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1. Experimental

1.1 Materials and reagents

All liquid reagents were dried/ purified following recommended drying agents and/ or distilled
over 4 A molecular sieves. CHsCN was dried by refluxing over P,Os. K,COs was dried

overnight in furnace. 1-Aminopyrene was bought from SIGMA ALDRICH and used as such.
1.2 Instrumentation

Fluorescence studies were carried out using Perkin Elmer LS 55 Fluorescence Spectrometer at
emission slit width= 3.5 nm and excitation slit width= 12 nm. Time resolved fluorescence studies
were carried out using Edinburgh FL920 Fluorescence Life Time Spectrometer. A pulse diode
laser at 375 nm is used as excitation source. t calculated using FAST software. Quality of fit
judged by x?<1. UV-visible studies were carried out using UV-1800 SHIMADZU UV-
Spectrophotometer. The pH titrations were carried out using Equip-Tronics Digital pH meter
model —EQ 610 and electrode was calibrated using standard buffers of pH 4.0, 7.0 and 9.2.
Dynamic Light Scattering was carried out using MALVERN Zetasizer Nano ZS instrument. H
NMR and $3C NMR spectra were recorded on Bruker Biospin Avance 111 HD at 500 MHz, with
TMS as internal standard using CDClIz as deuterated solvent. Data are reported as follows:
chemical shift in ppm (8), integration, multiplicity (s=singlet, d=doublet, t=triplet, m=multiplet),
coupling constant J (Hz). SEM images were taken at ZEISS Supera 55 Scanning Electron
Microscope. The purity of the products was checked by elemental analysis performed on a
Thermoelectron FLASH EA1112 CHNS analyzer and within £0.4% of the theoretical values. IR
spectrum was recorded on Perkin-Elmer FTIR-C92035 Fourier-transform spectrophotometer in

range 400-4000 cmlusing KBr as medium. All reported vyields are isolated yields. 1-



Azidopyrene was synthesized using literature reported procedure.! Melting points were
determined in open capillaries and are uncorrected. For column chromatography silica gel (60—

120 mesh) was employed and eluents were ethyl acetate/hexanes mixtures.
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Scheme 1: Synthesis of 6: (a) PCC, DCM, 24 h, 89%; (b) POClIs, 105 °C, 95%; (c) 2-propyn-1-ol

(propargyl alcohol), K>CO3z, CH3CN, 94%; (d) 1-azidopyrene 5, CuS04.5H.0, (sodium-L-

ascorbate), EtOH: H.O (9:1 v/v), 92%.

Ethyl 4-methyl-6-phenyl-2-(prop-2-ynyloxy)pyrimidine-5-carboxylate 4: White solid (94%)
yield. Rf: (0.5, 30% ethyl acetate/ hexane.); Mp 65-67 °C (DCM/Hexane); IR (KBr): vmax 1533,
1552, 1708, 2985, 3250 cm™; *H (500 MHz, CDCls, 25°C): § 1.07 (t, J = 5.0 Hz, 3H, C5-CH3),
2.5 (t,J=2.5Hz, 1H, CCH), 2.61 (s, 3H, C6-CHa), 4.18 (g, J = 10.0 Hz, 2H, OCHy), 5.11 (d, J
= 2.5 Hz, C2-OCH,) 7.44-7.69 (m, 5H, CeHs); *C NMR (125 MHz, CDCls, 25 °C): 13.62,
22.77, 55.15, 61.75, 74.76, 78.29, 120.53, 128.36, 128.43, 130.25, 137.54, 163.06, 166.36,
168.13, 168.97; Anal. Calcd. (%) for C17H1sN2O3: C, 68.92; H, 5.41; N, 9.46; Found: C, 68.95;

H, 5.44; N, 9.49; HRMS: m/z 296.1489 (M*).
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Fig. S1'H NMR (500 MHz, CDCls) of 4.
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Fig. S2 13C NMR (125 MHz, CDCls) of 4.
Ethyl 4-methyl-6-phenyl-2-((1-(pyren-1-yl)-1H-1,2,3-triazol-4-yl)methoxy)pyrimidine-5-

carboxylate 6: Brown solid (92%) yield. Rf : (0.3, 50% ethyl acetate/hexane); Mp 120-122 °C
(DCM/Hexane); IR (KBr): vmax 1547, 1601, 1729, 2967, 3137 cm™® *H (500 MHz, CDCls, 25°C):

5 1.08 (t, J = 5.0 Hz, 3H, C5-CHs), 2.65 (s, 3H, C6-CHs), 4.19 (g, J = 10.0 Hz, 2H, C5-OCHy),



5.9(s, 2H, C2-OCHy), 7.47-8.31 (m, 15H); *C NMR (125 MHz, CDCls, 25°C): 13.63, 22.85,
61.41, 61.77, 120.48, 121.07, 123.37, 124.15, 124.72, 125.02, 126.13, 126.16, 126.43, 126.48,
126.78, 126.98, 128.34, 128.49, 129.00, 129.77, 130.27, 130.33, 130.66, 131.12, 132.3, 137.62,
143.64, 163.62, 166.64, 168.16 and 169.02; Anal. Calcd. (%) for CasHzsNsOs: C, 73.47; H, 4.64;

N, 12.99; Found: C, 73.42; H, 4.58; N, 12.82; HRMS: m/z 540.2272 (M+1).
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Fig. S3 'H NMR (500 MHz, CDCls) of 6.
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Quantum yield calculations:

The fluorescence quantum vyields were measured with respect to 9, 10-diphenylanthracene as

standard having quantum yield of 0.86 in cyclohexane.?
@y = O Fu.(1-1075%) m/(1-10AY). Fs Ay

® = quantum yield

F = Integrated fluorescence intensity

A = Absorbance

n = refractive index of solvent

L= length of cell. (1.0 cm for standard and sample)

s = standard i.e. 9, 10-diphenylanthracene

u = sample

Computational details:

All theoretical calculations were carried out by using the Gaussian 09 suite of programs.® The
molecular geometries of the chromophores were optimized at the DFT method employing the
hybrid B3LYP* functional. 6-31G* basis set was used. The same model chemistry was used for
the calculation of the properties of the chromophores. The first 50 excited states were calculated
by using time-dependent density functional theory (TD-DFT calculations). The molecular orbital

contours were plotted using Gauss view 5.0.9.
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Fig. S5 Change in emission intensity of 6 (1 x 10> M) in 50:50 v/v, THF:HB fraction, pH 6.99, at
380 nm on changing pH.
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Fig. S6 Change in emission intensity of 6 (1 x 10° M) in 50:50 v/v, THF:HB fraction, pH 6.99,
dexc.= 342 nm, on addition of iodide (3.71 x 10* M) in the presence of various anions (3.71 x 10*
M) in H20.
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Fig. S7a. Changes in emission spectra of 6 (1 x 10° M) in 50:50 v/v, THF:HB fraction, pH 6.99,
dexc= 342 nm upon incremental additions of Cr¥*(upto 5.00 x 10“ M), in H.O, added as
Cr(ClOg)s.
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Fig. S7b. Changes in emission spectra of 6 (1 x 10° M) in 50:50 v/v, THF:HB fraction, pH 6.99,
dexc= 342 nm upon incremental additions of Cu?*(upto 5.00 x 10* M), in H20, added as
Cu(ClOa)2.
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Fig. S7c. Changes in emission spectra of 6 (1 x 10° M) in 50:50 v/v, THF:HB fraction, pH 6.99,
dexc= 342 nm upon incremental additions of Fe?*(upto 5.00 x 10* M), in H20, added as
Fe(ClOa)2.
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Fig. S7d. Changes in emission spectra of 6 (1 x 10° M) in 50:50 v/v, THF:HB fraction, pH 6.99,
dexc= 342 nm upon incremental additions of Fe**(upto 5.00 x 10“ M), in H2O, added as
Fe(ClOa)a.
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Fig. S7e. Percentage fluorescence quenching observed upon addition of (5.00 x 10* M) aqueous
solution of various cations and iodide to a solution of 6 (1 x 10° M in 50:50 v/v, THF:HB
fraction, pH 6.99, Aexc.= 342 nm) Xtem= 380 nm.

100 -
80 -
60 -
40 -

20

Fluorescence Intensity (a.u.)

@ @ c?

Fig. S7f. Change in emission intensity of 6 (1 x 10> M) in 50:50 v/v, THF:HB fraction, pH 6.99,
dexc.= 342 nm, on addition of iodide (3.71 x 10 M) in the presence of various cations (3.71 x 10"
4M) in H20.
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Analysis of iodide in urine sample:

To a given solution of 6 (1 x 10° M) in 50:50 v/v, THF:HB fraction, 3.5 ml was added 20 pl
urine sample and emission spectra was recorded for 6.
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Fig. S8 Change in emission spectra of 6 (1 x 10° M) in 50:50 v/v, THF:HB fraction, pH 6.99,
exc.= 342 nm, on addition of (a) 20 pl urine, (b) and (c) 7 pl iodide solution (1 x 10 M) in H2O.

Concentration of iodide in urine sample is calculated utilizing following equation.
y = -2e+ 06 x + 919.39.

y = Emission intensity.

x = Concentration of iodide

Now to the above solution was added 7 pl iodide solution of concentration (1 x 10 M) was

added successively and again emission spectra was recorded.

Recovery (%) = (Conc. of iodide found/Total conc. of iodide) x 100.
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Calculation of detection limit:

The detection limit was calculated on the basis of the fluorescence titration. The fluorescence
emission spectrum of 6 was measured 6 times, and the standard deviation of blank measurement
was achieved. To gain the slope, the ratio of emission intensity at 380 nm was plotted as a

concentration of lodide ion. The detection limit was calculated using the following equation.

Detection limit = 3 x 6/K
o = Standard deviation of blank measurement = 0.30602
K = Slope between the ratio of emission intensity versus [I'] = -2364326

=3 x 0.30602/2364326 = 3.88 x10'M = 49.30 ug.
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Fig. S9 Plot of emission intensity of 6 (1 x 10° M) in 50:50 v/v, THF:HB fraction, pH 6.99,
Aexc.= 342 nm with iodide (3.71 x 10* M) in H,0.

15



Fig. S10 Visually perceived change in emission intensity of 6 (1 x 10° M) in 50:50 v/v, THF:HB
fraction, pH 6.99, in the presence of various anions (3.71 x 10* M) in H,0 (a) 6, (b) CI, (c) Br,
(d) I, (e) F, (f) HSO4, (g) CeHsO7*, (h) SOs?, (i) HCOs, (j) POs*, (k) COs%, (I) HSOs", (m)
S04%, (n) CH3COO", (0) OH" and (p) NO3".

16



References

(1) N. Niamnont, N. Kimpitak, K. Wongraves, P Rashatasakhon, K. K. Baldridge, J. S. Siegel,

M. Sukwattanasinitt, Chem. Commun. 49 (2013) 780-782.

(2) A.M. Brouwer, Standards for photoluminescence quantum yield measurements in solution

Pure Appl. Chem. 83 (2011) 2213-2228.

(3) Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A.
Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M.
Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada,
M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H.
Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E.
Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari,
A. Rendell, J. C. Burant, S. S. lyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J.
E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O.
Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G.
Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J.
B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010.

(4) L. J. Bartolotti and K. Fluchick, In Reviews in Computational Chemistry, K. B. Lipkowitz, B.

D. Boyd, Eds, VCH, New York, 1996, 7, pp. 187.

17



