Supporting information

The Ferrocene Effect: Enhanced Electrocatalytic Hydrogen Production using meso-

Tetraferrocenyl porphyrin Palladium (II) and Copper (II) Complexes

Dumitru Sirbu, Constantin Turta, Elizabeth A. Gibson and Andrew C. Benniston

Contents

Equation 1
Table. Comparison of selected calculated and observed bond lengths4
S1. ¹ H-NMR spectrum of PdTFcP in CDCl ₃
S2. ¹³ C-NMR spectrum of PdTFcP in CDCl ₃
S3. Maldi-TOF mass spectrum of PdTFcP 7
S4. Room temperature ⁵⁷ Fe Mössbauer spectrum for CuTFcP8
S5. Room temperature ⁵⁷ Fe Mössbauer spectrum for PdTFcP 9
S6. Cyclic voltammogram recorded for CuTFcP in DMF containing 0.2 M TBATFB vs
Fc^+/Fc . The dashed line shows the additional irreversible oxidation peak when the potential
window was increased
S7. Cyclic voltammogram recorded for PdTFcP in DCM containing 0.2 M TBATFB vs
Fc^+/Fc . The dashed line shows the additional irreversible oxidation peak when the potential
window was increased
S8. Electronic absorption spectra for CuTFcP in THF at the start (black) and after reduction
at -1.3 V (red) and -1.7 V (blue) vs Ag wire
S9. Electronic absorption spectra for PdIFCP in IHF/DMF at the start (black) and after 12
oxidation at ± 0.9 v (red) vs Ag wire
in DME in the presence of increasing quantities of TEA. Voltermograms show that the
addition of hydrochloride leads to the appearance of an irreversible wave of increasing
amplitude corresponding to the reduction of protons catalyzed by the complex Conditions: T
= 298 K scan rate 100 mVs ⁻¹ Supporting electrolyte: 0.2 M TBATFB Insert shows
relationship between i./i. and concentration of acid
S11. Selected cyclic voltammograms for CuTFcP (1 mM) at a glassy carbon electrode in
DMF in the presence of increasing quantities of TEAHCI. Voltammograms show that the
addition of hydrochloride leads to the appearance of an irreversible wave of increasing
amplitude corresponding to the reduction of protons catalyzed by the complex. Conditions: T
= 298 K, scan rate 100 mVs ⁻¹ . Supporting electrolyte: 0.2 M TBATFB. Insert shows
relationship between i_c/i_p and concentration of acid
S12. Selected linear sweep voltammograms for NiTFcP (1 mM) at a glassy carbon electrode
in dry DMF in the presence of increasing quantities of TFA. Voltammograms show that the
addition of acid leads to the appearance of an irreversible wave of increasing amplitude
corresponding to the reduction of TFA catalyzed by the complex. Conditions: $T = 298$ K, scan
rate = $100 \text{ mV} \text{ s}^{-1}$. Supporting electrolyte: 0.2 M
TBATFB16

S13. Selected linear sweep voltammograms for **PdTPP** (1 mM) at a glassy carbon electrode in dry DMF in the presence of increasing quantities of TFA. Voltammograms show that the

S14. Electrocatalytic hydrogen production vs time, charge vs time and Faradaic efficiency vs
time by applying -1.5 V vs SCE to a glassy carbon electrode in 0.2 M TBABF ₄ solution of
DMF containing 50 mM TFA and 0.1 mM PdTFcP
S15. Picture of the glassy carbon electrode after H ₂ production using PdTFcP and TFA as the
acid source
S16. Computer calculated molecular orbitals for PdTFcP - (left) and PdTPP - (right) using
the B3PW91 function and a 3-21G* basis set
S17. Computer calculated HOMOs for PdTPP²⁻ (top) PdTFcP²⁻ (bottom) using the B3PW91
function and a 3-21G* basis set
S18. Computer calculated Mulliken Charges (MC) for PdTPP using the B3PW91 function
and a 3-21G* basis set
S19. Computer calculated Mulliken Charges (MC) for PdTPP - using the B3PW91 function
and a 3-21G* basis set
S20. Computer calculated Mulliken Charges (MC) for PdTPP²⁻ using the B3PW91 function
and a 3-21G* basis set
S21. Computer calculated Mulliken Charges (MC) for PdTFcP using the B3PW91 function
and a 3-21G* basis set
S22. Computer calculated Mulliken Charges (MC) for PdTFcP - using the B3PW91 function
and a 3-21G* basis set
S23. Computer calculated Mulliken Charges (MC) for PdTFcP²⁻ using the B3PW91 function
and a 3-21G* basis set

Equation 1.

$$E_{1/2} = E_{H^+/H_2}^{o} - \frac{2.303 \times RT}{F} pK_a + \varepsilon_D - \frac{RT}{2F} ln \frac{C_0}{C_{H_2}^{o}}$$

 $E_{H^+/H_2}^{o} = -0.62 V$ Were ^{*B*} is the standard potential for the reduction of protons in DMF, *R* = 8.617 x 10⁻⁵ is the Boltzmann constant, T – absolute temperature, *F* = 96485 C mol⁻¹ is the Faraday constant, *pK_a* = 6 ± 0.3 is the dissociation constant of TFA in DMF, $\varepsilon_D = 40 mV$ is the correction factor which reflects the difference in diffusion coefficients of the acid and H₂, *C*₀ - the total concentration of acid, $C_{H_2}^{o} = 1.9 mmol L^{-1}$ the saturating concentration of dissolved H₂ under 1 bar H₂.

Table. Comparison of selected calculated and observed bond lengths.

Method	Fe-C bond lenghs / Å	Pd-N / Å
B3PW91/3-21G*a	2.05 (meso)	2.03
	2.03 (free) ^b	
X-ray crystallography	2.05°	$2.009(9)^{d}$

^aCalculated using Gaussian 09, ^bAverage value for the two Cp rings, ^cTaken from Dunitz *et al. (Acta. Cryst.* **1956,** 9, 373), ^dStandard deviation in bracket and taken from Fleischer *et al. (J. Am. Chem. Soc.*, **1964**, 86, 2342) for palladium(II) tetraphenylporphine.

S1. ¹H-NMR spectrum of **PdTFcP** in CDCl₃.

S2. ¹³C-NMR spectrum of **PdTFcP** in CDCl₃.

S3. Maldi-TOF mass spectrum of **PdTFcP**.

S4. The room temperature ⁵⁷Fe Mössbauer spectrum for **CuTFcP**.

S5. Room temperature ⁵⁷Fe Mössbauer spectrum for **PdTFcP**.

Compound	Temp, K	Isomer Shift δ, mm/s	Quadrupole Splitting ΔEQ, mm/s
PdTFcP	7 K	0.55	2.39
	293 K	0.44	2.34
CuTFcP	293 K	0.45	2.35
H ₂ TFcP	293 K	0.45	2.35
Fc	293 K	0.45	2.39

S6. Experimental Mössbauer parameters for PdTFcP, CuTFcP and reference H₂TFcP, Fc.

S6. Cyclic voltammogram recorded for **CuTFcP** in DMF containing 0.2 M TBATFB vs Fc^+/Fc . The dashed line shows the additional irreversible oxidation peak when the potential window was increased.

S7. Cyclic voltammogram recorded for **PdTFcP** in DCM containing 0.2 M TBATFB vs Fc^+/Fc . The dashed line shows the additional irreversible oxidation peak when the potential window was increased.

S8. Electronic absorption spectra for **CuTFcP** in THF at the start (black) and after reduction at -1.3 V (red) and -1.7 V (blue) vs Ag wire.

S9. Electronic absorption spectra for **PdTFcP** in THF/DMF at the start (black) and after oxidation at +0.9 V (red) vs Ag wire.

S10. Selected linear sweep voltammograms for **CuTFcP** (1 mM) at a glassy carbon electrode in DMF in the presence of increasing quantities of TFA. Voltammograms show that the addition of hydrochloride leads to the appearance of an irreversible wave of increasing amplitude corresponding to the reduction of protons catalyzed by the complex. Conditions: T = 298 K, scan rate 100 mVs⁻¹. Supporting electrolyte: 0.2 M TBATFB. Insert shows relationship between i_c/i_p and concentration of acid.

S11. Selected cyclic voltammograms for **CuTFcP** (1 mM) at a glassy carbon electrode in DMF in the presence of increasing quantities of TEAHCl. Voltammograms show that the addition of hydrochloride leads to the appearance of an irreversible wave of increasing amplitude corresponding to the reduction of protons catalyzed by the complex. Conditions: T = 298 K, scan rate 100 mVs⁻¹. Supporting electrolyte: 0.2 M TBATFB. Insert shows relationship between i_c/i_p and concentration of acid.

S12. Selected linear sweep voltammograms for **NiTFcP** (1 mM) at a glassy carbon electrode in dry DMF in the presence of increasing quantities of TFA. Voltammograms show that the addition of acid leads to the appearance of an irreversible wave of increasing amplitude corresponding to the reduction of TFA catalyzed by the complex. Conditions:T = 298 K, scan rate = 100 mV s⁻¹. Supporting electrolyte: 0.2 M TBATFB.

S13. Selected linear sweep voltammograms for **PdTPP** (1 mM) at a glassy carbon electrode in dry DMF in the presence of increasing quantities of TFA. Voltammograms show that the addition of acid leads to the appearance of an irreversible wave of increasing amplitude corresponding to the reduction of TFA catalyzed by the complex. Conditions:T = 298 K, scan rate = 100 mV s⁻¹. Supporting electrolyte: 0.2 M TBATFB.

S14. Electrocatalytic hydrogen production vs time, charge vs time (left top insert) and Faradaic efficiency vs time (right bottom insert) by applying -1.5 V vs SCE to a glassy carbon electrode in 0.2 M TBABF₄ solution of DMF containing 50 mM TFA and 0.1 mM PdTFcP.

S15. Picture of the glassy carbon electrode after H_2 production using **PdTFcP** and TFA as the acid source.

S16. Computer calculated molecular orbitals for **PdTFcP**- (left) and **PdTPP**- (right) using the B3PW91 function and a 3-21G* basis set.

S17. Computer calculated HOMOs for **PdTPP²⁻** (top) **PdTFcP²⁻** (bottom) using the B3PW91 function and a 3-21G* basis set.

S18. Computer calculated Mulliken Charges (MC) for **PdTPP** using the B3PW91 function and a 3-21G* basis set.

S19. Computer calculated Mulliken Charges (MC) for **PdTPP**- using the B3PW91 function and a 3-21G* basis set.

S20. Computer calculated Mulliken Charges (MC) for **PdTPP²⁻** using the B3PW91 function and a 3-21G* basis set.

S21. Computer calculated Mulliken Charges (MC) for **PdTFcP** using the B3PW91 function and a 3-21G* basis set.

S22. Computer calculated Mulliken Charges (MC) for **PdTFcP**- using the B3PW91 function and a 3-21G* basis set.

S23. Computer calculated Mulliken Charges (MC) for **PdTFcP²⁻** using the B3PW91 function and a 3-21G* basis set.