Rhodium(II) Dimers Without Metal-Metal Bonds

Di Zhu, *a Arzoo Z. Sharma,^c Christopher R. Wiebe^b and Peter H.M. Budzelaar^c

- a) State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, P.R. China. email: dizhu@cup.edu.cn.
- b) Department of Chemistry, University of Winnipeg, 515 Portage Ave, Winnipeg, MB R3B 2E9, Canada.
- c) Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.

Experimental details

General:

All experiments were carried out in a nitrogen-filled dry-box or under an argon atmosphere using standard Schlenk techniques. Hexane, pentane, toluene, toluene- d_8 , tetrahydrofuran, THF- d_8 , and cyclohexane were distilled from sodium/benzophenone.

¹H NMR spectra were recorded on Bruker Avance 300 MHz and Bruker Avance 500 MHz spectrometers. All ¹H NMR shifts (δ , ppm) were referenced to the solvent (toluene- d_8 : C₆D₅CD₂H δ 2.08; CDCl₃,: CHCl₃ δ 7.26; THF- d_8 : OCHD δ 3.58). COSY spectra were also acquired to assist ¹H assignments. Elemental analysis was done at Guelph Chemical Laboratories Ltd, Canada. Lithium salt (^{Me}BDI)Li(THF) was prepared according to literature procedures.¹ Iodine, bromine and other reagents were purchased from Aldrich or Acros. [Rh(COE)₂Cl]₂ was purchased from Strem Chemicals and used as received.

[(MeBDI)Rh]2(µ-I)2·toluene (1a·toluene)

In a N₂-filled dry box, [(COE)₂RhCl]₂ (0.0718g, 0.100 mmol) and (^{Me}BDI)Li(THF) (0.0768g, 0.200 mmol) were weighed into a small vial, and 5 mL dry THF was added. After vigorous shaking for 5 minutes, the color of the mixture turned clear brown. This solution was transferred to a 25 mL Schlenk tube. After being kept at room temperature for 1h, this brown solution was evaporated to dryness *in vacuo* and the resulting residue was extracted with dry cyclohexane (3 mL). After centrifugation, the cyclohexane solution was evaporated to dryness *in vacuo* to furnish a solid. This solid was dissolved in 10 mL dry THF and cooled to -78 °C. At this temperature, a solution of I₂ in THF (0.90 mL, 0.1 mol/L, 0.090 mmol) was added dropwise. The resulting mixture was allowed to warm to -8 °C over 30 minutes (the color turned green at around -56 °C), and kept at -8 °C for 1hr. The green solution was evaporated to dryness *in vacuo* and the resulting green residue was extracted with dry toluene (3 mL) in the dry-box. After centrifugation, this green toluene solution was layered with hexane and cooled to -35 °C overnight, and a dark crystalline solid was deposited. The mother liquor was pipetted off, leaving 0.0275 g of a

crystalline solid (yield 24%). One crystal of this batch was used for single-crystal X-ray diffraction. The X-ray structure showed one disordered molecule of toluene per dimer, but NMR spectra taken of vacuumdried samples indicated the presence of only about 0.8 toluene per dimer. Presumably, the toluene of crystallization is only loosely bound and easily lost on drying.

¹H NMR (THF-*d*₈, 300 MHz): δ 23.67 (8H, br, $\Delta v_{1/2}$ 20 Hz, NAr *m*), 14.43 (4H, br, $\Delta v_{1/2}$ 18 Hz, NAr *p*), 7.06-7.18 (~4H, m, toluene *CH*), 2.30 (~2.4 H, s, toluene *CH*₃), 2.42 (24H, br, $\Delta v_{1/2}$ 31 Hz, NAr *CH*₃), -36.87 (12 H, br, $\Delta v_{1/2}$ 32 Hz, *I*), -153 (br, 390 Hz, *3*).

Figure S1. ¹H NMR spectrum of 1a.

Anal. Calcd for C₄₉H₅₈I₂N₄Rh₂ (1162.63): C, 50.62; H, 5.03; N, 4.82. Found: C, 50.66; H, 5.22; N, 4.76.

Magnetic moment

Evans method:²⁻⁴ In a dry box, **1a** toluene (0.0120 g, 0.01mmol) was dissolved in a mixture of 0.2 mL dry THF- d_8 and 0.1 mL dry THF. A small part of this dark green solution was added into the inner tube of a concentric NMR tube and one drop of toluene, 0.1 mL THF (reagent grade) and 0.3 mL dry THF- d_8 were added into the outer tube. This NMR sample was measured on a 500 MHz NMR machine at T = 300.1 K. $\Delta\delta$ of the THF peaks was determined as 1.31 ppm (655Hz), yielding a μ_{eff} of 4.5(3) μ_B .

Direct measurement: The DC magnetic susceptibility was measured using a Quantum Design Physical Property Measurement System (PPMS) with an applied field of 0.1 T in the temperature range 1.8 K - 300 K. Hysteresis scans were also completed up to applied fields of 9 T. Magnetometry was done under vacuum, with a trace of helium gas.

[(MeBDI)Rh]2(µ-Br)2·toluene (1b·toluene)

In a nitrogen-filled dry box, [(COE)₂RhCl]₂ (0.0348g, 0.0485 mmol) and (^{Me}BDI)Li(THF) (0.0373g, 0.0970 mmol) were weighed into a small vial, and 5 mL dry THF was added. After vigorous shaking for 5 minutes, the color of the mixture turned clear brown. This brown solution was evaporated to dryness *in vacuo* and extracted with dry hexane (3 mL). After centrifugation, the hexane solution was evaporated to dryness *in vacuo* to generate a solid. This solid was further dissolved in 10 mL dry THF and cooled to -78 °C. At this temperature, a freshly prepared Br₂ solution in THF (0.14 mL, 0.3 mol/L, 0.0448 mmol) was added dropwise. The resulting mixture was allowed to warm to -10 °C over 30 minutes, and the solution color turned bright green. At this temperature, this green solution was evaporated to dryness *in vacuo*. The resulting green residue was extracted with dry toluene (3 mL). After centrifugation, this green toluene solution was layered with hexane and cooled to -34 °C overnight. Dark green crystalline solids precipitated. The green mother liquor was pipetted off, leaving (0.010g) of a dark green crystalline solid. One crystal of this was used for single-crystal X-ray diffraction measurement. The mother liquid was further concentrated and layered with hexane at -34 °C overnight. More solid (0.022 g) was isolated by pipetting off the mother liquor. Combined yield: 64% (relative to starting material [(COE)₂RhCl]₂).

¹H NMR (THF-*d*₈, 300 MHz): δ 31.13 (8H, br, $\Delta v_{1/2}$ 25 Hz, NAr *m*), 18.54 (4H, br, $\Delta v_{1/2}$ 19 Hz, NAr *p*), 7.08-7.19 (~6H, m, toluene *CH*), 2.30 (~3.6 H, s, toluene *CH*₃), 1.98 (24H, br, $\Delta v_{1/2}$ 121 Hz, NAr *CH*₃), -55.40 (12 H, br, $\Delta v_{1/2}$ 46.2 Hz, *I*), *3* not observed.

Anal. Calcd for C₄₉H₅₈Br₂N₄Rh₂ (1068.63): C, 55.07; H, 5.47; N, 5.24. Found: C, 54.79; H, 5.21; N, 4.91.

X-ray structure Determinations

General

Crystal fragments were broken from large pieces of crystalline aggregates and sealed in a thin glass capillary. The crystal fragment in its capillary was mounted on a Bruker D8 three-circle diffractometer equipped with a rotating anode generator (Mo $K\alpha$ X-radiation), multi-layer optics incident beam path and an APEX-II CCD detector. Data were collected at a crystal-to-detector distance of 5 cm and processed using the Bruker SMART suite.⁵ Semi-empirical absorption corrections (SADABS⁶) were applied and identical data merged. The unit-cell parameters were obtained by least-squares refinement on observed reflections with $I > 4 \sigma(I)$. Structures were solved using SHELXS and refined using SHELXL.⁷ Hydrogens were put at calculated positions and refined in riding mode. Details of the individual determinations are given in Table S1.

1a-toluene

A dark green crystal fragment $(0.20 \times 0.20 \times 0.30 \text{ mm})$ was used. The crystal contained a second component, but this did not appear to overlap badly and did not affect the measurement significantly. In excess of a sphere of X-ray diffraction data (44029 reflections) was collected to $2\theta = 60^{\circ}$ using 6 s per 0.3° frame. Data merging produced 14227 reflections covering the Ewald hemisphere. The unit-cell parameters were obtained by least-squares refinement on 9848 reflections. The toluene molecule is disordered and is located over a centre of inversion. It was refined using constrained bond lengths, with a fixed total occupation factor of 1.0.

1b-toluene

A dark green crystal fragment $(0.30 \times 0.30 \times 0.40 \text{ mm})$ broken from the large aggregate was used. In excess of a sphere of X-ray diffraction data (45034 reflections) was collected to $2\theta = 60^{\circ}$ using 4 s per 0.3° frame. Data merging produced 13867 reflections covering the Ewald hemisphere. The unit-cell

parameters were obtained by least-squares refinement on 9474 reflections. The toluene molecule is disordered and is located over a centre of inversion. It was refined using constrained bond lengths, with a fixed total occupation factor of 1.0. This compound is virtually isostructural with **1a** toluene.

Complex	1a·toluene	1b·toluene
Formula	$C_{49}H_{62}I_2N_4Rh_2$	$C_{49}H_{62}I_2N_4Rh_2$
Mol wt	1166.65	1072.67
<i>T</i> (K)	293(2)	293(2)
Crystal system	Monoclinic	Monoclinic
Space group	C2/m	C2/m
a / Å	19.268(7)	18.862(7)
b / Å	11.773(4)	11.848(5)
<i>c</i> / Å	14.410(4)	14.220(5)
α/ deg	90	90
β/\deg	131.886(6)	131.564(13)
γ/\deg	90	90
$V/Å^3$	2433.4(14)	2377.7(16)
Ζ	2	2
$D_{\rm c}$ / g cm ⁻³	1.592	1.498
abs coef / mm ⁻¹	1.982	2.411
F ₀₀₀	1160.0	1088.0
	-23 < <i>h</i> < 23	-22 < h < 22
index ranges	-14 < <i>k</i> < 14	-14 < <i>k</i> < 14
	-17 < <i>l</i> < 17	-17 < <i>l</i> <17
$2\theta_{max}$ / deg	51	51
# rflctns	9067	8868
# unique	2396	2336
$\# > 2\sigma$	2256	2251
GOF	1.082	1.050
# parameters	150	151
R (Fo > 4 $\sigma(F)$)	0.0279	0.0347
R (all data)	0.0294	0.0358
wR2 (all data)	0.0897	0.1042
largest peak, hole / $e \text{ Å}^{-3}$	0.768, -0.645	1.031, -0.689

 Table S1. Details of crystal structure determinations.

	1a·toluene	1b·toluene	$[(Ph)(^{Me}BDI)Rh]_2(\mu-Br)_2$
Rh(1)-N(1)	2.003(4)	1.993(4)	2.013(6)
Rh(1)-N(2)	2.008(4)	1.996(4)	2.026(6)
Rh(1)-X(1)	2.6420(11)	2.4921(9)	2.5211(8)
Rh(1)-X(1')	2.6449(9)	2.4939(11)	2.5255(9)
N(1)-C(12)	1.328(6)	1.321(7)	1.278
N(2)-C(14)	1.332(6)	1.322(7)	1.311
Rh(1)-Rh(1)	4.057(1)	3.819(2)	3.827
X(1)-X(1')	3.390(1)	3.205(2)	3.290
N(1)-Rh(1)-N(2)	89.85(15)	90.07(17)	90.3(3)
N(1)-Rh(1)-X(1)	174.83(10)	174.88(11)	172.23(17)
N(2)-Rh(1)-X(1)	95.33(11)	95.05(12)	93.65(18)
X(1)-Rh(1)-X(1')	79.756(19)	80.02(4)	81.38(3)
Rh(1)-X(1)-Rh(1')	100.24(2)	99.98(4)	98.62(3)
N(2)-N(1)-X(1')-X(1)	(0)	(0)	3.20

Table S2. Selected bond distances (Å) and angles (°) in the solid state structures of 1a, 1b and [(Ph)(^{Me}BDI)Rh]₂(µ-Br)₂.⁸

Core	Ligand ^a	Description ^c	Ref
Cr_2Cl_2	^{iPr} BDI	square planar, slightly stepped	9
Cr_2Cl_2	^{iPr} BDI-tBu	square planar, twisted	10
Mn_2Cl_2	^{iPr} BDI	tetrahedral, stepped	11
Mn_2Br_2	^{Et} BDI	tetrahedral, slightly twisted	12
Mn_2I_2	^{iPr} BDI	tetrahedral, stepped	13
Fe_2F_2	^{iPr} BDI	intermediate, perfectly twisted, a bit stepped	14
Fe_2Cl_2	^{iPr} BDI	tetrahedral, stepped	15
Fe_2Br_2	$(2,4,6-Ph_{3}C_{6}H_{2})-BDI$	tetrahedral, twisted	16
Co ₂ Cl ₂	^{iPr} BDI	tetrahedral, stepped	17
Ni_2Cl_2	MeBDI	tetrahedral, stepped	18
Ni ₂ Cl ₂	^{iPr} BDI	tetrahedral, stepped	19
Ni_2Br_2	MeBDI-CF ₃	tetrahedral, twisted	20
Cu ₂ Cl ₂	^{Me} BDI - β-Cl ^b	intermediate, perfectly twisted	21
Cu ₂ Cl ₂	^{CI} BDI	intermediate, perfectly twisted, a bit stepped	22
Cu ₂ I ₂	MeBDI	intermediate, stepped	23
Zn_2F_2	MeBDI	tetrahedral, stepped	24
Pd ₂ Cl ₂	^H BDI	square planar, stepped	25
Pd ₂ Cl ₂	$(3,5-(CF_3)_2C_6H_3)-BDI$	square planar, stepped	26
Pd_2Cl_2	^{iPr} BDI	square planar, slightly stepped	26

Table S3. Structurally characterized transition metal $[(BDI)M]_2(\mu-X)_2$ complexes.

^a Abbreviations used: ^{**R**}**BDI**: 2,6-R₂C₆H₃ groups at N; **X-BDI**: X groups at N; **BDI-Z**: Z groups instead of CH₃ groups at imine carbons. ^b Cl instead of H at central carbon of BDI. ^c For deformations see below.

Schematic representations of deviations from perfect D_{2h} symmetry:

Stepped

Twisted

Computational details

All transition state structures were fully optimized at the (restricted or unrestricted) b3-lyp²⁷⁻²⁹/TZVP^{30, 31} level using Turbomole³² coupled to an external optimizer (PQS OPTIMIZE^{33, 34}). Some calculations were also done with the b-p functional^{35, 36} (the Turbomole "b3-lyp" and "b-p" functionals are similar, but not identical, to the "B3LYP" and "BP86" functionals commonly used with versions of Gaussian). The nature of each stationary point was checked with an analytical second-derivative calculation (no imaginary frequency for local minima; exactly one imaginary for each transition state). The vibrational analysis data were also used to calculate thermal corrections (enthalpy and entropy, 298 K, 1 bar) for all species considered using the standard formulae of statistical thermodynamics. Calculations were performed for a simplified β -diiminate model (Me groups at N) as well as the real ^{Me}BDI ligand (2,6-Me₂C₆H₃ groups at N). The spin density plot was prepared using Molden.³⁷

1 s · toluene		1a, S = 1	1a, S = 0	1a, S = 1	1a, S = 0	1a, S = 0
	Tatoiuelle	b3-lyp/TZVP	b3-lyp/TZVP	b-p/TZVP	b-p/SV(P)	b-p/TZVP
$<\!\!S^2\!\!>$		2.0155	0.9955	2.0109	0.8209	0
Rh1-N1	2.003(4)	2.043	2.043	2.018	2.026	2.018
Rh1-N2	2.008(4)	2.043	2.043	2.018	2.025	2.018
Rh1-X1	2.6420(11)	2.762	2.758	2.735	2.725	2.704
Rh1-X1'	2.6449(9)	2.762	2.757	2.737	2.724	2.703
N1-C12	1.328(6)	1.333	1.333	1.345	1.351	1.345
N2-C14	1.332(6)	1.334	1.334	1.345	1.351	1.345
Rh1-Rh1	4.057(1)	4.232	4.232	4.208	4.223	4.190
X1-X1'	3.390(1)	3.548	3.535	3.498	3.444	3.416
N1-Rh1-N2	89.85(15)	90.53	90.55	90.93	91.06	91.01
N1-Rh1-X1	174.83(10)	165.22	165.51	165.34	173.17	166.80
N2-Rh1-X1	95.33(11)	96.45	96.39	96.39	95.33	96.50
X1-Rh1-X1'	79.756(19)	79.94	79.73	79.46	78.41	78.37
Rh1-X1-Rh1'	100.24(2)	99.98	100.23	100.51	101.58	101.63
N1-N2-X1-X1'	(0)	20.26	-19.80	20.01	-3.79	-17.34

Table S4. Comparison of X-ray structures and unrestricted DFT optimized geometries for 1a.

Brief discussion:

Rh-N bond lengths are best reproduced by with the b-p functional. Calculated Rh-I distances are too large with both functionals, but the b-p values are closer to the X-ray structure. Bond lengths within the organic ligands are better reproduced by b3-lyp. This agrees with observations by Minenkov.³⁸ Angles in the Rh₂I₂ core are very similar for both functionals. Only b-p in combination with the small SV(P) basis produced the pseudo planar structure of the dimer; use of the TZVP basis and/or b3-lyp functional resulted in a 20° twist of the two monomers relative to each other that reduces steric repulsion between the Me₂C₆H₃ side arms of the two monomers. However, the potential energy surface for this twist is extremely flat; the planarity of the X-ray structure might even be caused by packing forces rather than intrinsic preference. Most other [(^RBDI)M]₂(μ -X)₂ complexes show some form of distortion from planarity, see Table S3.

Model diiminate: energies and Rh-Rh distances

DFT calculation on the model system (Table S5) indicate that the triplet state (**A**) is a lower in energy (4.83kal/mol) than the open-shell (broken-symmetry) singlet or (4.41 kcal/mol) the close-shell singlet. The predicted Rh-Rh distance of complex in triplet state is much closer to the X-ray structure. Structure **B** is a triplet with a Rh-Rh bond (this structure does not exist for the full system).

Figure S2. Alternative arrangements for model BDI complexes.

Table S5. Rh-Rh distances (Å) and	l relative energie	s (kcal/mol)) for	complexes of	of model	diiminates.
-----------------------------	--------	--------------------	--------------	-------	--------------	----------	-------------

Arrangement:	Α	В	С	D	F	
Rh-Rh distance	4.206	2.623	2.548	2.547	2.727	
E _{rel} (b3-lyp/TZVP)	(0)	9.34	4.81	8.92	2.44	
G _{rel} (b3-lyp/TZVP)	(0)	7.03	4.83	8.28	4.41	
$<\!\!S^2\!\!>$	2.01	2.02	0.45	(0)	(0)	

Full MeBDI system: energies and Rh-Rh distances

The energies of triplet **A'** and open-shell (broken-symmetry) singlet **C'** are predicted to be almost same (Table S6). *Both* feature a large Rh-Rh distance, which indeed indicates that repulsion of the β -diiminate ligands plays a significant role in determining the Rh-Rh bond length. A closed-shell optimized structure (**D'**) is much higher in energy and still doesn't have the Rh atoms within bonding distance.

Figure S3. Alternative arrangements for ^{Me}BDI complexes.

Table S6. Rh-Rh distances (Å) and relative energies (kcal/mol) for ^{Me}BDI complexes.

Arrangement:	A'	C'	D'
Rh-Rh distance	4.232	4.232	4.196
E _{rel} (b3-lyp/TZVP)	(0)	-0.50	18.13
G _{rel} (b3-lyp/TZVP)	(0)	-0.10	19.10
$<\!\!S^2\!\!>$	2.02	0.99	(0)

Comparison: energies and Rh-Rh distances for [Cp*Rh]₂(µ-Cl)₂

In contrast to 1a/1b, $[Cp*Rh]_2(\mu-Cl)_2$ has a direct bond between two rhodium centers. For comparison we studied the energies and geometries for this system with and without Rh-Rh bond. The results (Table S7) indicate that geometries with and without metal-metal bond are very close in energy.

Figure S4. Alternative arrangements for Cp* complexes.

Table S7. Rh-Rh distances (Å) and relative energies (kcal/mol) for Cp* complexes.

Arrangement:	Н	Ι	J	K
Rh-Rh distance	2.649	2.675	3.531	3.455
E _{rel} (b3-lyp/TZVP)	(0)	-0.04	1.86	1.79
G _{rel} (b3-lyp/TZVP)	(0)	-0.88	-1.67	-0.24
<s<sup>2></s<sup>	(0)	0.12	1.01	2.01

Formation of complex 1a (Scheme 2)

Table S8. Total energies and thermal corrections (b3-lyp; a.u.) and $\langle S^2 \rangle$ values for species in Scheme 2 in the main text.

Species	$< S^{2} >$	E(TZVP)	Therm ^a	G(TZVP)
(^{Me} BDI)Rh(COE) (A)	(0)	-1348.20431	0.54654	-1347.65777
I_2	(0)	-22.80725	-0.02530	-22.83255
Intermediate B	0.00	-1371.01842	0.53757	-1370.48086
COE	(0)	-313.14506	0.17227	-312.97280
Intermediate E	0.00	-1371.02653	0.54202	-1370.48452
Intermediate C	0.60	-1057.87641	0.34051	-1057.53590
Intermediate D	0.00	-1057.90665	0.34451	-1057.56215
$[(^{Me}BDI)Rh]_2(\mu-I)_2(\mathbf{F})$	2.02	-2092.98924	0.72078	-2092.26846

^a gas phase, 1 bar, 298 K.

Table S9. Calculated relative free energies (kcal/mol) for species in Scheme 2 in the main text.

Species	ΔG_{rel}^{a}
(^{Me} BDI)Rh(COE) (A)	(0)
Intermediate B	5.94
Intermediate E	3.64
Intermediate C	-11.53
Intermediate D	-28.01
$[(^{Me}BDI)Rh]_2(\mu-I)_2(\mathbf{F})$	-41.39
a 1 11 000 IV	

^a gas phase, 1 bar, 298 K.

References

- 1. P. H. M. Budzelaar, N. N. P. Moonen, R. de Gelder, J. M. M. Smits and A. W. Gal, *Eur. J. Inorg. Chem.*, 2000, 753-769.
- 2. D. F. Evans, Journal of the Chemical Society, 1959, 2003-2005.
- 3. E. M. Schubert, J. Chem. Educ., 1992, 69, 62-62.
- 4. S. K. Sur, J. Magn. Reson., 1989, 82, 169-173.
- 5. Smart program suite 6: Bruker, Bruker AXS Inc, Madison, Wisconsin
- 6. *SADABSG*. M. Sheldrick, University of Göttingen, Germany, 1996
- 7. G. M. Sheldrick, Acta Crystallogr., Sect. A: Found. Crystallogr., 2008, 64, 112-122.
- 8. S. T. H. Willems, P. H. M. Budzelaar, N. N. P. Moonen, R. de Gelder, J. M. M. Smits and A. W. Gal, *Chem. Eur. J.*, 2002, **8**, 1310-1320.
- 9. V. C. Gibson, C. Newton, C. Redshaw, G. A. Solan, A. J. P. White and D. J. Williams, *Eur. J. Inorg. Chem.*, 2001, 1895-1903.
- 10. H. Fan, D. Adhikari, A. A. Saleh, R. L. Clark, F. J. Zuno-Cruz, G. Sanchez Cabrera, J. C. Huffman, M. Pink, D. J. Mindiola and M.-H. Baik, *J. Am. Chem. Soc.*, 2008, **130**, 17351-17361.
- 11. J. F. Chai, H. P. Zhu, H. W. Roesky, C. He, H. G. Schmidt and M. Noltemeyer, *Organometallics*, 2004, **23**, 3284-3289.
- 12. S. Yao, Y. Xiong and M. Driess, Chem. Eur. J., 2012, 18, 11356-11361.
- 13. J. F. Chai, H. P. Zhu, K. Most, H. W. Roesky, D. Vidovic, H. G. Schmidt and M. Noltemeyer, *Eur. J. Inorg. Chem.*, 2003, 4332-4337.
- 14. J. Vela, J. M. Smith, Y. Yu, N. A. Ketterer, C. J. Flaschenriem, R. J. Lachicotte and P. L. Holland, J. Am. Chem. Soc., 2005, **127**, 7857-7870.
- 15. N. A. Eckert, J. M. Smith, R. J. Lachicotte and P. L. Holland, *Inorg. Chem.*, 2004, 43, 3306-3321.
- 16. R. E. Cowley and P. L. Holland, *Inorg. Chem.*, 2012, **51**, 8352-8361.
- 17. W. Gao, Y. Mu, G. H. Li, X. M. Liu, Q. Su and W. Yao, *Chem. Res. Chin. Univ.*, 2005, **21**, 240-242.
- 18. H. L. Wiencko, E. Kogut and T. H. Warren, *Inorg. Chim. Acta*, 2003, **345**, 199-208.
- 19. N. A. Eckert, E. M. Bones, R. J. Lachicotte and P. L. Holland, *Inorg. Chem.*, 2003, **42**, 1720-1725.
- 20. Y. Li, L. Wang, H. Gao, F. Zhu and Q. Wu, Appl. Organomet. Chem., 2006, 20, 436-442.
- 21. D. J. E. Spencer, A. M. Reynolds, P. L. Holland, B. A. Jazdzewski, C. Duboc-Toia, L. Le Pape, S. Yokota, Y. Tachi, S. Itoh and W. B. Tolman, *Inorg. Chem.*, 2002, **41**, 6307-6321.
- 22. S. Wiese, Y. M. Badiei, R. T. Gephart, S. Mossin, M. S. Varonka, M. M. Melzer, K. Meyer, T. R. Cundari and T. H. Warren, *Angew. Chem., Int. Ed.*, 2010, **49**, 8850-8855.
- 23. M. M. Melzer, S. Mossin, X. Dai, A. M. Bartell, P. Kapoor, K. Meyer and T. H. Warren, *Angew. Chem., Int. Ed.*, 2010, **49**, 904-907.
- 24. H. J. Hao, C. M. Cui, H. W. Roesky, G. C. Bai, H. G. Schmidt and M. Noltemeyer, *Chem. Commun.*, 2001, 1118-1119.
- 25. A. Hadzovic and D. Song, *Organometallics*, 2008, 27, 1290-1298.
- 26. V. T. Annibale, R. Tan, J. Janetzko, L. M. Lund and D. Song, *Inorg. Chim. Acta*, 2012, **380**, 308-321.
- 27. A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652.
- 28. A. D. Becke, J. Chem. Phys., 1993, 98, 1372-1377.
- 29. C. T. Lee, W. T. Yang and R. G. Parr, *Phys. Rev. B*, 1988, 37, 785-789.
- 30. F. Weigend, F. Furche and R. Ahlrichs, J. Chem. Phys., 2003, 119, 12753-12762.
- 31. A. Schäfer, C. Huber and R. Ahlrichs, J. Chem. Phys., 1994, 100, 5829-5835.
- 32. TURBOMOLE V6.3: TURBOMOLE GmbH, since 2007, Karlsruhe, 2011
- 33. PQS 2.4: J. Baker, Parallel Quantum Solutions, Fayetteville, AR, 2001
- 34. J. Baker, J. Comput. Chem., 1986, 7, 385-395.
- 35. A. D. Becke, *Phys. Rev. A*, 1988, **38**, 3098-3100.
- 36. J. P. Perdew, *Phys. Rev. B*, 1986, **33**, 8822-8824.

- G. Schaftenaar and J. H. Noordik, J. Comput.-Aided Mol. Des., 2000, 14, 123-134.Y. Minenkov, A. Singstad, G. Occhipinti and V. R. Jensen, Dalton Trans., 2012, 41, 5526-5541. 37. 38.