Electronic Supplementary Information (ESI) for

Dinuclear Copper(I) Complexes with *N*-Heterocyclic Thione and Selone Ligands: Synthesis, Characterization, and Electrochemical Studies

Martin M. Kimani^a, David Watts^a, Leigh A. Graham^b, Daniel Rabinovich^b,

Glenn P. A. Yap^c, and Julia L. Brumaghim^{a,*}

^a Department of Chemistry, Clemson University, Clemson SC 29634-0973, USA

^b Department of Chemistry, The University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA

^c Department of Chemistry and Biochemistry, The University of Delaware, Newark, DE 19716, USA

Table of Contents

Fig. S1 Crystal packing diagram showing infinite chains of $[(Bmm^{Me})Cu(\mu-dmit)]_n(BF_4)_n$ (10) showing 50% probability density ellipsoids and the H-F short-contact interactions	
along the <i>a</i> -axis.	2
Fig. S2 Cyclic voltammetry (CV) scans for A) $[Cu_2(dmit)_3](BF_4)_2$ (1), B) $[Cu_2(dmise)_3](BF_4)_2$	
(2), C) $[Cu_2(Bmm^{Me})_3](BF_4)_2$ (3), D) $[Cu_2(Bsem^{Me})_3](BF_4)_2$ (4), E) $[Cu_2(Bme^{Me})_3](BF_4)_2$ (5),	
F) $[Cu_2(Bsee^{Me})_3](BF_4)_2$ (6), G) $[(dmit)Cu(\mu-Bsem^{Me})_2Cu(dmit)](BF_4)_2$ (7), H)	
$[(dmise)Cu(\mu-Bmm^{Me})_2Cu(dmise)](BF_4)_2 (8), I) [(dmise)Cu(\mu-Bsem^{Me})_2Cu(dmise)](BF_4)_2$	
(9), J) $[(Bmm^{Me})Cu(\mu-dmit)]_n(BF_4)_n(10), K)$ dmit, L) dmise. All data were collected with	
1 mM compound in acetonitrile with <i>n</i> -butylammonium phosphate as the supporting electrolyte	
(0.1 M) and a scan rate of 100 mV/s	1

Fig. S1. Crystal packing diagram showing infinite chains of $[(Bmm^{Me})Cu(\mu-dmit)]_n(BF_4)_n$ (10) showing 50% probability density ellipsoids and the H-F short-contact interactions along the *a*-axis.

Fig. S2. Cyclic voltammetry (CV) scans for A) $[Cu_2(dmit)_3](BF_4)_2$ (1), B) $[Cu_2(dmise)_3](BF_4)_2$ (2), C) $[Cu_2(Bmm^{Me})_3](BF_4)_2$ (3), D) $[Cu_2(Bsem^{Me})_3](BF_4)_2$ (4), E) $[Cu_2(Bme^{Me})_3](BF_4)_2$ (5), F) $[Cu_2(Bsee^{Me})_3](BF_4)_2$ (6). All data were collected with 1 mM compound in actionitrile with *n*-butylammonium phosphate as the supporting electrolyte (0.1 M) and a scan rate of 100 mV/s.

Fig. S2 (cont.). Cyclic voltammetry (CV) scans for G) $[(dmit)Cu(\mu-Bsem^{Me})_2Cu(dmit)](BF_4)_2$ (**7**), H) $[(dmise)Cu(\mu-Bmm^{Me})_2Cu(dmise)](BF_4)_2$ (**8**), I) $[(dmise)Cu(\mu-Bsem^{Me})_2Cu(dmise)](BF_4)_2$ (**9**), J) $[(Bmm^{Me})Cu(\mu-dmit)]_n(BF_4)_n$ (**10**), K) dmit, L) dmise. All data were collected with 1 mM compound in acetonitrile with *n*-butylammonium phosphate as the supporting electrolyte (0.1 M) and a scan rate of 100 mV/s.