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1. General Considerations

All manipulations were carried out using standard Schlenk line or drybox techniques under an
atmosphere of dinitrogen. Protio solvents were degassed by sparging with dinitrogen, dried by passing
through a column of activated sieves (pentane, hexane, toluene, benzene) and stored over potassium
mirrors or distilled from sodium metal (thf) and stored activated 4 A molecular sieves or distilled
from sodium-potassium alloy (diethyl ether) and stored over a potassium mirror. Deuterated solvents
were dried over potassium (C;Hg, C¢Dg) or CaH, (CDCls), distilled under reduced pressure and
freeze-pump-thaw degassed three times prior to use.

'"H NMR spectra were recorded at 298 K, unless otherwise stated, on Bruker AVIII 400 nanobay or
Bruker AVIII 500 spectrometers and 3C{'H} or 3C spectra on the same spectrometers at operating
frequencies of 100 and 125 MHz respectively. Two dimensional 'H-'"H and '3C-'H correlation
experiments were used, when necessary, to confirm 'H and '3C assignments. All NMR spectra were
referenced internally to residual protio solvent ('H) or solvent ('3C) resonances and are reported
relative to tetramethylsilane (6 = 0 ppm). Chemical shifts are quoted in & (ppm) and coupling
constants in Hertz. Elemental analyses were carried out at London Metropolitan University. MALDI-
ToF-MS were collected using a Voyager DE-STR from Applied Biosystems equipped with a 337 nm
nitrogen laser. Polymer molecular weights were determined by GPC using a Polymer Laboratories
Plgel Mixed-D column (300 mm length, 7.5 mm diameter) and a Polymer Laboratories PL-GPC50
Plus instrument equipped with a refractive index detector.

KN",! (MgN",),,2 (SrN",),,> BaN",(thf), ¢,> [YCAACH]CI,* [M2CAACH]CI* were prepared accorded
to reported literature procedures.
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II. Synthesis and characterisation of group 1 and 2 complexes
(M2CAAC)Mg(N{SiMes},), (1)

To a mixture of [M22CAACH]CI (0.205 g, 0.638 mmol) and KN" (0.128 g, 0.638 mmol) was added
benzene (5 mL) and the reaction mixture was stirred for 1 h at 23 °C to afford a yellow solution and
colorless precipitate of KCl. The reaction mixture was added to a slurry of [MgN",], (0.220 g,
0.319 mmol) in benzene (1 mL) to afford a yellow solution and was then stirred for 1 h. Removal of
the volatiles in vacuo and extraction into pentane afforded a pale yellow residue. Recrystallization
from pentane at -30 °C afforded (M2CAAC)Mg(N{SiMe;},), (1)as crystals suitable for an x-ray
diffraction study. Yield = 0.15 g (37%). 'H NMR (C¢Ds, 298 K): 6 7.08 (t, 1H, 3Jyg = 7.8 Hz,
4-C4H3), 6.97 (d, 2H, 3Jyy = 7.7 Hz, 3,5-C¢H;), 2.61 (sept., 2H, 3Juy = 6.6 Hz, CH(CHj;),), 1.58 (s,
6H, C(CHs),), 1.41 (d, 6H, 3Juy = 6.6 Hz, CH(CH,),), 1.27 (s, 2H, CH,), 1.01 (d, 6H, 3Jyy = 6.6 Hz,
CH(CHs),), 0.91 (s, 6H, C(CHs;),), 0.34 (s, 36H, Si(CHs)3). BC{'H} NMR (C¢D¢, 298 K): 6 266.6
(Cearbene), 145.4 (2,6-CsH3), 136.6 (1-CsH3), 129.9 (4-CsHs), 126.0 (3,5-CsH3), 83.1 57.8 (C(CHs),),
51.9 (CH,), 29.5 (C(CHj3;),), 29.0 (CH(CHj3),), 28.4 (C(CH3),), 27.7 26.1 (CH(CHjs),),7.1 (Si(CH3)3).
Anal. Calcd for Cs,Hg;MgiN3Siy: C, 60.95; H, 10.71; N, 6.66. Found: C, 60.77; H, 10.57; N, 6.52.

(YCAAC)Mg(N{SiMes},); (2)

To a mixture of [*YCAACH]CI (0.245 g, 0.676 mmol) and KN" (0.135 g, 0.676 mmol) was added
benzene (5 mL) and the reaction mixture was stirred for 1 h at 23 °C to afford a yellow solution and
colorless precipitate of KCl. The reaction mixture was added to a slurry of [MgN",], (0.233 g,
0.338 mmol) in benzene (1 mL) to afford a yellow solution and was then stirred for 1 h. Removal of
the volatiles in vacuo and extraction into pentane afforded a pale yellow residue. Recrystallization
from pentane at -30 °C afforded (YCAAC)Mg(N{SiMes},), (2) as crystals suitable for an x-ray
diffraction study. Yield = 0.070 g (15%). '"H NMR (C¢Dg, 298 K): J 7.25 — 6.83 (overlapping m, 3H,
3,5-C¢H; and 4-C¢H;), 3.15 ( sept., 2H, 3Juy = 6.8 Hz, CH(CH;),, 2.32 — 1.35 (overlapping m, 10H,
Cy), 1.53 (2, 2H, CH,), 1.25 1.21 (d, 6H each, 3Jyy = 6.8 Hz, CH(CHs),), 1.09 (s, 6H, C(CHs3),), 0.30
(s, 36H, Si(CH,);). Anal. Calcd for C3sH;;MgN;Siy: C, 62.69; H, 10.67; N, 6.27. Found: C, 62.42; H,
10.65; N, 6.19.

(M2CAAC)SK(N{SiMe;},); (3)

To a mixture of [M22CAACH]CI (0.228 g, 0.708 mmol) and KN" (0.141 g, 0.708 mmol) was added
benzene (5 mL) and the reaction mixture was stirred for 1 h at 23 °C to afford a yellow solution and
colorless precipitate of KCI. The reaction mixture was added to a slurry of [SrN";], (0.289 g,
0.354 mmol) in benzene (1 mL) to afford a yellow solution and was then stirred for 1 h. Removal of
the volatiles in vacuo and extraction into pentane afforded a pale yellow residue. Recrystallization
from pentane at -30 °C afforded (M2CAAC)Sr(N{SiMes},), (3) as a pale yellow microcrystalline
solid. Yield = 0.25 g (50%). '"H NMR (C¢Dg, 298 K): 6 7.08 (t, 1H, 3Jyy = 7.8 Hz, 4-C¢H3), 6.96 (d,
2H, 3Jyu = 7.8 Hz, 3,5-C4Hs3), 2.62 (sept., 2H, 3Jyy = 6.9 Hz, CH(CHs;),), 1.32 (s, 6H, C(CHs),), 1.24
(s, 2H, CH,), 1.19 1.05 (d, 6H each, 3Jyy = 6.9 Hz, CH(CHs),), 0.81 (s, 6H, C(CHs3),), 0.30 (s, 36H,
Si(CH3)3). BC{'H} NMR (C¢Dg, 298 K): 0 283.8 (Cearbene), 145.0 (2,6-C¢Hj), 135.7 (1-C4H3), 129.7
(4-CeH;), 125.4 (3,5-C¢Hs), 83.2 56.8 (C(CHs),, 50.1 (CH;), 29.0 (C(CHj;),), 28.8 CH(CH;),, 28.3
(CH(CHj3),), 28.2 (C(CHj3),), 23.3 (CH(CHjs),), 6.5 (Si(CHj)s). Anal. Caled for CspHg;SriN;Siy: C,
55.39; H, 9.73; N, 6.06. Found: C, 55.50; H, 9.75; N, 5.93.
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(M2CAAC)Ba(N{SiMe;},); (4)

To a mixture of [M2CAACH]CI (0.211 g, 0.654 mmol) and KN" (0.131 g, 0.654 mmol) was added
benzene (5 mL) and the reaction mixture was stirred for 1 h at 23 °C to afford a yellow solution and
colorless precipitate of KCI. The reaction mixture was added to a solution of BaN",(thf),4 (0.375 g,
0.654 mmol) in benzene (5 mL) to afford a yellow solution and was then stirred for 1 h. Removal of
the volatiles in vacuo and extraction into benzene (2 x 5mL) afforded a pale yellow residue.
Recrystallization from pentane at -30 °C afforded (M22CAAC)Ba(N{SiMes},), (4) as a pale yellow
solid. Single crystals of (M2CAAC)Ba(N{SiMes},),(thf) suitable for an x-ray diffraction study were
grown from a pentane/thf mixture (1/10) at -30 °C. Yield = 0.24 g (49%). '"H NMR (C¢Ds, 400 MHz,
298 K): 0 7.14 (m, 1H, 4-C¢H;), 7.05 (m, 2H, 3,5-C¢Hs), 2.91 (sept., 3Juy = 6.9 Hz, CH(CHj;),), 1.41
(s, 2H, CH,), 1.39 (s, 6H, C(CH3),), 1.17 1.14 (d, 6H each, *Jyy = 6.9 Hz, CH(CHs),), 0.96 (s, 6H,
C(CH;),), 0.33 (s, 36H, Si(CHs)3). BC{'H} NMR (C4Ds, 100 MHz, 298 K): 6 303.0 (Cearbene), 145.7
(2,6-C¢H3), 137.1 (1-C¢H3), 129.2 (4-C¢H;), 124.9 (3,5-C¢H3), 82.6 C(CHj), 57.6 (C(CH3),), 50.6
(CHy), 29.1 (C(CHs),), 29.0 (CH(CHs;)y), 28.1 (C(CHs),), 26.9 (CH(CH;),), 22.7 (CH(CHa;)y), 6.1
(Si(CH3);). Anal. Caled for C;,Hg;BaN;Siy;: C, 51.69; H, 9.08; N, 5.65. Found: C, 51.51; H, 9.17; N,
5.55.

(YCAAC)(Ba(N{SiMej3},); (5)

To a mixture of [*Y*CAACH]CI (0.226 g, 0.624 mmol) and KN" (0.124 g, 0.624 mmol) was added
benzene (5 mL) and the reaction mixture was stirred for 1 h at 23 °C to afford a yellow solution and
colorless precipitate of KCI. The reaction mixture was added to a solution of BaN",(thf); s (0.358 g,
0.0.624 mmol) in benzene (5 mL) to afford a yellow solution and was then stirred for 1 h. Removal of
the volatiles in vacuo and extraction into benzene (2 x 5mlL) afforded a pale yellow residue.
Recrystallization from pentane at -30 °C afforded (YCAAC)Ba(N{SiMes},), (4) as a pale yellow
solid. Single crystals of (YCAAC)Ba(N{SiMes},),(thf) suitable for an x-ray diffraction study were
grown from a pentane/thf mixture (1/10) at -30 °C. Yield = 0.080 g (16%). '"H NMR (C¢D, 298 K): 6
7.13 (m, 1H, 4-C4H5), 7.04 (m, 2H, 3,5-C¢Hs), 2.96 (sept., 3Jun = 6.8 Hz, CH(CHj),), 2.26 (m, 2H,
Cy), 1.96-1.49 (overlapping m, 3 x 2H, Cy), 1.46 (s, 2H, CH,), 1.35 (m, 2H, Cy), 1.16 (overlapping d,
12H, CH(CHs),), 0.98 (s, 6H, C(CHs),), 0.35 (s, 36H, Si(CH3);). BC{'H} NMR (C¢Ds, 298 K): ¢ .
145.6 (2,6-C¢Hj), 137.5 (1-C¢H3), 124.3 (3,5-C4H3), 123.2 (4-C4H3), 81.5 63.6 (C(CHj), and CCy),
47.3 (CH,), 36.2 (Cy), 29.6 (C(CHjs),), 29.2 (CH(CHs;),), 27.0 (CH(CHj;),), 26.1 22.9 22.4 (Cy), 22.0
(CH(CHs;),), 5.80 (Si(CHs);). Anal. Calcd for C3oH;9BaN;OSiy: C, 54.74; H, 9.31; N, 4.91. Found: C,
51.57; H, 8.72; N, 4.65.

[(YCAAC)K][Sr(N{SiMes},)s] (6)

To a mixture of [*Y*CAACH]CI (0.250 g, 0.690 mmol) and KN" (0.138 g, 0.690 mmol) was added
benzene (5 mL) and the reaction mixture was stirred for 1 h at 23 °C to afford a yellow solution and
colorless precipitate of KCI. The reaction mixture was added to a solution of [SrN",], (0.282 g,
0.345 mmol) in benzene (5 mL) to afford a yellow solution and was then stirred for 1 h. Removal of
the volatiles in vacuo and extraction into benzene (2 x 5mlL) afforded a pale yellow residue.
Recrystallization from pentane at -30 °C afforded [(YCAAC):;K][Sr(N{SiMes},);] (6) as a pale
yellow solid. Single crystals suitable for an x-ray diffraction study were grown from a toluene/pentane
mixture (1/10) at -30 °C. Yield = 0.10 g (28%) based on pro-ligand. 'H NMR (C¢Ds, 298 K): 6 7.22
(m, 3H, 4-C¢Hs;), 7.14 (m, 6H, 3,5-C¢Hs), 3.12 (sept., 6H, 3Jyy = 6.8 Hz, CH(CH3),), 2.25 2.00 (m, 6H
each, Cy), 1.71 — 1.35 (overlapping m, 18H, Cy), 1.52 (s, 6H, CH,), 1.24 1.19 (d, 18H each, 3Jyy =
6.8 Hz, CH(CH;),), 1.08 (s, 18H, C(CH;),), 0.26 (s, 54H, Si(CHs);). BC{'H} NMR (C¢Ds, 298 K):
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270.6 (Cearbene)> 146.1 (2,6-CsH3), 137.8 (1-CsHs), 123.7 (3,5-C¢H3), 81.2 63.6 (C(CHj;), and CCy),
48.7 (CH,), 36.5 (Cy), 29.6 (C(CHs),), 29.4 (CH(CHs),), 26.8 (CH(CH;),), 26.2 23.4 (Cy), 22.0
(CH(CH3),), 6.6 (Si(CH3);). The carbon resonance for 4-C¢H; was obscured by the resonance
associated with C4Dg. Anal. Calcd for CgsH;50K Ng¢SigSri: C, 65.95; H, 10.11; N, 5.03. Found: C,
61.58; H, 10.41; N, 4.46.
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I1I. Representative NMR spectra

bk . A Li M

75 70 65 6.0 55 50 45 40 35 30 25 20 15 1.0 0.5
S(ppm)

Nel

Figure S1: 'H NMR spectrum (CsDs, 500 MHz, 298 K) of (M2CAAC)Mg(N{SiMe;},), (1).
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igure S2: 3C{'H} NMR spectrum (C4Ds, 125 MHz, 298 K) of (M2CAAC)Mg(N{SiMes},), (1).
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Figure S3: 'H NMR spectrum (C¢Ds, 125 MHz, 298 K) of (M2CAAC)Sr(N{SiMes},), (3).
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Figure S4: *C{'H} NMR spectrum (C¢Ds, 125 MHz, 298 K) of (M2CAAC)Sr(N {SiMe;}»), (3).

S7




Al

L

3.5

3.0

25 20 15 1.0 0.5

75 70 65 6.0 55 50 45 40
S(ppm) F
igure S5: '"H NMR spectrum (C4Dg, 500 MHz, 298 K) of (M22CAAC)Ba(N{SiMes},), (4)
N~ NO®
OUN O © ©COw- o aN
< O NN AN NOO O ON v
- [eo} OWOANNNNN ©
NN | e
S
(92]
o
(s2]
|
330 320 310 300 290 280 270
5(ppm)
| | pod
‘ i ' | L] m‘ wh_
x
290 (270 250 230 210 190 170 | 150 130 110 90 70 50 30 10
d(ppm)

Figure S6: BC{'H} NMR spectrum (C¢Dg, 125 MHz, 298 K) of (M2CAAC)Ba(N{SiMe;},), (4)
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Figure S7: "H NMR spectrum (C¢Dg, 400 MHz, 298 K) of [(YCAAC);K][St(N{SiMe;!»)s] (6)
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Figure S8: 13C{'H} NMR spectrum (C4Dj, 100 MHz, 298 K) of [(YCAAC);K][St(N{SiMe;',)s] (6)
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Iv. Crystallographic data

Crystals were mounted on MiTeGen MicroMounts using perfluoropolyether oil and rapidly
transferred to a goniometer head on a diffractometer fitted with an Oxford Cryosystems Cryostream
open-flow nitrogen cooling device.’ Data collections were carried out at 150 K using an Oxford
Diffraction Supernova diffractometer using mirror-monochromated Cu Ko radiation (A = 1.54178 A)
and data were processed using CrysalisPro ¢ The structures were solved using direct methods (SIR-
92)7 or a charge flipping algorithm (SUPERFLIP)® and refined by full-matrix least-squares
procedures.
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Table S1: Selected experimental crystallographic data.

Complex (M2CAAC)Mg(N{SiMes},), (1) (YCAAC)Mg(N{SiMes},), (2) (Me2CAAC)Ba(N{SiMes},),(thf) (4)
Crystal data
Chemical formula Cs,Hg;MgN5Siy CssH7 MgN5Siy C;6H75BaN;0Si,
M, 630.55 670.61 815.69
Crystal system, space group Monoclinic, P2,/n Monoclinic, P2,/n Monoclinic, P2,/n
Temperature (K) 150 150 150
a, b, c(A) 12.5690 (1), 24.6401 (2), 13.4387 (1) 10.4910 (1), 20.8334 (1), 20.0585 (2) 12.5830 (2), 20.8237 (4), 17.9449 (4)
a, B,y (°) 90, 106.479 (1), 90 90, 103.328 (1), 90 90, 93.982 (2), 90
V(A3) 3991.02 (6) 4265.97 (6) 4690.65 (16)
VA 4 4 4
Radiation type Cu Ka Cu Ka Cu Ka
p (mmm) 1.70 1.61 7.76

Crystal size (mm)

Diffractometer

Absorption correction

0.12 x0.10 x 0.07 0.14 < 0.08 x 0.08 0.13 x 0.08 x 0.07

Data Collection

SuperNova, Dual, Cu at zero, Atlas
diffractometer

Multi-scan. CrysAlis PRO, Agilent
Technologies, Version 1.171.35.21

SuperNova, Dual, Cu at zero, Atlas
diffractometer

Multi-scan. CrysAlis PRO, Agilent
Technologies, Version 1.171.35.21
(release 20-01-2012 CrysAlis171 (release 20-01-2012 CrysAlis171 (release 20-01-2012 CrysAlis171
.NET) (compiled Jan 23 .NET) (compiled Jan 23 .NET) (compiled Jan 23
2012,18:06:46) Empirical absorption  2012,18:06:46) Empirical absorption 2012,18:06:46) Empirical absorption
correction using spherical harmonics, correction using spherical harmonics, correction using spherical harmonics,
implemented in SCALE3 ABSPACK implemented in SCALE3 ABSPACK implemented in SCALE3 ABSPACK

SuperNova, Dual, Cu at zero, Atlas
diffractometer

Multi-scan. CrysAlis PRO, Agilent
Technologies, Version 1.171.35.21
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Tmim Tmax

No. of measured, independent and
observed [/ > 2o6(/)] reflections

Rint

R[F?>20(F?)], wR(F?), S
No. of reflections
No. of parameters

No. of restraints

Apmaxs Apmin (e A_3)

scaling algorithm.
0.814, 1.000
35149, 8275, 7419

scaling algorithm.
0.815, 1.000
50487, 8814, 8315

0.024 0.019
Refinement

0.033, 0.089, 1.05 0.032, 0.089, 1.03

8275 8814
381 406
0.68, -0.71 0.54,-0.33

scaling algorithm.
0.762, 1.000
22748, 9620, 8301

0.034

0.041,0.114, 1.04
9620
426

0.86,-1.86

Complex

(YCAAC)Ba(N{SiMes},),(thf) (5)  [(YCAAC);K][Sr(N{SiMes},)s] (6)

Chemical formula
M,
Crystal system, space group
Temperature (K)
a, b, c(A)
a B,y (%)
V(A
z

Crystal data
C;39H79BaN;0Si, CeoH10sKN3-CgHs4N;3Si4Sr
855.75 1584.45
Monoclinic, P2,/n Trigonal, R3:H
150 150

12.0901 (1), 18.1027 (2), 23.5571 (2) 20.6446 (6), 20.6446 (6), 20.1037 (8)

90, 98.407 (1), 90 90, 90, 120
5100.39 (8) 74203 (5)
4 3
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Radiation type

b (mm)
Crystal size (mm)

Diffractometer

Absorption correction

Tmin: Tmax

No. of measured, independent and
observed [/ > 2c(])] reflections

Rint

R[F? > 206(F?)], wR(F?), S
No. of reflections
No. of parameters

No. of restraints
APrmaxs APmin (€ A)

Absolute structure

Cu Ka
7.16
0.17 x 0.08 x 0.07

Mo Ka
0.70
0.15 x 0.08 x 0.08
Data Collection

SuperNova, Dual, Cu at zero, Atlas
diffractometer

Multi-scan. CrysAlis PRO, Agilent
Technologies, Version 1.171.35.21
(release 20-01-2012 CrysAlis171
.NET) (compiled Jan 23
2012,18:06:46) Empirical absorption
correction using spherical harmonics,
implemented in SCALE3 ABSPACK
scaling algorithm.

0.396, 1.000
60384, 10543, 9928

SuperNova, Dual, Cu at zero, Atlas
diffractometer

Multi-scan. CrysAlis PRO, Agilent
Technologies, Version 1.171.35.21
(release 20-01-2012 CrysAlis171
.NET) (compiled Jan 23
2012,18:06:46) Empirical absorption
correction using spherical harmonics,
implemented in SCALE3 ABSPACK
scaling algorithm.

28852, 8920, 7984

0.033 0.032
Refinement
0.023, 0.060, 1.05 0.034, 0.076, 1.03
10543 8920
488 316
8 1
0.57,-0.60 0.35,-0.21

- Flack x determined using 3417
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quotients [(I+)-(I)/[(I+)+(-)]
(Parsons, Flack and Wagner, Acta
Cryst. B69 (2013) 249-259).
Absolute structure parameter - -0.0116 (18)

Computer programs: CrysAlis PRO, Agilent Technologies, Version 1.171.35.21 (release 20-01-2012 CrysAlis171 .NET) (compiled Jan 23 2012,18:06:46), :
SUPERFLIP. Palatinus, L.; Chapuis, G. J. Appl. Cryst. 2007, 40, 786-790, : Sir-92. Altomare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A. J. Appl.
Cryst. 1994, 27, 435., SHELXL2014 (Sheldrick, 2014), ORTEP-3 for Windows. Farrugia, L. J. J. Appl. Cryst. 1997, 30, 565.
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Figure S9: Thermal  displacement ellipsoid  drawings  (30%  probability)  of
M2CAAC)Mg(N{SiMes},), (1) All hydrogen atoms have been omitted for clarity.

Figure S10:  Thermal  displacement ellipsoid  drawings (30%  probability) of
(YYCAAC)Mg(N{SiMe;},),.(2) All hydrogen atoms have been omitted for clarity.
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Figure S11:  Thermal displacement ellipsoid drawings (30%  probability)  of
(M2CAAC)Ba(N{SiMes},),(thf) (4). All hydrogen atoms have been omitted for clarity.
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Figure S12: Thermal displacement ellipsoid drawings (30%  probability)  of
(YCAAC)Ba(N{SiMe;},),(thf) (5). All hydrogen atoms have been omitted for clarity.
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Figure S13: Thermal displacement  ellipsoid drawings (30%  probability)  of
[(YCAAC);K][Sr(N{SiMe;},);] (6). Only the cationic species is depicted; The [Sr(N{SiMes},);] and
all hydrogen atoms have been omitted for clarity.

Figure S14: Thermal displacement ellipsoid drawings (30%  probability)  of
[(YCAAC):K][Sr(N{SiMe;},);] (6). All hydrogen atoms have been omitted for clarity.
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Table S2: Comparison of pitch (¢) and yaw (o) angles (°) in complexes

1 2 4 5 6
Pitch 1 1 8 1 19
Yaw 14 13 15 14 12
/, IY
Pitch, ¢ ,)(1) N Yaw, ¢
NTTMTT08 o= (B2
& B i

Figure S15: Graphical representation of pitch and yaw to quantify asymmetrical coordination of the
CAAC ligand to the metal center.

Table S3: Comparison of pitch (¢) and yaw (o) angles (°) in complexes

(C{NMeCMe},)BaCp* (C{NPrCMe},)BaCpMe+B (IMes)Ba(N{SiMes},),
9 10

5 u9

Pitc 20 32 1
h

Yaw 3 4 13
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V. DFT computational studies

All DFT calculations were performed with the ORCA program package.!! The geometry
optimizations of the complexes and single-point calculations on the optimized geometries were
carried out at the BP86'2'4 or B3LYP!2 5 16 level of DFT. Relativistic effects were accounted for by
including the zeroth-order regular approximation (ZORA).'”2° The def2-TZVP(-f) basis set in the
scalar relativistic recontraction reported by Neese et al. (segmented all-electron relativistic basis sets,
SARC) was applied.?!> 2> For all elements up to bromine, the SARC basis sets are simply scalar
relativistic recontractions of the basis sets developed by the Karlsruhe group,? ?* while for heavier
elements, the primitives and contraction patterns were designed in references 21 and 22. The
Coulomb fitting basis set of Weigend?> was used in uncontracted form in all calculations. The RI%6-28
approximation was used to accelerate the calculations. Orbitals were generated with the program
Chimera.?
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Table S4: Comparison of experimental and calculated metrical parameters in
(M2CAAC)Mg(N{SiMes},), (1)

1 1
Experimental Calculated (B3LYP)
C1-Mgl 2.2931(12) 2.390
CI-N1 1.3090(15) 1.314
C1-C2 1.5352(16) 1.543
N2-Mgl 2.0266(11) 2.037
N3-Mgl 2.0101(11) 2.023
C2-C1-N1
C2-C1-Mgl 112.28(8) 112.31
N1-C1-Mgl 139.74(9) 139.46
C1-Mgl-N2 112.28(8) 110.22
C1-Mgl-N3 120.85(5) 120.82
N2-Mgl-N3 125.47(5) 128.12
C2-C1-Mgl-N2 54.73(9) 54.25
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Figure S16: DFT-computed LUMO (top), HOMO (middle) and HOMO-10 (bottom) of
(M2CAAC)Mg(N{SiMe;}2); (1).
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Table S5: Comparison of experimental and calculated metrical parameters in
(SCAACMg(N{SiMes},), (2)

2 2

Experimental Calculated (B3LYP)
C1-Mgl 2.2989(12) 2.393
C1-N1 1.3110(15) 1.315
C1-C2 1.5350(15) 1.542
N2-Mgl 2.0149(10) 2.027
N3-Mgl 2.0226(11) 2.045
C2-C1-N1 107.87(9) 108.31
C2-C1-Mgl 112.68(7) 112.49
N1-C1-Mgl 139.42(8) 139.18
C1-Mgl-N2 123.11(4) 119.29
C1-Mgl-N3 111.65(4) 111.66
N2-Mgl-N3 123.30(4) 128.16
C2-C1-Mgl-N2 118.32(8) 114.37
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HOMO-10

Figure S17: DFT-computed LUMO (top), HOMO (middle) and HOMO-10 (bottom) of
(YCAAC)Mg(N{SiMes},), (2).
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Table S6: Comparison of experimental and calculated metrical parameters in
(M2CAAC)Ba(N{SiMes},).(thf)(4)

4 4
Experimental Calculated (BP86)

Cl1-Bal 3.108(3) 3.338
CI-N1 1.298(5) 1.314
C1-C2 1.533(5) 1.529
N2-Bal 2.600(3) 2.636
N3-Bal 2.617(3) 2.623
Ol1-Bal 2.798(3) 2.864
C2-C1-N1 107.1(3) 107.42
C2-C1-Bal 111.4(2) 109.79
N1-C1-Bal 140.8(2) 142.40
C1-Bal-N2 133.30(10) 130.55
C1-Bal-N3 103.40(9) 103.56
C2-C1-Bal-N2 91.89(1) 92.70
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HOMO-4

Figure S18: DFT-computed LUMO (top), HOMO (middle) and HOMO-4 (bottom) of
(M22CAAC)Ba(N{SiMes},),(thf) (4).
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VL Polymerisation data

General procedure for polymerisation were carried out in Young’s tap NMR tubes containing 40 mg
of lactide in 0.56 mL of a benzene-d (giving a initial concentration of [LA], = 0.5 M) and a catalyst
(to ensure [LA]¢/[M]y = 200). Lactide conversion was subsequently calculated by comparing the
integration values of the methine signal of PLA and lactide monomer in the 'H NMR spectrum. The
polymerisations were carried out at ambient temperature (23 °C).

The polymerisations were quenched by precipitation in cold pentane, filtered and washed with cold
pentane. The polylactide obtained were dried in a vacuum oven over-night before 'H{'H} and
BC{'H} NMR spectroscopy and gel permeation chromatography.
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Using (M2CAAC)Mg(N{SiMe;},), (1)

Table S7: L-lactide polymerisation using (M2CAAC)Mg(N{SiMe;},), (1). Polymerisation conditions:
benzene-ds, [LA]o/[M]o = 200, [LA]J0 = 0.5 M, 23 °C.

Time (h) Conversion (%)
0.13 21.2
0.68 26.2
1.1 27.3
1.58 27.8
2.13 29.3
2.98 29.5
3.52 29.9
5.65 304
9.28 31.7
100 4 2.0+
80 1.8 4
2 60 16
S <
o = -
2 40 = 144 - = =
3 . .
(@) gqum ™ @ L] u
20 " 124
0 v T ¥ T T T T T T T 1 1.0 T T T T T T T T T T T
0 2 4 6 8 10 0 1 2 3 4 5 6
Time of polymerization (h) Time of polymerization (h)

Figure S19: L-lactide polymerisation using complex (M2CAAC)Mg(N{SiMes},), (1), conversion in

function of time profile (left) and second-order rate plot (right). Polymerisation conditions: benzene-
de at 23 °C with [LA]y/[M], =200, [LA]o = 0.5 M.
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Figure S120: 'H{'H} NMR spectrum of poly-L-lactide synthesised using complex
M2CAAC)Mg(N{SiMes},), (1) in chloroform-d, at 23 °C on a 500 MHz. Polymerisation conditions:

benzene-dy at 23 °C with [LA]¢/[M]o = 200, [LA], = 0.5 M. L-lactide at 5.03 ppm.
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Figure S21: BC{'H} NMR spectrum of poly-L-lactide synthesised using complex
M2CAAC)Mg(N{SiMes},), (1) in chloroform-d, at 23 °C on a 500 MHz. Polymerisation conditions:

benzene-dy at 23 °C with [LA]o/[M], = 200, [LA]y = 0.5 M. L-lactide at 72.60 ppm.
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Using (M2CAAC)Sr(N{SiMes},), (3)

Table S8: L-lactide polymerisation using (M2CAAC)Sr(N{SiMe;}»), (3). Polymerisation conditions:
benzene-ds, [LA]o/[M]o = 200, [LA]J0 = 0.5 M, 23 °C.

Time (h) Conversion (%)
0.15 32.9
0.72 50.9
1.12 56.3
1.62 60.8
2.17 65.0
3 68.9
3.55 71.2
5.67 76.5
9.15 81.3
100 4 49
80 . . . -
" 3
8 60 - " ~ "
g 40 s -
5 n = 24 ]
8 |
20 .
0 . , . . . : : . 14— \ : , : : : : )
0 2 4 6 8 10 00 05 10 15 20 25 30 35 40
Time of polymerization (h) Time of polymerization (h)

Figure S22: L-lactide polymerisation using complex (M2CAAC)Sr(N{SiMes},), (3), conversion in

function of time profile (left) and second-order rate plot (right). Polymerisation conditions: benzene-
de at 23 °C with [LA]y/[M], =200, [LA]o = 0.5 M.
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Figure S23: 'H{'H} NMR spectrum of poly-L-lactide synthesised using complex
M2CAAC)Sr(N{SiMe;},), (3) in chloroform-d; at 23 °C on a 500 MHz. Polymerisation conditions:

benzene-dy at 23 °C with [LA]o/[M]y = 200, [LA]o = 0.5 M. L-lactide at 5.03 ppm.
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Figure S24: BC{'H} NMR spectrum of poly-L-lactide synthesised using complex
(M22CAAC)Sr(N{SiMe;}»), (3) in chloroform-d; at 23 °C on a 500 MHz. Polymerisation conditions:

benzene-dy at 23 °C with [LA]¢/[M]o = 200, [LA], = 0.5 M. L-lactide at 72.60 ppm.
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Table S9: rac-lactide polymerisation using (M2CAAC)Sr(N{SiMe;},), (3). Polymerisation
conditions: benzene-dg, [LA]y/[M], = 200, [LAJ0 =0.5M, 23 °C.

Time (h) Conversion (%)
0.21 8.2
0.77 17.4
1.18 21.4
1.68 26.0
2.23 30.2
3.08 34.5
3.6 37.0
5.73 46.1
9.22 55.9
20.0 67.4
28.0 72.8
80+ 2.0~
70—. - - ]
] 1.8+
60
g 7 n ~ 167 .
-é 40 =} ]
g 304 . 5 144 .
8 ] - u
20 - L] u
1 " 12- .
04 4 .
0 — T T T T T T T T T T T T T v 1.0 T T T T T T T T T T T T T
0 5 10 15 20 25 30 0 1 2 3 4 5 6
Time of polymerization (h) Time of polymerization (h)

Figure S25: rac-lactide polymerisation using complex (M2CAAC)Sr(N{SiMes},), (3), conversion in

function of time profile (left) and second-order rate plot (right). Polymerisation conditions: benzene-
dg at 23 °C with [LA]o/[M], = 200, [LA], = 0.5 M.
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Figure S26: 'H{'H} NMR spectrum of poly-rac-lactide synthesised using complex
M2CAAC)Sr(N{SiMe;},), (3) in chloroform-d; at 23 °C on a 500 MHz. Polymerisation conditions:

benzene-dy at 23 °C with [LA]o/[M], = 200, [LA]y = 0.5 M. rac-lactide at 5.03 ppm.
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Figure S27: BC{'H} NMR spectrum of poly-rac-lactide synthesised using complex

M2CAAC)Sr(N{SiMe;}»), (3) in chloroform-d, at 23 °C on a 500 MHz. Polymerisation conditions:

benzene-dy at 23 °C with [LA]¢/[M]o = 200, [LA], = 0.5 M. rac-lactide at 72.60 ppm.
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Using (M2CAAC)Ba(N{SiMe;},), (4)

Table S10: L-lactide polymerisation using (M2CAAC)Ba(N{SiMes},), (4). Polymerisation
conditions: benzene-dg, [LA]o/[M]o =200, [LA]J0=0.5 M, 23 °C.
Time (h) Conversion (%)
0.17 6.0
0.53 23.0
0.97 36.0
2.1 57.5
34 70.1
4.78 71.7
6.76 84.4
8.47 87.6
100 104
| g_-
80 4 - - 8 -
n 7:
£ 0 . 6 ] -
5 2 s
g 40 i 4 -
é = = 3_' n
204 *® 2] -
] Jam "
o — . o+ .
0 2 4 6 8 10 0 2 4 6 8 10

Time of polymerization (h)

Time of polymerization (h)

Figure S28: L-lactide polymerisation using complex (M2CAAC)Ba(N{SiMes},), (4), conversion in

function of time profile (left) and second-order rate plot (right). Polymerisation conditions: benzene-
de at 23 °C with [LA]y/[M], =200, [LA]o = 0.5 M.
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Figure S29: 'H{'H} NMR spectrum of poly-L-lactide synthesised using complex
M2CAAC)Ba(N{SiMes},), (4) in chloroform-d, at 23 °C on a 500 MHz. Polymerisation conditions:

benzene-dy at 23 °C with [LA]o/[M]y = 200, [LA]o = 0.5 M. L-lactide at 5.03 ppm.
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Figure S30: BC{'H} NMR spectrum of poly-L-lactide synthesised using complex
(M2CAAC)Ba(N{SiMes},), (4) in chloroform-d; at 23 °C on a 500 MHz. Polymerisation conditions:

benzene-d at 23 °C with [LA]o/[M], =200, [LA]o = 0.5 M. L-lactide at 72.60 ppm.
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Table S11: L-lactide polymerisation using (M2CAAC)Ba(N{SiMes},), (4). Polymerisation
conditions: thf-dg, [LA]¢/[M], = 200, [LA]0 = 0.5 M, 23 °C.

Time (h) Conversion (%)
0.671 92.3
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Figure S31: 'H NMR spectrum of poly-L-lactide synthesised using complex
(M2CAAC)Ba(N{SiMes},), (4) in chloroform-d,; at 23 °C on a 500 MHz. Polymerisation conditions:

thf-dg at 23 °C with [LA]y/[M], = 200, [LA], = 0.5 M.
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Figure S32: 'H{'H} NMR spectrum of poly-L-lactide synthesised using complex
(M22CAAC)Ba(N{SiMes},), (4) in chloroform-d; at 23 °C on a 500 MHz. Polymerisation conditions:

tetrahydrofuran-d; at 23 °C with [LA]y/[M], = 200, [LA], = 0.5 M. L-lactide at 5.03 ppm.
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Table S12: rac-lactide polymerisation using (M2CAAC)Ba(N{SiMes},), (4). Polymerisation
conditions: benzene-dg, [LA]y/[M], = 200, [LAJ0 =0.5M, 23 °C.

Time (h) Conversion (%)
0.22 1.9
0.6 7.4
1.02 12.5
2.15 25.0
3.43 36.2
4.82 48.9
6.83 559
8.53 64.0
100 4 20+
80 184
g 60 4 . ~ 161 .
5 . ] 2
5 40 4 i_ 1.4+
8 - ]
204 " 12+
0-.,1,||],|,|1.0'.‘.,..‘.,..l...
0 2 4 6 8 10 0.0 05 1.0 1.5 2.0 25 3.0 3.5
Time of polymerization (h) Time of polymerization (h)

Figure S33: rac-lactide polymerisation using complex (M2CAAC)Ba(N{SiMes},), (4), conversion in

function of time profile (left) and second-order rate plot (right). Polymerisation conditions: benzene-
dg at 23 °C with [LA]y/[M], = 200, [LA], = 0.5 M.
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Figure S34:

'H{'H} NMR spectrum of poly-rac-lactide synthesised using
(M22CAAC)Ba(N{SiMes},), (4) in chloroform-d; at 23 °C on a 500 MHz. Polymerisation conditions:

complex
benzene-d at 23 °C with [LA]o/[M]y =200, [LA]y = 0.5 M. rac-lactide at 5.03 ppm.
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Figure S35:

65.5 64.5
BC{'H} NMR spectrum of poly-rac-lactide

complex

synthesised using
(M2CAAC)Ba(N{SiMes},), (4) in chloroform-d; at 23 °C on a 500 MHz. Polymerisation conditions:
benzene-d at 23 °C with [LA]o/[M]y =200, [LA]y = 0.5 M. rac-lactide at 72.60 ppm.
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Table S13: L-lactide polymerisation using (M2CAAC)Ba(N{SiMes},), (4). Polymerisation
conditions: benzene-dg, [LA]y/[M]o = 150, [LA]0 = 0.5 M, 23 °C.

Time (h) Conversion (%)
0.78 47.1
1.1 57.1
1.48 65.1
2.2 74.9
2.66 79.4
100
44 ]
80— ]
= 60 " 31
c - =3 "
kel =
2 . <
2 404 = .
8 2 .
204
0 T r T T T T 1 T T T T T 1
0.0 05 10 15 20 25 30 0.0 0.5 10 15 20 25 30
Time of polymerization (h) Time of polymerization (h)

Figure S36: L-lactide polymerisation using complex (M2CAAC)Ba(N{SiMes},), (4), conversion in

function of time profile (left) and second-order rate plot (right). Polymerisation conditions: benzene-
de at 23 °C with [LA]y/[M]o = 150, [LA]o = 0.5 M.
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Figure S37: 'H{'H} NMR spectrum of poly-L-lactide synthesised using complex
(M22CAAC)Ba(N{SiMes},), (4) in chloroform-d; at 23 °C on a 500 MHz. Polymerisation conditions:
benzene-dy at 23 °C with [LA]¢/[M]o = 150, [LA], = 0.5 M. L-lactide at 5.03 ppm.
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Table S14: L-lactide polymerisation using (M2CAAC)Ba(N{SiMes},),
conditions: benzene-dg, [LA]y/[M]o = 100, [LA]0 = 0.5 M, 23 °C.

(4). Polymerisation

Time (h) Conversion (%)
0.73 68.3
1.05 77.7
1.43 83.8
2.13 90.3
2.6 92.8
100 ;
- n 144 =
80 4 - - 12_-
- . 0. .
R 60 =
S =
2 w0 2 ] .
5 =
© | n
20 49
2
0o o o5 10 15 20 25 30 0.0 05 10 15 20 25 3.0

Time of polymerization (h)

Time of polymerization (h)

Figure S38: L-lactide polymerisation using complex (M2CAAC)Ba(N{SiMes},), (4), conversion in

function of time profile (left) and second-order rate plot (right). Polymerisation conditions: benzene-
dg at 23 °C with [LA]y/[M], = 100, [LA], = 0.5 M.

N

/

M

i

N

50 545 5,40 535 530 5.25 5.20
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complex

M2CAAC)Ba(N{SiMes},), (4) in chloroform-d, at 23 °C on a 500 MHz. Polymerisation conditions:
benzene-dy at 23 °C with [LA]o/[M], = 100, [LA]o = 0.5 M. L-lactide at 5.03 ppm.
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Figure S40: BC{'H} NMR spectrum of poly-L-lactide synthesised using complex
M2CAAC)Ba(N{SiMes},), (4) in chloroform-d; at 23 °C on a 500 MHz. Polymerisation conditions:

benzene-d; at 23 °C with [LA]o/[M], = 100, [LA]o = 0.5 M. L-lactide at 72.60 ppm.
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Using [(YCAAC):K][Sr(N{SiMes}5)s] (6)

Table S15: L-lactide polymerisation using [(YCAAC);K][Sr(N{SiMes},);] (6). Polymerisation
conditions: benzene-dg, [LA]y/[M], = 200, [LAJ0 =0.5M, 23 °C.

Time (h) Conversion (%)
0.3 38.5
0.68 51.1
1.02 57.7
1.35 61.1
1.87 62.4
2.07 64.2
2.3 65.8
3.07 69.3
3.98 72.1
6.12 75.8
8.13 77.5
23.5 83.8
32.5 85.5
100 -
77 [
80 . " - 6 .
£ 60+ _“ o °
g - \E—v ] n .
2 = 4
3 T3 K,
20 4 5] :
0 | ; I . . . r ; 14 T —
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Time of polymerization (h) Time of polymerization (h)

Figure S41: L-lactide polymerisation using complex [(“YCAAC);K][Sr(N{SiMes},);] (6), conversion
in function of time profile (left) and second-order rate plot (right). Polymerisation conditions:
benzene-dy at 23 °C with [LA]/[M], = 200, [LA]o = 0.5 M.
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Figure S42: 'H{'H} NMR spectrum of poly-L-lactide synthesised using complex
[(YCAAC);K][Sr(N{SiMes},);] (6) in chloroform-d, at 23 °C on a 500 MHz. Polymerisation
conditions: benzene-dg at 23 °C with [LA]o/[M], = 200, [LA]p = 0.5 M. L-lactide at 5.03 ppm.
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Figure S43: BC{'H} NMR spectrum of poly-L-lactide synthesised using complex
[(YCAAC):K][Sr(N{SiMes},);] (6) in chloroform-d, at 23 °C on a 500 MHz. Polymerisation
conditions: benzene-dg at 23 °C with [LA]o/[M], = 200, [LA]o = 0.5 M. L-lactide at 72.60 ppm.
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Table S16: rac-lactide polymerisation using [(YCAAC);K][Sr(N{SiMe;},);] (6). Polymerisation
conditions: benzene-dg, [LA]y/[M], = 200, [LA]J0 =0.5 M, 23 °C.

Time (h) Conversion (%)
0.4 12.7
0.77 20.8
1.1 26.3
1.87 32.8
2.12 36.5
2.37 38.7
3.12 44.4
3.98 46.7
6.17 50.0
8.28 53.5
23.5 68.6
100 35-
80 -| 304 )
g 60 9
5 - " =z .
© " 15 .‘l
20 = la
" 104"
0 T T T T r T r T 1 - - 1 -
0 5 10 15 20 0 5 10 15 20 25

Time of polymerization (h)

Figure S44:

rac-lactide polymerisation using complex

Time of polymerization (h)

[(YCAAC)K][Sr(N{SiMe3}2)s]  (6),

conversion in function of time profile (left) and second-order rate plot (right). Polymerisation
conditions: benzene-dg at 23 °C with [LA]o/[M], =200, [LA]y= 0.5 M.
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Figure S45: 'H{'H} NMR spectrum of poly-rac-lactide synthesised using complex
[(YCAAC);K][Sr(N{SiMes},);] (6) in chloroform-d, at 23 °C on a 500 MHz. Polymerisation
conditions: benzene-dg at 23 °C with [LA]o/[M]y = 200, [LA]p = 0.5 M. rac-lactide at 5.03 ppm.
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Figure S46: DBC{'H} NMR spectrum of poly-rac-lactide synthesised wusing complex
[(YCAAC);K][Sr(N{SiMes},);] (6) in chloroform-d; at 23 °C on a 500 MHz. Polymerisation
conditions: benzene-dg at 23 °C with [LA]o/[M], = 200, [LA]o = 0.5 M. rac-lactide at 72.60 ppm.
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Using [Mg(N{SiMes}»),],

Table S17: L-lactide polymerisation using [Mg(N{SiMe;}»),],. Polymerisation conditions: benzene-
ds, [LA]o/[M]o =200, [LAJ0 = 0.5 M, 23 °C.

Time (h) Conversion (%)
04 4.80
0.68 4.83
1.83 5.00
5.53 5.40
7.18 5.50
10.27 5.60
23.5 6.70
32 7.10
100
80
& 60
S 40
s
O
20
04 - [ I | [ [ [ 1
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Figure S47: L-lactide polymerisation using complex [Mg(N{SiMe;},),],, conversion in function of
time profile. Polymerisation conditions: benzene-d at 23 °C with [LA]o/[M]y = 200, [LA]o = 0.5 M.
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Figure S48: 'H{'H} NMR spectrum of poly-rac-lactide synthesised using complex
[Mg(N{SiMes},),], in chloroform-d, at 23 °C on a 500 MHz. Polymerisation conditions: benzene-ds
at 23 °C with [LA]¢/[M]o = 200, [LA]o = 0.5 M. rac-lactide at 5.03 ppm.
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Figure S49: BC{'H} NMR spectrum of poly-rac-lactide synthesised using complex
[Mg(N{SiMes},),], in chloroform-d; at 23 °C on a 500 MHz. Polymerisation conditions: benzene-ds
at 23 °C with [LA]y/[M], = 200, [LA], = 0.5 M. rac-lactide at 72.60 ppm.
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Using [Sr(N{SiMes},)21»

Table S18: L-lactide polymerisation using [Sr(N{SiMes},),],. Polymerisation conditions: benzene-dg,
[LA]y/[M]o =200, [LA]J0O=0.5M, 23 °C.

Time (h) Conversion (%)
0.47 2.10
0.75 3.20
1.37 5.20
1.9 13.1
5.6 25.4
7.25 314
10.5 40.8
23.5 60.3
32 63.6
100
80+
g 60 u -
g’ 40 -
3 ]
20 -
L . . . ‘ . .
0 5 10 15 20 25 30 35

Time of polymerization (h)

Figure S50: L-lactide polymerisation using complex [Sr(N{SiMes},),],, conversion in function of
time profile. Polymerisation conditions: benzene-d at 23 °C with [LA]o/[M], = 200, [LA]y = 0.5 M.
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Figure S51: '"H{'H} NMR spectrum of poly-L-lactide synthesised using complex [Sr(N{SiMes},).],
in chloroform-d; at 23 °C on a 500 MHz. Polymerisation conditions: benzene-ds at 23 °C with
[LA]o/[M]o =200, [LA]o= 0.5 M. L-lactide at 5.03 ppm.
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Figure S52: BC{'H} NMR spectrum of poly-L-lactide synthesised using complex [Sr(N{SiMes},),],
in chloroform-d; at 23 °C on a 500 MHz. Polymerisation conditions: benzene-ds at 23 °C with
[LA]y/[M]o = 200, [LA], = 0.5 M. L-lactide at 72.60 ppm.
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Table S19: rac-lactide polymerisation using [Sr(N{SiMes},),],. Polymerisation conditions: benzene-
ds, [LA]o/[M], =200, [LA]0 = 0.5 M, 23 °C.

Time (h) Conversion (%)
0.52 23
0.82 3.8
1.42 4.6
1.95 5.5
7.3 11.7
10.62 16.1
23.5 29.2
32 313
100
80+
g 60 |
g 40+
S . -
204 -
0 """ ———
0 5 10 15 20 25 30 35

Time of polymerization (h)

Figure S53: rac -lactide polymerisation using complex [Sr(N{SiMe;},),],, conversion in function of
time profile. Polymerisation conditions: benzene-ds at 23 °C with [LA]o/[M]o = 200, [LA]o = 0.5 M.
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Figure S54: 'H{'H} NMR spectrum of poly-rac-lactide synthesised using complex
[Sr(N{SiMes},),], in chloroform-d, at 23 °C on a 500 MHz. Polymerisation conditions: benzene-d; at
23 °C with [LA]y/[M], = 200, [LA]y = 0.5 M. rac-lactide at 5.03 ppm.
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Figure S55: 3C{'H} NMR spectrum of poly-L-lactide synthesised using complex [Sr(N{SiMes},).],
in chloroform-d; at 23 °C on a 500 MHz. Polymerisation conditions: benzene-ds at 23 °C with
[LA]o/[M]o =200, [LA]o = 0.5 M. rac-lactide at 72.60 ppm.
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Using Ba(N{SiMej3},),(thf), ¢

Table S20: L-lactide polymerisation using Ba(N{SiMe;},),(thf);s. Polymerisation conditions:
benzene-ds, [LA]o/[M]o = 200, [LA]J0 = 0.5 M, 23 °C.

Time (h) Conversion (%)
0.37 0.7
0.73 1.0
1.15 1.2
23 2.1
3.82 2.8
8.67 4.2

Table S21: rac-lactide polymerisation using Ba(N{SiMes},),(thf);s. Polymerisation conditions:
benzene-ds, [LA]y/[M], =200, [LA]0=0.5M, 23 °C.

Time (h) Conversion (%)
0.43 1.1
0.8 1.9
1.22 2.8
2.35 4.9
3.88 7.9
8.72 15.4
100
80
8 60
S
S 40
8
20
0 ma ¥ T . T T T 1
0 2 4 6 8 10

Time of polymerization (h)

Figure S56: rac-lactide polymerisation using complex Ba(N{SiMes},),(thf), ¢, conversion in function
of time profile. Polymerisation conditions: benzene-ds at 23 °C with [LA]¢/[M], = 200, [LA]y =
0.5 M.
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Figure S57: 'H{'H} NMR spectrum of poly-rac-lactide synthesised using complex
Ba(N{SiMe;},),(thf); s in chloroform-d; at 23 °C on a 500 MHz. Polymerisation conditions: benzene-
dg at 23 °C with [LAJo/[M]o = 200, [LA]o = 0.5 M. rac-lactide at 5.03 ppm.
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Figure S58: "C{'H} NMR spectrum of poly-rac-lactide synthesised using complex
Ba(N{SiMe;},),(thf); ¢ in chloroform-d; at 23 °C on a 500 MHz. Polymerisation conditions: benzene-
ds at 23 °C with [LA]y/[M], = 200, [LA]o = 0.5 M. rac-lactide at 72.60 ppm.
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Using M2CAAC

Table S22: L-lactide polymerisation using M22CAAC. Polymerisation conditions: benzene-ds,
[LA]y/[M]o =200, [LA]J0O=0.5 M, 23 °C.

Time (h) Conversion (%)
0.18 ~0
1.42 ~0
2.52 ~0
4.02 ~0
28 ~0
72 ~0

Table S23: rac-lactide polymerisation using M2CAAC. Polymerisation conditions: benzene-d,
[LA]¢/[M]o =200, [LA]J0 = 0.5 M, 23 °C.

Time (h) Conversion (%)

0.33 ~0
0.92 ~0

1.50 ~0
2.57 ~0
4.10 ~0

28 ~0

72 1.1
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End of chain experiments

Table S24: L-lactide polymerisation using (M2CAAC)Ba(N{SiMes},), (4). Polymerisation
conditions: benzene-dg, [LA]y/[M], = 20, [LA]J0=0.5M, 23 °C.

Time (h) Conversion (%)
0.17 27.7
0.32 55.3
1.83 91.7
3.72 96.6
100 4 - }
n 30 u
804 25
§ 60— e 20
8 ) £
4 —~ 154
g 401 S .
3 . T 104
204
5
0 T T T T T T T 0 . T T ¥ T T T T 1
0 1 2 3 4 0 1 2 3 4
Time of polymerization (h) Time of polymerization (h)

Figure S59: L-lactide polymerisation using complex (M2CAAC)Ba(N{SiMes},), (4), conversion in

function of time profile (left) and second-order rate plot (right). Polymerisation conditions: benzene-
ds at 23 °C with [LA]¢/[M], = 20, [LA]o = 0.5 M.
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M2CAAC)Ba(N{SiMes},), (4). Polymerisation conditions: benzene-ds at 23 °C with [LA]y/[M], =
20, [LA]o=0.5 M.
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Table S25: rac-lactide polymerisation using (M2CAAC)Ba(N{SiMes},), (4). Polymerisation

conditions: benzene-dg, [LA]y/[M], = 20, [LA]JO=0.5 M, 23 °C.

Time (h) Conversion (%)
0.23 25.5
0.38 56.3
1.88 93.1
3.78 97.4
100 - 40_'
3
80 J
30
g o NS
5 2 ]
g 40 :5__ 15} .
8 - T 10—_
20 5_-
o] ="
O T T T 1 T T T 1
0 1 2 3 4 0 1 2 3 4

Time of polymerization (h)

Time of polymerization (h)

Figure S61: rac-lactide polymerisation using complex (M2CAAC)Ba(N{SiMes},), (4), conversion in

function of time profile (left) and second-order rate plot (right). Polymerisation conditions: benzene-
de at 23 °C with [LA]y/[M]y =20, [LA]o=0.5 M.
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Figure S62: MALDI-TOF spectra of poly-rac-lactide synthesised using complex
M2CAAC)Ba(N{SiMes},), (4). Polymerisation conditions: benzene-ds at 23 °C with [LA]y/[M], =
20, [LA]y=0.5 M.
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Summary of the kinetics of polymerisation

Table S26: lactide polymerisation using complexes 1, 3, 4 and 6. Polymerisation conditions: benzene-
ds, [LA]o/[M]o =200, [LA]0 = 0.5 M, 23 °C.

Complex LA Kapp® R
(M h)
1 L- 0.024(2) 0.989
3 L 0.556(40) 0.990
3 rac- 0.134(5) 0.996
4 L- 0.839(25) 0.997
4 rac- 0.171(3) 0.999
4b L- 1.478(32) 0.9993
4° L- 5.720(354) 0.994

apparent second order constant (kyp,, = k,[MN”])[ CAAC]) for consumption of lactide with standard error and
R2 determined by linear regression analysis. °\[LA]o/[M]o = 150. ([LA]¢/[M], = 100.

/[LA] (M)

0 2 4 6 8
Time of polymerization (h)
Figure S63: Second-order rate plot of the polymerisation of L-lactide using
M2CAAC)Mg(N{SiMes},), (1, black square), (M2CAAC)Sr(N{SiMe;},), (3, dark grey circle) and
(M2CAAC)Ba(N{SiMes},), (4, light grey triangle). Polymerisation conditions: benzene-ds at 23 °C
with [LA]y/[M]o =200, [LA]p = 0.5 M.
= [LA]/[M], = 200
[LA],/IM], = 150 v

o [LAL/M], = 100
v [LAJ/M], =20

30

25 -

20

1LA], (M)

Time of polymerization (h)

Figure S64: Second-order rate plot of the polymerisation of L-lactide using
M2CAAC)Ba(N{SiMes},), (4): [LA]o/[M]p = 200 (black square), [LA]¢/[M]o = 150 (light grey
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triangle) and [LA]y/[M]o = 100 (dark grey circle) and [LA]¢/[M], = 20 (black inverted triangle).
Polymerisation conditions: benzene-dg at 23 °C with [LA]o = 0.5 M.
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Figure S65: Second-order rate plot of the polymerisation of rac-lactide using

(M2CAAC)Sr(N{SiMes},), (3, black square) and [(YCAAC);K][Sr(N{SiMes},);] (6, dark grey
circle). Polymerisation conditions: benzene-dg at 23 °C with [LA]y/[M], = 200, [LA]o = 0.5 M.

GPC characterisation

Table S27: lactide polymerisation using complexes 1, 3, 4 and 6. Polymerisation conditions: benzene-
ds, [LA]o/[M], =200, [LA]0 = 0.5 M, 23 °C.

Complex LA Time of Conversion? M, Mn (GPC)© M, /M,C
isolation (calculated)® (g/mol)
(h) (g/mol)
1 L- 9.3 70 20178 12879 3.26
3 L- 9.2 97 27961 28199 1.35
3 rac- 28.0 74 21331 21742 1.67
4 L- 8.5 95 27385 25006 1.99
44 L- 2.7 94 20322 23417 2.19
4¢ L- 2.6 98 14124 20580 2.11
4f L- 0.7 67 19313 4797 2.07
6 L- 32.5 95 27384 14714 1.54
6 rac- 23.1 50 14413 8426 1.66

aReactions monitored by '"H NMR spectroscopy in chlorform-d;, all quoted conversion refer to the last point
where M, (GPC) was determined. M (Calculated) = Conv x [LA]¢/[M]y X M. “Measured by GPC against

polystyrene standards with appropriate Mark-Houwink corrections for PLA in thf at 30 °C. Y[LA]y/[M], = 150.
°[LA]¢/[M], = 100. ftetrahydrofuran-ds.
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