SUPPORTING INFORMATION

"SYNTHESIS, CARACTHERIZATION AND ANTIBACTERIAL BEHAVIOR OF WATER-SOLUBLE CARBOSILANE DENDRONS CONTAINING FERROCENE AT THE FOCAL POINT"

Tania Lozano-Cruz,^{a,b} Paula Ortega^{,a,b} Belen Batanero,^a Jose Luis Copa-Patiño,^c Juan Soliveri,^c Fco. Javier de la Mata,^{a,b*} Rafael Gómez ^{a,b*}

a Departamento de Química Orgánica y Química Inorgánica. Universidad de Alcalá, Campus Universitario, E-28871 Alcalá de Henares (Spain).

b Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain.

c Departamento de Biomedicina y Biotecnología, .Universidad de Alcalá, Campus Universitario, E-28871 Alcalá de Henares (Spain). FAX: (+34) 91 885 4683

E-mail: rafael.gomez@uah.es

$FcCH_2NH(CH_2)_4[G_1(Allyl)_2](1)$

Figure 1S. (A) ¹H and (B) ¹³C-NMR spectra of $FcCH_2NH(CH_2)_4$ [G₁(Allyl)₂](1) in CDCl₃.

Figure 2S. (A) ¹H and (B) ¹³C-NMR spectra of $FcCH_2NH(CH_2)_4[G_2(Allyl)_4]$ (2) in CDCl₃.

FcCH₂NH(CH₂)₄[G₃(Allyl)₈] (3)

Figure 3S. ¹H-NMR spectrum of FcCH₂NH(CH₂)₄ [G₃(Allyl)₈] (3) in CDCl₃.

Figure 4S. (A) ¹H and (B) ¹³C-NMR spectra of $FcCH_2NH(CH_2)_4[G_1(SiMe_2Cl)_2]$ (4) in CDCl₃.

FcCH₂NH(CH₂)₄[G₂(SiMe₂Cl)₄] (5)

Figure 5S. ¹H-NMR spectrum of FcCH₂NH(CH₂)₄[G₂(SiMe₂Cl)₄](5) in CDCl₃.

FcCH₂NH(CH₂)₄[G₁(SiMe₂H)₂] (7)

Figure 6S. (A) ¹H and (B) ¹³C-NMR spectra of $FcCH_2NH(CH_2)_4[G_1(SiMe_2H)_2](7)$ in CDCl₃.

FcCH₂NH(CH₂)₄[G₂(SiMe₂H)₄] (8)

Figure 7S. ¹H-NMR spectrum of FcCH₂NH(CH₂)₄[G₂(SiMe₂H)₄](8) in CDCl₃.

FcCH₂NH(CH₂)₄[G₁(SiMe₂(CH₂)₃NMe₂)₂] (10)

Figure 8S. (A) ¹H and (B) ¹³C-NMR spectra of $FcCH_2NH(CH_2)_4[G_1(SiMe_2(CH_2)_3NMe_2)_2]$ (10) in CDCl₃.

FcCH2NH(CH2)4[G2(SiMe2(CH2)3NMe2)4](11)

Figure 9S. (A) ¹H and (B) ¹³C-NMR spectra of $FcCH_2NH(CH_2)_4[G_2(SiMe_2(CH_2)_3NMe_2)_4]$ (11) in CDCl₃.

FcCH₂NH(CH₂)₄[G₃(SiMe₂(CH₂)₃NMe₂)₈] (12)

(B)

Figure 10S. (A) ¹H and (B) ¹³C-NMR spectra of $FcCH_2NH(CH_2)_4[G_3(SiMe_2(CH_2)_3NMe_2)_8]$ (12) in CDCl₃.

Figure 11S. (A) ¹H and (B) ¹³C-NMR spectra of $FcCH_2NH_2Cl(CH_2)_4[G_1(SiMe_2(CH_2)_3NHMe_2Cl)_2]$ (13) in DMSO- d_6 .

Figure12S.HPLC(70% MeOH/30%TFA)chromatogramofFcCH_2NH_2Cl(CH_2)_4[G_1(SiMe_2(CH_2)_3NHMe_2Cl)_2](13).

Figure 13S. (A) ¹H and (B) ¹³C-NMR spectra of $FcCH_2NH_2Cl(CH_2)_4[G_2(SiMe_2(CH_2)_3NHMe_2Cl)_4]$ (14) in DMSO-*d*₆.

 $\label{eq:Figure 14S. HPLC (70\% MeOH/30\%TFA) chromatogram of $FcCH_2NH_2Cl(CH_2)_4[G_2(SiMe_2(CH_2)_3NHMe_2Cl)_4]$ (14) $$$

FcCH₂NH₂Cl(CH₂)₄[G₃(SiMe₂(CH₂)₃NHMe₂Cl)₈] (15)

Figure 15S. ¹H-NMR spectrum of $FcCH_2NH_2Cl(CH_2)_4[G_3(SiMe_2(CH_2)_3NHMe_2Cl)_8]$ (15) in DMSO- d_6 .

(CINH₃)(CH₂)₄[G₁(SiMe₂(CH₂)₃NHMe₂Cl)₂] (16)

Figure 16S. ¹H-NMR spectrum of (ClNH₃)(CH₂)₄[G₁(SiMe₂(CH₂)₃NHMe₂Cl)₂] (16) in D₂O.

Synthesis of FcCH₂NH₂(Cl)(CH₂)₄Si(Me₂)(CH₂)NMe₂HCl (F)

To prepare **F**, reaction sequences following those of dendritic wedge **16** and allyl compounds (**1**, **2** and **3**) were combined.

Compound A: starting from (2.2 mmol) of 4-bromo-1-butene and 0.38 mL of chlorodimethylsilane and LiAlH₄ (1.30 mL, 2.61 mmol) to obtain A (1.6 mmol, 72 %).

Compound B: starting from a solution of A in DMF (1.6 mmol) and KPht (2.2 mmol, 0.42 g) and 10% NaI. To obtain B (1.5 mmol, 93%).

Compound C: starting from B (1.5 mmol) and excess N,N-dimethylallylamine (2.0 mmol) to obtain C (1.3 mmol, 86%).

Compound D: starting from C (1.3 mmol) and N_2H_4 (0.10 mL, 3.32 mmol) to obtain D (0.9 momol, 70%)

Compound E: starting from D (0.9 momol) and ferrocenecarboxaldehyde (0.19 g, 0.9 mmol) to obtain E (0.7 momol, 77%).

Compound F: starting from E (0.7 momol) and HCl (2M in Et₂O, 1.2 mL, 2.35 mmol) to obtain F (0.7 momol, 100%). Anal. Calcd for $C_{22}H_{39}Cl_2FeN_2Si$: C, 54.33; H, 8.08; N, 5.76; Exp: C, 54.63; H, 8.10; N, 5.93.

Scheme 1S. Synthesis of FcCH₂NH₂Cl(CH₂)₄SiMe₂(CH₂)₃NHMe₂Cl (F)

Figure 15S. ¹H-NMR spectrum of FcCH₂NH₂Cl(CH₂)₄SiMe₂(CH₂)₃NHMe₂Cl (F) in DMSO-*d*₆.