Electronic Supplementary Information (ESI)

Sn(II) induced concentration dependent dynamic to static excimer conversion of a conjugated naphthalene derivative

Susanta Adhikari^a*, Sandip Mandal^b, Avijit Ghosh^a, Subhajit Guria^a and Debasis Das^{b*}

^aDepartment of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata 700 009, West Bengal, India. ^bDepartment of Chemistry, The University of Burdwan, Burdwan 713104, West Bengal, India

Figure S1 ¹H NMR spectrum of L in CD₃OD

Figure S3¹³C NMR spectrum of L in DMSO- d_6

Figure S5. QTOF-MS spectrum of [L-SnCl₂]complex in MeOH

Figure S7. Change of emission spectra of L with its concentration (0.1, 0.2, 0.4, 0.75, 1.5, 3.0, 7.5, 10.0, 20.0, 50.0, 100.0 μ M in acetonitrile ($\lambda_{ex} = 330$ nm).

Figure S8. Changes of color of L (20 μ M) upon addition of Sn²⁺ (0 to 10 equivalent, from left to right) (a) under hand held UV lamp and (b) naked eye in acetonitrile

Figure S9. Plot of emission intensity (a.u.) *vs.* Sn²⁺concentration (μ M) at 582mn (λ_{ex} =505 nm). Inset shows the linear region up to 50 μ M Sn²⁺ (inset, Slope= 119.06, R²=0.9899).

Probe	LOD	Solvent System	Interference	Additional comment(s)	Ref. 15
R1 and R2 (Coordination based, turn-on)	R1 = 0.57 μ M and R2 = 0.46 μ M	ethanol- water (1 : 1, v/v, pH 7.04)	Cu ²⁺ , Cr ³⁺	Highly pH sensitive	Analyst 2014 , 139, 5223–5229
RBAP (Coordination based, turn-on)	0.044 μM	MeOH/H ₂ O (2:3, v/v, pH 5.95)	Al ³⁺ , Cr ³⁺ , Fe ³⁺	Highly pH sensitive	<i>Molecules</i> 2014 , <i>19</i> , 7817-7831
1o (Coordination based, photochromic)	20.0 µM	Methanol	-	Highly pH sensitive	<i>Tetrahedron</i> 2014 , <i>70</i> , 9070-9076
Present Probe (Coordination based, dynamic to static excimer conversion)	0.01 μM	Acetonitrile	-	can also detect Al ³⁺ selectively in 50% aqueous –methanol at different excitation and emission wavelengths	-

Table S1. Comparison of the present probe with those available in the literature

Table S2. Fluorescence lifetime decay parameters of L and $[L-SnCl_2]$ complex

λ _{em}		B ₁	t ₁ (ns)	B ₂	t ₂ (ns)	B ₃	t ₃ (ns)	t _{ave} (ns)
420	L	37.76	0.714	40.42	4.942	21.81	0.0286	2.30
420nm	L+ SnCl ₂ (10µM)	16.40	1.535	78.86	6.258	4.74	0.229	5.21
	L+ SnCl ₂ (100µM)	44.85	0.681	40.54	3.318	14.61	0.101	1.67
	L	41.42	0.698	27.59	3.166	30.99	0.120	1.20
582nm	L+SnCl ₂ (10µM)	33.28	0.791	51.47	4.527	15.24	0.137	2.61
	L+SnCl ₂ (100µM)	28.47	0.387	71.53	5.389	-	-	3.97

Figure S10. Job's plot for determination of stoichiometry of the [L-SnCl₂]complex in acetonitrile

Figure S11. Determination of binding constant of L for Sn^{2+} by fluorescence method (R²=0.89)

Figure S12. Selectivity of L (20 μ M) for Sn²⁺ in a competing environment in presence of other cations (100 μ M) in acetonitrile,[SnCl₂] = 100 μ M

Figure S13. Selectivity of L (20 μ M) for Al³⁺ (100 μ M) in 50% aqueous-methanol (v/v) ([cations] = 100 μ M, λ_{ex} = 375 nm, λ_{em} = 501nm)

Table S3. Frontier molecular orbitals (MOs) of L and their energy levels (in a.u), Calculations are based on ground state geometry from DFT at B3LYP/3-21G /level using Gaussian 09.

Frontier orbital	Energy (a.u.)	Energy optimized geometry
LUMO	-0.08027	
номо	-0.19611	

Table S4. Frontier molecular orbitals (MOs) of L and their energy levels (in a.u), Calculations are based on ground state geometry using TDDFT at B3LYP/3-21G /level using Gaussian 09.

Frontier orbital	Energy (a.u.)	Energy optimized geometry
LUMO+1	-0.05207	
LUMO	-0.07752	
номо	-0.19312	
HOMO-1	-0.21052	

Frontier orbital	Energy (a.u.)	Energy optimized geometry
LUMO+1	-0.09995	
LUMO	-0.12055	
номо	-0.1913	
НОМО-1	-0.19554	

Table S5. Frontier molecular orbitals (MOs) of [L-SnCl₂]complex and their energy levels (in a.u), Calculations are based on ground state geometry from DFT at B3LYP/6-31G /level using Gaussian 09.

Frontier orbital	Energy (a.u.)	Energy optimized geometry
LUMO+1	-0.09583	
LUMO	-0.17919	
НОМО	-0.20939	
HOMO-1	-0.22437	

Table S6. Frontier molecular orbitals (MOs) of [L-SnCl₂] complexand their energy levels (in a. u), Calculations are based on ground state geometry by TDDFT at B3LYP/6-31G /level using Gaussian '09

Excitation (eV)	$\lambda_{ex}(nm)$	Osc. Strength(f)	Key transitions	CI
2.6227 eV	472.74 nm	f=0.6390	HOMO-LUMO	0.62383
2.7489 eV	451.04 nm	f=0.4562	HOMO-1 toLUMO+1	0.27099, 0.61063, 0.16834
2.6575 eV	466.54 nm	f=0.1220	HOMO to LUMO+1	0.28220, 0.18404
2.5421 eV	487.72 nm	f=0.0102	HOMO-2 to LUMO	0.60401, 0.16972
2.4580 eV	504.41 nm	f=0.0946	HOMO to LUMO+2	0.12996, 0.43916, 0.23093

Table S7. Vertical excitation energies (E_{ex}) , oscillator strengths (f), and key transitions of thelowest few excited singlets generated from TDDFT calculations forL in acetonitrile.

Table S8. Selected bond lengths (Å) and bond angles (°) for L

B	ond lengths(Å))						
	O(1)-H(1)	0.82	C(5)-C(33)	1.449(4)	C(9)-C(16)	1.391(5)	C(15)-C(24)	1.360(5)
	O(1)-C(3)	1.352(4)	C(6)-C(7)	1.383(5)	C(10)-C(15)	1.402(5)	C(16)-C(27)	1.506(5)
	N(3)-C(33)	1.276(4)	C(6)-C(34)	1.462(5)	C(10)-C(18)	1.423(4)	C(17)-H(17)	0.93
	N(3)-C(15)	1.427(4)	C(7)-H(7)	0.931	C(10)-C(25)	1.414(5)	C(17)-C(22)	1.372(5)
	C(3)-C(5)	1.400(5)	C(7)-C(16)	1.384(5)	C(33)-H(33)	0.929	C(18)-C(20)	1.397(6)
	C(3)-C(6)	1.396(4)	C(8)-C(12)	1.421(5)	C(12)-C(14)	1.370(5)	C(18)-C(32)	1.401(6)
	N(4)-C(12)	1.420(4)	C(8)-C(17)	1.411(5)	C(34)-H(34)	0.93	C(19)-C(23)	1.416(5)
	N(4)-C(34)	1.278(4)	C(8)-C(19)	1.419(5)	C(14)-H(14)	0.93	C(19)-C(30)	1.404(5)
	C(5)-C(9)	1.386(5)	C(9)-H(9)	0.929	C(14)-C(21)	1.394(5)	С(20)-Н(20)	0.93

C(21)-H(21) 0.929	С(24)-Н	(24) 0.93	C(27)-H(27A)	0.959	C(30)-H	I(30) 0.93	31
C(21)-C(23) 1.360(5)	C(24)-C	(31) 1.405(5)	C(27)-H(27B)	0.96	C(31)-H	H(31) 0.92	29
C(22)-H(22) 0.929	С(25)-Н	(25) 0.93	C(27)-H(27C)	0.959	C(31)-C	2(32) 1.35	54(6)
C(20)-C(26) 1.353(7)	C(25)-C	(28) 1.346(6)	C(28)-H(28)	0.93	C(32)-H	H(32) 0.92	29
C(22)-C(29) 1.389(6)	С(26)-Н	(26) 0.93	С(29)-Н(29)	0.928			
C(23)-H(23) 0.929	C(26)-C	(28) 1.393(6)	C(29)-C(30)	1.358(7)			
Bond angles(°)		C(3)-C(6)-C(34)	119.6(3)	H(9)-C(9)-C(10	6) 1	118.8	
H(1)-O(1)-C(3)	109.4	C(7)-C(6)-C(34)	121.3(3)	C(15)-C(10)-C	(18)	18.9(3)	
C(33)-N(3)-C(15)	118.8(3)	C(6)-C(7)-H(7)	118.5	C(15)-C(10)-C	(25)	123.4(3)	
O(1)-C(3)-C(5)	121.3(3)	C(6)-C(7)-C(16)	122.9(3)	C(18)-C(10)-C	(25)	117.7(3)	
O(1)-C(3)-C(6)	118.7(3)			N(3)-C(33)-C(5) 1	123.3(3)	
C(5)-C(3)-C(6)	119.9(3)	H(7)-C(7)-C(16)	118.5	N(3)-C(33)-H(33)	118.3	
C(12)-N(4)-C(34)	118.5(3)	C(12)-C(8)-C(17)	122.8(3)	C(5)-C(33)-H(33)	118.4	
C(3)-C(5)-C(9)	118.8(3)	C(12)-C(8)-C(19)	119.0(3)	N(4)-C(12)-C(8	8) 1	16.9(3)	
C(3)-C(5)-C(33)	120.7(3)	C(17)-C(8)-C(19)	118.2(3)				
C(9)-C(5)-C(33)	120.3(3)	C(5)-C(9)-H(9)	118.7	N(4)-C(12)-C(14) 1	123.2(3)	
C(3)-C(6)-C(7)	118.9(3)	C(5)-C(9)-C(16)	122.6(3)	C(8)-C(12)-C(1	14)	119.8(3)	

N(4)-C(34)-C(6)	121.7(3)	C(20)-C(18)-C(32)	121.5(3)	C(15)-C(24)-C(31)	120.9(4)
N(4)-C(34)-H(34)	119.2	C(8)-C(19)-C(23)	118.8(3)	H(24)-C(24)-C(31)	119.5
C(6)-C(34)-H(34)	119.2	C(8)-C(19)-C(30)	119.1(3)	С(10)-С(25)-Н(25)	119.7
C(12)-C(14)-H(14)	119.4	C(23)-C(19)-C(30)	122.1(3)	C(10)-C(25)-C(28)	120.6(3)
C(12)-C(14)-C(21)	121.2(3)	C(18)-C(20)-H(20)	119.3	H(25)-C(25)-C(28)	119.7
H(14)-C(14)-C(21)	119.3	C(18)-C(20)-C(26)	121.5(4)	C(20)-C(26)-H(26)	120.4
N(3)-C(15)-C(10)	117.5(3)	H(20)-C(20)-C(26)	119.3	C(20)-C(26)-C(28)	119.2(4)
N(3)-C(15)-C(24)	122.4(3)	C(14)-C(21)-H(21)	119.8	H(26)-C(26)-C(28)	120.4
C(10)-C(15)-C(24)	120.1(3)	C(14)-C(21)-C(23)	120.3(3)	С(16)-С(27)-Н(27А)	109.5
C(7)-C(16)-C(9)	116.8(3)	H(21)-C(21)-C(23)	119.9	С(16)-С(27)-Н(27В)	109.4
C(7)-C(16)-C(27)	122.2(3)	С(17)-С(22)-Н(22)	119.8	С(16)-С(27)-Н(27С)	109.4
C(9)-C(16)-C(27)	121.0(3)	C(17)-C(22)-C(29)	120.4(4)	H(27A)-C(27)-H(27B	6) 109.4
С(8)-С(17)-Н(17)	119.6	H(22)-C(22)-C(29)	119.7	H(27A)-C(27)-H(27C	2) 109.6
C(8)-C(17)-C(22)	120.9(3)	C(19)-C(23)-C(21)	120.8(3)	H(27B)-C(27)-H(27C) 109.5
H(17)-C(17)-C(22)	119.6	С(19)-С(23)-Н(23)	119.6	C(25)-C(28)-C(26)	121.7(4)
C(10)-C(18)-C(20)	119.2(3)	С(21)-С(23)-Н(23)	119.6	C(25)-C(28)-H(28)	119.1
C(10)-C(18)-C(32)	119.4(3)	C(15)-C(24)-H(24)	119.6	C(26)-C(28)-H(28)	119.2

С(22)-С(29)-Н(29)	119.9	C(19)-C(30)-H(30)	119.3	H(31)-C(31)-C(32)	119.8
C(22)-C(29)-C(30)	120.2(4)	C(29)-C(30)-H(30)	119.5	C(18)-C(32)-C(31)	120.4(4)
H(29)-C(29)-C(30)	119.8	C(24)-C(31)-H(31)	119.9	C(18)-C(32)-H(32)	119.8
C(19)-C(30)-C(29)	121.2(4)	C(24)-C(31)-C(32)	120.3(4)	C(31)-C(32)-H(32)	119.8

Table S8. Selected crystal parameters of L

Empirical formula	C ₂₉ H ₂₂ N ₂ O
Formula weight	414.49
Temperature	296 K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	P2 ₁ /c
Unit cell dimensions	a = 17.662(10) Å, b = 16.526(9) Å, c = 7.599(4) Å
	$\alpha = 90^{\circ}, \beta = 97.592(9)^{\circ}, \gamma = 90^{\circ}$
Volume	2199(2) Å ³
Density	1.252 g cm ⁻³
Ζ	4
F(000)	872.0
Theta (max)	25.360°
Index ranges	-21<=h<=21, -19<=k<=19, -9<=l<=9
Data completeness	0.980
R indices (all data)	R1 = 0.0650, wR2 = 0.2140