96	5.0000	0.0180472
	62.32			
	78.03			
0.4	80.21	78.08 ± 2.09	2.5000	0.0128062
	76.02			
	85.06			
0.5	88.83	87.96 ±2.58	2.0000	0.0011367
	90.01			
	135.74			
1	128.73	137.17 ±9.24	1.0000	0.00728987
	147.06			
	140.13			
1.5	142.67	141.30 ±1.28	0.6667	0.00707714
	141.10			
	153.46			
2	151.44	151.61 ±1.76	0.5000	0.00659558
	149.95			

Assay conditions: phosphate buffer (100 mM), pH 7.5, with EDTA (1 mM), GSH (variable), NADPH (0.4 mM), GR (1.3 unit/mL), Cum-OOH (1.6 mM) and **11f**•HCl (80 μ M).

Figure S13. The Lineweaver-Burk (double-reciprocal) plots obtained for 11f•HCl with the variation of GSH at the fixed concentration of Cum-OOH.

Intercept = 0.00543 ± 0.00034

Slop = 0.00262 ± 0.00014 $V_{\text{max}} = 184.16 \pm 8.72$ $K_{\text{m}} = 0.48 \pm 0.01$ $k_{\text{cat}} = 2.30 \pm 0.02$ $\eta = 4.78 \pm 0.04$

Table S13. Summary for the effect of substrate (GSH) concentration on the initial rate

of 12k•HCl.

[GSH]	$\cdots (\cdots \mathbf{M} \cdot \mathbf{min}^{-1})$	Mean	1/[GSH]	$1/v_0$
(mM)	$v_0(\mu M m m)$	$v_0(\mu M \cdot \min^{-1})$	(mM ⁻¹)	$(\mu M^{-1} min)$

	112.07			
0.2	112.94	112.67 ±0.52	5.0000	0.0088752
	113.01			
	153.57			
0.4	160.06	157.30 ±3.35	2.5000	0.00635729
	158.27			
	180.82			
0.5	176.17	178.55 ±2.32	2.0000	0.00560056
	178.67			
	236.50			
1	221.25	233.46 ±11.01	1.0000	0.00428332
	242.64			
	234.34			
1.5	232.65	234.35 ±5.34	0.6667	0.00426706
	236.07			
	250.28			
2	233.96	237.82 ±11.04	0.5000	0.00420480
	229.23			

Assay conditions: phosphate buffer (100 mM), pH 7.5, with EDTA (1 mM), GSH (variable), NADPH (0.4 mM), GR (1.3 unit/mL), H_2O_2 (1.6 mM) and **12k•HCl** (80 μ M).

Figure S14. The Lineweaver-Burk (double-reciprocal) plots obtained for 12k-HCl with the variation of GSH at the fixed concentration of H₂O₂.

Intercept = 0.00351 ± 0.00013

Slop = 0.00108 ±0.00005 $V_{\text{max}} = 284.90 \pm 7.12$ $K_{\text{m}} = 0.30 \pm 0.01$ $k_{\text{cat}} = 3.56 \pm 0.09$ $\eta = 11.87 \pm 0.30$

Table S14. Summary for the effect of substrate (GSH) concentration on the initial rate

of 12k•HCl.

[GSH]	$u(uM.min^{-1})$	Mean	1/[GSH]	$1/v_0$
(mM)	$v_0(\mu M min)$	$v_0(\mu M \cdot \min^{-1})$	(mM^{-1})	$(\mu M^{-1} min)$
0.2	29.89	29.99 ±2.82	5.0000	0.03333703

	27.23			
	32.87			
	43.20			
0.4	42.12	42.97 ±0.76	2.5000	0.02326284
	43.61			
	47.02			
0.5	46.91	47.00 ± 0.10	2.0000	0.02127659
	47.07			
	55.12			
1	59.54	55.36 ±4.06	1.0000	0.01806249
	51.43			
	62.69			
1.5	64.32	62.52 ±1.89	0.6667	0.01599488
	60.55			
	68.82			
2	66.66	67.60 ±1.10	0.5000	0.01479144
	67.34			

Assay conditions: phosphate buffer (100 mM), pH 7.5, with EDTA (1 mM), GSH (variable),

NADPH (0.4 mM), GR (1.3 unit/mL), *t*-BuOOH (1.6 mM) and **12k•HCl** (80 μM).

Figure S15. The Lineweaver-Burk (double-reciprocal) plots obtained for **12k**•HCl with the variation of GSH at the fixed concentration of *t*-BuOOH.

Intercept = 0.01339 ± 0.00029

Slop = 0.004 ± 0.00017 $V_{\text{max}} = 74.68 \pm 0.60$ $K_{\text{m}} = 0.30 \pm 0.01$ $k_{\text{cat}} = 0.94 \pm 0.01$ $\eta = 3.13 \pm 0.30$

Table S15. Summary for the effect of substrate (GSH) concentration on the initial rate

of 12k•HCl.

[GSH]	\cdots (\cdots M min ⁻¹)	Mean	1/[GSH]	$1/v_0$
(mM)	$v_0(\mu M \cdot m n^2)$	$v_0(\mu M \cdot \min^{-1})$	(mM^{-1})	$(\mu M^{-1} min)$
0.2	83.83	83.29 ±0.46	5.0000	0.01200528

	83.04			
	83.02			
	120.75			
0.4	128.03	120.27 ± 8.00	2.5000	0.00831416
	112.05			
	132.28			
0.5	150.31	135.54 ±13.43	2.0000	0.00737771
	124.04			
	167.18			
1	169.87	165.87 ±4.78	1.0000	0.00602869
	160.57			
	179.53			
1.5	183.38	181.83 ±2.03	0.6667	0.00549954
	182.59			
	191.35			
2	187.67	190.50 ± 2.51	0.5000	0.00524925
	192.49			

Assay conditions: phosphate buffer (100 mM), pH 7.5, with EDTA (1 mM), GSH (variable),

NADPH (0.4 mM), GR (1.3 unit/mL), Cum-OOH (1.6 mM) and 12k-HCl (80 $\mu\text{M}).$

Figure S16. The Lineweaver-Burk (double-reciprocal) plots obtained for 12k•HCl with the variation of GSH at the fixed concentration of Cum-OOH.

Intercept = 0.00449 ± 0.000046

Slop = 0.00150 ± 0.000018 $V_{\text{max}} = 222.71 \pm 1.79$ $K_{\text{m}} = 0.33 \pm 0.01$ $k_{\text{cat}} = 2.78 \pm 0.01$ $\eta = 8.42 \pm 0.03$

 Table S16. Summary for the effect of substrate (GSH) concentration on the initial rate

 of ebselen.

[GSH]	\cdots (M min ⁻¹)	Mean	1/[GSH]	$1/v_0$
(mM)	$v_0(\mu M \cdot m m^2)$	$v_0(\mu M \cdot \min^{-1})$	(mM^{-1})	$(\mu M^{-1} min)$

	94.67			
1.0	92.51	93.13 ±1.34	1.0000	0.01073767
	92.21			
	107.33			
1.5	105.49	108.18 ±3.20	0.6667	0.00924385
	111.72			
	120.40			
2.0	117.33	120.38 ±3.05	0.5000	0.00830656
	123.43			
	138.73			
3.0	138.82	136.70 ±3.58	0.3333	0.00731493
	132.57			
	150.56			
4.0	153.21	150.36 ±2.94	0.2500	0.00665055
	147.32			
	160.21			
5.0	162.32	160.33 ±1.93	0.2000	0.00623713
	158.46			

Assay conditions: phosphate buffer (100 mM), pH 7.5, with EDTA (1 mM), GSH (variable), NADPH (0.4 mM), GR (1.3 unit/mL), H_2O_2 (1.6 mM) and **ebselen** (80 μ M).

Figure S17. The Lineweaver-Burk (double-reciprocal) plots obtained for ebselen with the variation of GSH at the fixed concentration of H_2O_2 .

Intercept = 0.00532 ± 0.00014

Slop = 0.0056 ± 0.00025 $V_{\text{max}} = 187.96 \pm 2.77$ $K_{\text{m}} = 1.05 \pm 0.01$ $k_{\text{cat}} = 2.35 \pm 0.03$ $\eta = 2.23 \pm 0.02$

Table S17. Summary for the effect of substrate (GSH) concentration on the initial rate

of ebselen.

[GSH]	$v_0(\mu M \cdot \min^{-1})$	Mean	1/[GSH]	$1/v_0$

(mM)		$v_0(\mu M \cdot \min^{-1})$	(mM^{-1})	$(\mu M^{-1} min)$
	6.40			
0.2	11.66	8.44 ±2.81	5.0000	0.11843663
	7.27			
	13.41			
0.5	17.62	15.51 ±2.10	2.0000	0.06447453
	15.50			
	21.30			
1	14.11	22.12 ±8.44	1.0000	0.04520795
	30.95			
	27.88			
1.5	28.50	28.19 ±0.31	0.6667	0.03546937
	28.20			
2	33.41			
	32.34	33.42 ±1.10	0.5000	0.02991921
	34.52			
	34.32			
3	35.23	34.37 ±1.10	0.3333	0.02909514
	33.56			

Assay conditions: phosphate buffer (100 mM), pH 7.5, with EDTA (1 mM), GSH (variable), NADPH (0.4 mM), GR (1.3 unit/mL), *t*-BuOOH (1.6 mM) and **ebselen** (80 μM).

Figure S18. The Lineweaver-Burk (double-reciprocal) plots obtained for **ebselen** with the variation of GSH at the fixed concentration of *t*-BuOOH.

Intercept = 0.02325 ± 0.00142

Slop = 0.01928 ± 0.00062 $V_{\text{max}} = 43.01 \pm 0.60$ $K_{\text{m}} = 0.83 \pm 0.01$ $k_{\text{cat}} = 0.54 \pm 0.07$ $\eta = 0.65 \pm 0.08$

 Table S18. Summary for the effect of substrate (GSH) concentration on the initial rate

 of ebselen.

[GSH]	$v_0(\mu M \cdot \min^{-1})$	Mean	1/[GSH]	$1/v_0$
(mM)		$v_0(\mu M \cdot \min^{-1})$	(mM^{-1})	$(\mu M^{-1} min)$

	8.41			
0.2	13.15	11.60 ± 2.76	5.0000	0.08620689
	13.24			
0.5	19.99			
	20.87	20.10 ± 0.71	2.0000	0.04973474
	19.46			
1	32.53			
	32.62	32.64 ±0.13	1.0000	0.03063099
	32.79			
1.5	46.38			
	48.93	47.75 ±1.28	0.6667	0.02093948
	47.96			
2	51.73			
	47.88	50.47 ±2.24	0.5000	0.01981112
	51.82			
3	58.31			
	58.75	58.51 ±0.22	0.3333	0.01708914
	58.49			

Assay conditions: phosphate buffer (100 mM), pH 7.5, with EDTA (1 mM), GSH (variable), NADPH (0.4 mM), GR (1.3 unit/mL), Cum-OOH (1.6 mM) and **ebselen** (80 μ M).

Figure S19. The Lineweaver-Burk (double-reciprocal) plots obtained for **ebselen** with the variation of GSH at the fixed concentration of Cum-OOH.

Intercept = 0.01322 ± 0.00193

 $Slop = 0.01559 \ \pm 0.00085$

- $V_{\rm max} = 75.64 \pm 4.21$
- $K_{\rm m} = 1.18 \pm 0.06$
- $k_{\rm cat} = 0.95 \pm 0.05$
- $\eta=0.80~\pm0.04$

5. Scavenging peroxide by GSH in the Presence of Compound

Scavenging H₂O₂

Figure S20. (**Control**) Rate of consumption for H_2O_2 in the absence of catalyst with time. Assay conditions: reactions were carried out with phosphate buffer (100 mM), pH 7.5, with EDTA (1 mM), GSH (0.25 mM), NADPH (0.50 mM), glutathione reductase(1.3 unit/ml), and $H_2O_2(0.20 mM)$.

S65

Figure S21. (CQ) Rate of consumption for H_2O_2 in the absence of catalyst with time. Assay conditions: reactions were carried out with phosphate buffer (100 mM), pH 7.5, with EDTA (1 mM), GSH (0.25 mM), NADPH (0.50 mM), glutathione reductase(1.3 unit/ml), and $H_2O_2(0.20 \text{ mM})$.

Figure S22. (ebselen) Rate of consumption for H_2O_2 in the presence of catalyst with time. Assay conditions: reactions were carried out with phosphate buffer (100 mM), pH 7.5, with EDTA (1 mM), GSH (0.25 mM), NADPH (0.50 mM), glutathione reductase(1.3 unit/ml), and $H_2O_2(0.20 mM)$.

S66

Figure S23. (**11f-HCI**) Rate of consumption for H_2O_2 in the presence of catalyst with time. Assay conditions: reactions were carried out with phosphate buffer (100 mM), pH 7.5, with EDTA (1 mM), GSH (0.25 mM), NADPH (0.50 mM), glutathione reductase(1.3 unit/ml), and $H_2O_2(0.20 \text{ mM})$.

Figure S24. (**12k•HCl**) Rate of consumption for H_2O_2 in the presence of catalyst with time. Assay conditions: reactions were carried out with phosphate buffer (100 mM), pH 7.5, with EDTA (1 mM), GSH (0.25 mM), NADPH (0.50 mM), glutathione reductase(1.3 unit/ml), and $H_2O_2(0.20 \text{ mM})$.

Scavenging t-BuOOH

Figure S25. (**Control**) Rate of consumption for *t*-BuOOH in the absence of catalyst with time. Assay conditions: reactions were carried out with phosphate buffer (100 mM), pH 7.5, with EDTA (1 mM), GSH (0.25 mM), NADPH (0.50 mM), glutathione reductase(1.3 unit/ml), and *t*-BuOOH (0.20 mM).

Figure S26. (**CQ**) Rate of consumption for *t*-BuOOH in the presence of catalyst with time. Assay conditions: reactions were carried out with phosphate buffer (100 mM), pH 7.5, with EDTA (1 mM), GSH (0.25 mM), NADPH (0.50 mM), glutathione reductase(1.3 unit/ml), and *t*-BuOOH (0.20 mM).

Figure S27. (**ebselen**) Rate of consumption for *t*-BuOOH in the presence of catalyst with time. Assay conditions: reactions were carried out with phosphate buffer (100 mM), pH 7.5, with EDTA (1 mM), GSH (0.25 mM), NADPH (0.50 mM), glutathione reductase(1.3 unit/ml), and *t*-BuOOH (0.20 mM).

Figure S28. (**11f-HCl**) Rate of consumption for *t*-BuOOH in the presence of catalyst with time. Assay conditions: reactions were carried out with phosphate buffer (100 mM), pH 7.5, with EDTA (1 mM), GSH (0.25 mM), NADPH (0.50 mM), glutathione reductase(1.3 unit/ml), and *t*-BuOOH (0.20 mM).

Figure S29. (**12k-HCl**) Rate of consumption for *t*-BuOOH in the presence of catalyst with time. Assay conditions: reactions were carried out with phosphate buffer (100 mM), pH 7.5, with EDTA (1 mM), GSH (0.25 mM), NADPH (0.50 mM), glutathione reductase(1.3 unit/ml), and *t*-BuOOH (0.20 mM).

Scavenging Cum-OOH

Figure S30. (**Control**) Rate of consumption for Cum-OOH in the absence of catalyst with time. Assay conditions: reactions were carried out with phosphate buffer (100 mM), pH 7.5, with EDTA (1 mM), GSH (0.25 mM), NADPH (0.50 mM), glutathione reductase(1.3 unit/ml), and Cum-OOH

(0.20 mM).

Figure S31. (**CQ**) Rate of consumption for Cum-OOH in the presence of catalyst with time. Assay conditions: reactions were carried out with phosphate buffer (100 mM), pH 7.5, with EDTA (1 mM), GSH (0.25 mM), NADPH (0.50 mM), glutathione reductase(1.3 unit/ml), and Cum-OOH (0.20 mM).

Figure S32. (**Ebselen**) Rate of consumption for Cum-OOH in the presence of catalyst with time. Assay conditions: reactions were carried out with phosphate buffer (100 mM), pH 7.5, with EDTA (1 mM), GSH (0.25 mM), NADPH (0.50 mM), glutathione reductase(1.3 unit/ml), and Cum-OOH

(0.20 mM).

Figure S33. (**11f-HCl**) Rate of consumption for Cum-OOH in the presence of catalyst with time. Assay conditions: reactions were carried out with phosphate buffer (100 mM), pH 7.5, with EDTA (1 mM), GSH (0.25 mM), NADPH (0.50 mM), glutathione reductase(1.3 unit/ml), and Cum-OOH (0.20 mM).

Figure S34. (**12k•HCl**) Rate of consumption for Cum-OOH in the presence of catalyst with time. Assay conditions: reactions were carried out with phosphate buffer (100 mM), pH 7.5, with EDTA (1 mM), GSH (0.25 mM), NADPH (0.50 mM), glutathione reductase(1.3 unit/ml), and Cum-OOH
(0.20 mM).

6. Mechanism of the GPx-like catalytic cycle

The ⁷⁷Se NMR spectra were recorder using Me₂Se as external standards on a Bruker AvanceIII spectrometer at 76 MHz. The high-resolution mass spectra (HRMS) were obtained using a Shimadzu LCMS-IT-TOF mass spectrometer.

Isolation of Selenol

Hybrid compound (5 mg) in a three-necked round-bottomed flask (4 mL CH₃OH/H₂O (3:1) kept under argon atmosphere was treated with 1 equivalent of GSH. The reaction mixture was stirred for 20 minutes. After the hybrid compound completely converted to the selenenyl sulfides, another equivalent of GSH and 1 equivalent of iodoacetic acid was added, the reaction mixture was further stirred for 24 h. The reaction was analyzed by the HRMS. The results showed only selenenyl sulfides and selenol (trapped by generating selenide with iodoacetic acid) preduced in the cycle. It indicates that the production diselenide intermediated is not facile using GSH as a substrate.

Scheme S1. Trapped selenol by generating selenide **15a** with iodoacetic acid in argon atmosphere.

Figure S35. ⁷⁷Se NMR spectra of 12k in DMSO- d_6

Figure S36. ⁷⁷Se NMR spectra of selenenyl sulfides **14** obtained from the the reaction of **12k** with GSH (1.0 equiv).

Figure S37. ⁷⁷Se NMR spectra of selenide **15a** (in DMSO- d_6) obtained from the the reaction of selenenyl sulfides **14** with GSH (2.0 equiv) and iodoacetic acid (1.0 equiv) under argon atmosphere for 5 days.

Figure S38. HRMS spectra of 15a obtained from the the reaction of selenenyl sulfides 14 with

GSH (2.0 equiv) and iodoacetic acid (1.0 equiv) under argon atmosphere for 12 h.

 $[M+Na]^{+}$ for **15a** C₁₈H₁₃N₂O₅ClSe pred. 474.9585, meas. 474.9569

Figure S39. ⁷⁷Se NMR spectra of selenenyl sulfides **14** (δ 527 ppm) and diselenide **16** (δ 438 ppm) obtained from the the reaction of selenenyl sulfides **14** and GSH (1.0 equiv) with H₂O₂ (1.0 equiv) in DMSO-*d*₆/H₂O = 10/1 mixture within 1 hour.

Figure S40. ⁷⁷Se-NMR spectra of sodium selenolate obtained from the reduction of 12k with

NaBH4 in DMSO- d_6 /CD₃OD = 10/1 mixture

Figure S41. ⁷⁷Se-NMR spectra of diselenide 16 obtained from the acidification of the sodium selenolate with HCl solution (10%) in DMSO- d_6 /CD₃OD = 10/1 mixture under air atmosphere.

Figure S42. ⁷⁷Se-NMR spectra of pure diselenide 16 (in DMSO-*d*₆) obtained from the

acidification of the sodium selenolate with HCl solution (10%) in CH_3OH mixture under air atmosphere.

Figure S43. ¹H-NMR spectra of pure diselenide **16** (in DMSO- d_6) obtained from the acidification of the sodium selenolate with HCl solution (10%) in CH₃OH mixture under air atmosphere.

Figure S44. ¹³C-NMR spectra of pure diselenide **16** (in DMSO- d_6) obtained from the acidification of the sodium selenolate with HCl solution (10%) in CH₃OH mixture under air atmosphere.

Figure S45. HRMS spectra of pure diselenide 16. [M+Cl] for 16 $C_{32}H_{20}N_4O_6Cl_2Se_2$ pred.

820.8783, meas. 820.8760

Figure S46. ⁷⁷Se NMR spectra of selenenyl sulfides 14 obtained f rom the the reaction of

diselenide 16 with GSH (2.0 equiv) in DMSO- $d_6/H_2O = 10/1$ mixture.

Figure S47. ⁷⁷Se NMR spectra of diselenide **16** (δ 435 ppm) and selenium quinone **17** (δ 803 ppm) obtained from the the reaction of diselenide **16** with H₂O₂ (2.0 equiv) in DMSO-*d*₆ within 2 h.

Figure S48. ⁷⁷Se NMR spectra of selenium quinone **17** (δ 803 ppm) obtained from the the reaction of diselenide **16** with H₂O₂ (4.0 equiv) in DMSO-*d*₆ after 12 h.

Figure S50. ¹³C NMR spectra of selenium quinone **17** (in DMSO- d_6). (¹³C NMR δ 183 ppm and

176ppm demonstrated the quinone structure)

Figure S51. ¹³C DEPT-90 °NMR spectra of selenium quinone 17 (in DMSO-*d*₆).

Figure S52. ¹³C DEPT-135 °NMR spectra of selenium quinone **17** (in DMSO- d_6).

Figure S53. HRMS spectra of selenium quinone 17. [M+Cl]⁻ for 17 C₁₆H₉N₂O₃ClSe pred.

426.9159, meas. 426.9158.

Figure S54. ⁷⁷Se NMR spectra of selenenyl sulfides 14 obtained from the the reaction of selenium

quinone 17 with GSH (1.0 equiv) in DMSO- $d_6/H_2O = 10/1$.

Figure S55. ⁷⁷Se NMR spectra of selenenyl sulfides and diselenide obtained from the disproportionation reaction of **ebselen** with GSH (1.0 equiv) under Ar condition in d_6 -DMSO.

Figure S56. ⁷⁷Se NMR spectra of selenenyl sulfides and diselenide obtained from the

disproportionation reaction of **11f** with GSH (1.0 equiv) under Ar condition in d_6 -DMSO.

Figure S57. ⁷⁷Se NMR spectra of selenenyl sulfides obtained from the reaction of 11a with GSH

Figure S58. ⁷⁷Se NMR spectra of selenenyl sulfides obtained from the reaction of 11b with GSH (1.0 equiv) in d_6 -DMSO.

Figure S59. ⁷⁷Se NMR spectra of selenenyl sulfides obtained from the reaction of **11c** with GSH (1.0 equiv) in d_6 -DMSO.

Figure S60. ⁷⁷Se NMR spectra of selenenyl sulfides obtained from the reaction of 11d with GSH

Figure S61. ⁷⁷Se NMR spectra of selenenyl sulfides obtained from the reaction of 11e with GSH (1.0 equiv) in d_6 -DMSO.

Figure S62. ⁷⁷Se NMR spectra of selenenyl sulfides obtained from the reaction of **11g** with GSH (1.0 equiv) in d_6 -DMSO.

Figure S63. ⁷⁷Se NMR spectra of selenenyl sulfides obtained from the reaction of 11h with GSH

Figure S64. ⁷⁷Se NMR spectra of selenenyl sulfides obtained from the reaction of **11i** with GSH (1.0 equiv) in d_6 -DMSO.

Figure S65. ⁷⁷Se NMR spectra of selenenyl sulfides and diselenide obtained from the

disproportionation reaction of **11j** with GSH (1.0 equiv) under Ar condition in d_6 -DMSO.

Figure S66. ⁷⁷Se NMR spectra of selenenyl sulfides obtained from the reaction of 11k with GSH

Figure S67. ⁷⁷Se NMR spectra of selenenyl sulfides obtained from the reaction of 13k with GSH (1.0 equiv) in d_6 -DMSO.

7. UV spectrum of Metal binding

Figure S68. High-resolution mass spectra (HRMS) of the 12k-Cu complex.

Figure S69. UV spectrum of compound 11k (50 μ M) alone or in the presence of CuSO₄ (50 μ M),

 $ZnCl_2$ (50 μ M) or FeSO₄(50 μ M) in buffer (20 mM HEPES, 150 mM NaCl, pH 7.4).

Figure S70. UV spectrum of compound 13k (50 μ M) alone or in the presence of CuSO₄ (50 μ M),

 $ZnCl_2$ (50 μ M) or FeSO₄(50 μ M) in buffer (20 mM HEPES, 150 mM NaCl, pH 7.4).

8. Tables of results for the PAMPA

Table S19. Permeability ($P_e \times 10^{-6}$ cm s⁻¹) in the PAMPA-BBB assay for 13 commercial drugs, used in the Experiment Validation.

Commercial drugs	Bibl ^a	PBS : EtOH (70 : 30) ^b
testosterone	17	22.3 ±1.4
verapamil	16	21.2 ±1.9
desipramine	12	16.4 ±1.2
progesterone	9.3	17.7 ±1.2
promazine	8.8	14.3 ±0.5
chlorpromazine	6.5	6.0 ±0.3
clonidine	5.3	5.1 ±0.3
piroxicam	2.5	0.24 ± 0.01
hydrocortisone	1.9	0.65 ± 0.01
lomefloxacin	1.1	0.37 ± 0.02
atenolol	0.8	0.78 ± 0.02
ofloxacin	0.8	0.37 ± 0.02
theophylline	0.1	0.26 ±0.01

^a Taken from reference.^{7 b} Data are the mean \pm SD of three independent experiments

Figure S71. Lineal correlation between experimental and reported permeability of commercial drugs using the PAMPA-BBB assay. $P_{\rm e}$ (exp.)=1.4574Pe (bibl.) -1.0773 (R²=0.9427)

Table S20. Ranges of Permeability of PAMPA-BBB Assays (P_e , 10 ⁻⁶ cm s ⁻¹)				
Compounds of high BBB permeation (CNS+)	<i>P</i> _e >4.7			
Compounds of uncertain BBB permeation (CNS+/-)	$4.7 > P_{\rm e} > 1.8$			
Compounds of low BBB permeation (CNS-)	<i>P</i> _e <1.8			

Table S21. Permeability ($P_e \times 10^{-6}$ cm s⁻¹) determined by the PAMPA-BBB assay for target compounds and predicted penetration of the CNS.

Compound ^a	$P_{\rm e}(\times 10^{-6} {\rm ~cm~s^{-1}})^{\rm b}$	Prediction	Compound ^a	$P_{\rm e}(\times 10^{-6} {\rm ~cm~s^{-1}})^{\rm b}$	Prediction
11 a	6.8 ± 0.3	CNS+	11h•HBr	$8.8\ \pm 0.1$	CNS+
11b	12.7 ± 0.5	CNS+	11i	7.3 ±0.1	CNS+

11c	12.9 ± 0.2	CNS+	11j	1.1 ± 0.1	CNS-
11d•HCl	10.8 ± 0.3	CNS+	11k•HCl	1.2 ± 0.1	CNS-
11e	11.9 ± 0.2	CNS+	12k•HCl	5.3 ± 0.1	CNS+
11f•HCl	3.2 ± 0.1	$CNS\pm$	13k•HCl	3.0 ± 0.1	$CNS\pm$
11g•HCl	13.3 ±0.4	$CNS\pm$	Chlorpromazine	5.1 ±0.2	CNS+

^a Compounds were dissolved in DMSO at 5 mg mL⁻¹ and diluted with PBS / EtOH (70:30).

^b Values are expressed as the means \pm SD of three independent experiments.

References

- 1. B. K. Sarma and G. Mugesh, J. Am. Chem. Soc., 2005, **127**, 11477-11485.
- K. Selvakumar, P. Shah, H. B. Singh and R. J. Butcher, *Chem. Eur. J.*, 2011, 17, 12741-12755.
- 3. N. B. Patel, J. C. Patel and S. H. Modi, J. Saudi. Chem. Soc., 2011, 15, 167-176.
- 4. U. K. Mazumder, M. Gupta, S. Bhattacharya, S. S. Karki, S. Rathinasamy and S. Thangavel, *J. Enzyme. Inhib. Med. Chem.*, 2004, **19**, 185-192.
- 5. Z. Wang, Y. Wang, W. Li, F. Mao, Y. Sun, L. Huang and X. Li, *ACS Chem. Neurosci.*, 2014, **5**, 952-962.
- 6. J. He, D. Li, K. Xiong, Y. Ge, H. Jin, G. Zhang, M. Hong, Y. Tian, J. Yin and H. Zeng, *Bioorg. Med. Chem.*, 2012, **20**, 3816-3827.
- 7. L. Di, E. H. Kerns, K. Fan, O. J. McConnell and G. T. Carter, *Eur. J. Med. Chem.*, 2003, **38**, 223-232.