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Equation 1.

g _p o _2303XRT RT, Co
/2~ H+/H2‘—p a'*”%‘ﬁnco
H,
Lo =-062V
Were /Hy is the standard potential for the reduction of protons in DMF, R =
8.617 x 107 is the Boltzmann constant, T — absolute temperature, F' = 96485 C mol'! is the

=6+ 03 ep=40mV

Faraday constant, K, is the dissociation constant of TFA in DMF,
1s the correction factor which reflects the difference in diffusion coefficients of the acid and

c . €2 =19mmolL™? . .
H,, ~0 - the total concentration of acid, 2 the saturating concentration of

dissolved H, under 1 bar H,.

Table. Comparison of selected calculated and observed bond lengths.

Method Fe-C bond lenghs / A Pd-N/A
B3PW91/3-21G*a 2.05 (meso) 2.03
2.03 (free)®
X-ray crystallography 2.05¢ 2.009(9)¢

aCalculated using Gaussian 09, "Average value for the two Cp rings, “Taken from Dunitz et
al. (Acta. Cryst. 1956, 9, 373), 9Standard deviation in bracket and taken from Fleischer et al.
(J. Am. Chem. Soc., 1964, 86, 2342) for palladium(II) tetraphenylporphine.
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S1. 'H-NMR spectrum of PATFcP in CDCls.
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S2. BC-NMR spectrum of PATFcP in CDCls.
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S3. Maldi-TOF mass spectrum of PdTFcP.
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S4. The room temperature >’Fe Mossbauer spectrum for CuTFcP.
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S5. Room temperature >’Fe Mdssbauer spectrum for PATFcP.



Isomer Shift Quadrupole Splitting
Compound Temp, K 5. mm/s AEQ, mm/s
7K 0.55 2.39
PdTFcP 293 K 0.44 234
CuTFcP 293 K 0.45 2.35
H,TFcP 293 K 0.45 2.35
Fc 293 K 0.45 2.39

S6. Experimental Mdssbauer parameters for PATFcP, CuTFcP and reference H,TFcP, Fe.
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S6. Cyclic voltammogram recorded for CuTFcP in DMF containing 0.2 M TBATFB vs

Fc*/Fc. The dashed line shows the additional irreversible oxidation peak when the potential
window was increased.
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S7. Cyclic voltammogram recorded for PATFcP in DCM containing 0.2 M TBATFB vs
Fc*/Fc. The dashed line shows the additional irreversible oxidation peak when the potential
window was increased.

12



1.0 +

0.8 1

0.6 1

Absorbance

- I . | . I
400 600 800 1000
Wavelength / nm

S8. Electronic absorption spectra for CuTFcP in THF at the start (black) and after reduction
at-1.3 V (red) and -1.7 V (blue) vs Ag wire.
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S9. Electronic absorption spectra for PATFcP in THF/DMF at the start (black) and after
oxidation at +0.9 V (red) vs Ag wire.
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S10. Selected linear sweep voltammograms for CuTFcP (1 mM) at a glassy carbon electrode
in DMF in the presence of increasing quantities of TFA. Voltammograms show that the
addition of hydrochloride leads to the appearance of an irreversible wave of increasing
amplitude corresponding to the reduction of protons catalyzed by the complex. Conditions: T
= 298 K, scan rate 100 mVs'!. Supporting electrolyte: 0.2 M TBATFB. Insert shows
relationship between i./i, and concentration of acid.
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S11. Selected cyclic voltammograms for CuTFcP (1 mM) at a glassy carbon electrode in
DMF in the presence of increasing quantities of TEAHCI. Voltammograms show that the
addition of hydrochloride leads to the appearance of an irreversible wave of increasing
amplitude corresponding to the reduction of protons catalyzed by the complex. Conditions: T
= 298 K, scan rate 100 mVs'!'. Supporting electrolyte: 0.2 M TBATFB. Insert shows

relationship between i./1, and concentration of acid.
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S12. Selected linear sweep voltammograms for NiTFcP (1 mM) at a glassy carbon electrode
in dry DMF in the presence of increasing quantities of TFA. Voltammograms show that the
addition of acid leads to the appearance of an irreversible wave of increasing amplitude
corresponding to the reduction of TFA catalyzed by the complex. Conditions:T = 298 K, scan
rate = 100 mV s'!. Supporting electrolyte: 0.2 M TBATFB.
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S13. Selected linear sweep voltammograms for PATPP (1 mM) at a glassy carbon electrode
in dry DMF in the presence of increasing quantities of TFA. Voltammograms show that the
addition of acid leads to the appearance of an irreversible wave of increasing amplitude
corresponding to the reduction of TFA catalyzed by the complex. Conditions: T =298 K, scan
rate = 100 mV s-1. Supporting electrolyte: 0.2 M TBATFB.
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S14. Electrocatalytic hydrogen production vs time, charge vs time (left top insert) and
Faradaic efficiency vs time (right bottom insert) by applying -1.5 V vs SCE to a glassy
carbon electrode in 0.2 M TBABF, solution of DMF containing 50 mM TFA and 0.1 mM
PdTFcP.
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S15. Picture of the glassy carbon electrode after H, production using PATFcP and TFA as the
acid source.
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S16. Computer calculated molecular orbitals for PATFcP~ (left) and PATPP- (right) using the
B3PW91 function and a 3-21G* basis set.
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B3PW91 3-21G*
(Di-anion)
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S17. Computer calculated HOMOs for PATPP? (top) PATFcP? (bottom) using the B3PW91
function and a 3-21G* basis set.
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Neutral

S18. Computer calculated Mulliken Charges (MC) for PATPP using the B3PW91 function and a 3-
21G* basis set.
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; Radical anion

S19. Computer calculated Mulliken Charges (MC) for PATPP- using the B3PW91 function and a 3-
21G* basis set.
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Dianion

S20. Computer calculated Mulliken Charges (MC) for PATPP? using the B3PW91 function and a 3-
21G* basis set.
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Neutral

S21. Computer calculated Mulliken Charges (MC) for PATFcP using the B3PW91 function and a 3-
21G* basis set.
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Radical anion

S22. Computer calculated Mulliken Charges (MC) for PATFcP- using the B3PW91 function and a 3-
21G* basis set.
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S23. Computer calculated Mulliken Charges (MC) for PATFcP? using the B3PW91 function and a 3-
21G* basis set.
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