Supplementary data

Concise access to iminophosphonamide stabilized heteroleptic germylenes: Chemical reactivity and structural investigation

Billa Prashanth and Sanjay Singh*

Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali 140306, Punjab, India. E-mail: <u>sanjaysingh@iisermohali.ac.in</u>

Contents

- (1) Fig. S1-S3 Heteronuclear NMR Spectra of compound 1
- (2) Fig. S4-S6 Heteronuclear NMR Spectra of compound 2
- (3) Fig. S7-S9 Heteronuclear NMR Spectra of compound 3
- (4) Fig. S10-S12 Heteronuclear NMR Spectra of compound 4
- (5) Fig. S13-S15 Heteronuclear NMR Spectra of compound 5
- (6) Fig. S16-S18 Heteronuclear NMR Spectra of compound 6
- (7) Fig. S19-S21 Heteronuclear NMR Spectra of compound 7
- (8) Fig. S22-S24 ¹H-¹³C HSQC NMR spectrum of compound 7
- (9) **Fig. S25-S27** ¹H-¹³C HMBC NMR spectrum of compound 7
- (10) Fig. S28-S30 Heteronuclear NMR Spectra of compound 8

Fig. S1 ¹H NMR (400MHz, C_6D_6) spectrum of [(2,6-*i*Pr₂C₆H₃N)P(Ph₂)(N*t*Bu)]GeCl (1).

Fig. S2 ${}^{31}P{}^{1}H{}NMR$ (162 MHz, C₆D₆) spectrum of [(2,6-*i*Pr₂C₆H₃N)P(Ph₂)(N*t*Bu)]GeCl (1).

Fig. S3 ¹³C NMR (100 MHz, C_6D_6) spectrum of $[(2,6-iPr_2C_6H_3N)P(Ph_2)(NtBu)]$ GeCl (1). Inset shows expansion of the aliphatic region.

Fig. S4 ¹H NMR (400MHz, C_6D_6 +THF- d_8 (1:0.3)) spectrum of [(2,6-*i*Pr₂C₆H₃N)P(Ph₂)(N*t*Bu)]Ge(Cl) Fe(CO)₄ (2).

Fig. S5 ³¹P{¹H}NMR (162MHz, C_6D_6 +THF- d_8 (1:0.3)) spectrum of [(2,6-*i*Pr₂C₆H₃N)P(Ph₂)(N*t*Bu)]Ge(Cl) Fe(CO)₄ (2).

Fig. S6 ¹³C NMR (100 MHz, C_6D_6 +THF- d_8 (1:0.3)) spectrum of [(2,6-*i*Pr₂C₆H₃N)P(Ph₂)(N*t*Bu)]Ge(Cl) Fe(CO)₄ (**2**). Inset shows expansion of the aliphatic region.

Fig. S7 ¹H NMR (400 MHz, C₆D₆) spectrum of [(2,6-*i*Pr₂C₆H₃N)P(Ph₂)(N*t*Bu)]GeO*t*Bu (3).

Fig. S8 ${}^{31}P{}^{1}H$ NMR(162 MHz, C₆D₆) spectrum of [(2,6-*i*Pr₂C₆H₃N)P(Ph₂)(N*t*Bu)]GeO*t*Bu (3).

Fig. S9 ¹³C NMR (100MHz, C_6D_6) spectrum of $[(2,6-iPr_2C_6H_3N)P(Ph_2)(NtBu)]GeOtBu$ (3). Inset shows expansion of the aromatic region.

Fig. S10 ¹H NMR (400 MHz, C₆D₆) spectrum of [(2,6-*i*Pr₂C₆H₃N)P(Ph₂)(N*t*Bu)]GeOTf (4).

Fig. S11 ³¹P{¹H} NMR (162 MHz, C₆D₆) spectrum of $[(2,6-iPr_2C_6H_3N)P(Ph_2)(NtBu)]$ GeOTf (4). Inset shows its ¹⁹F NMR (376 MHz, C₆D₆) spectrum.

Fig. S12 ¹³C NMR (100 MHz, C_6D_6) spectrum of $[(2,6-iPr_2C_6H_3N)P(Ph_2)(NtBu)]$ GeOTf (4). Inset shows expansion of the aromatic region.

Fig. S13 ¹H NMR (400 MHz, CDCl₃) spectrum of [(2,6-*i*Pr₂C₆H₃N)P(Ph₂)(N*t*Bu)]Ge(S)Cl (5).

Fig. S14 ${}^{31}P{}^{1}H$ NMR (162 MHz, CDCl₃) spectrum of [(2,6-*i*Pr₂C₆H₃N)P(Ph₂)(N*t*Bu)]Ge(S)Cl (5).

Fig. S15 ¹³C NMR (100 MHz, CDCl₃) spectrum of [(2,6-*i*Pr₂C₆H₃N)P(Ph₂)(N*t*Bu)]Ge(S)Cl (5).

Fig. S16 ¹H NMR (400 MHz, CDCl₃) spectrum of [(2,6-*i*Pr₂C₆H₃N)P(Ph₂)(N*t*Bu)]Ge(Se)Cl (6).

Fig. S17 ${}^{31}P{}^{1}H$ NMR (162 MHz, CDCl₃) spectrum of [(2,6-*i*Pr₂C₆H₃N)P(Ph₂)(N*t*Bu)]Ge(Se)Cl (6).

Fig. S18 ¹³C NMR (100MHz, CDCl₃) spectrum of [(2,6-*i*Pr₂C₆H₃N)P(Ph₂)(N*t*Bu)]Ge(Se)Cl (6).

Fig. S19 ¹H NMR (400MHz, CDCl₃) spectrum of [(2,6-*i*Pr₂C₆H₃N)P(Ph₂)(N*t*Bu)]Ge(S)O*t*Bu (7).

Fig. S20 ³¹P{¹H} NMR (162 MHz, CDCl₃) spectrum of $[(2,6-iPr_2C_6H_3N)P(Ph_2)(NtBu)]Ge(S)OtBu (7)$.

Fig. S21 ¹³C NMR (100MHz, CDCl₃) spectrum of $[(2,6-iPr_2C_6H_3N)P(Ph_2)(NtBu)]Ge(S)OtBu$ (7). Inset shows expansion of the aromatic region.

Fig. S22 1 H- 13 C HSQC NMR spectrum of [(2,6-*i*Pr₂C₆H₃N)P(Ph₂)(N*t*Bu)]Ge(S)O*t*Bu (7).

Fig. S23 Expansion of the aliphatic region of ${}^{1}H{}^{-13}C$ HSQC NMR spectrum of [(2,6- $iPr_2C_6H_3N)P(Ph_2)(NtBu)$]Ge(S)OtBu (7).

Fig. S24 Expansion of the aromatic region of ${}^{1}H{}^{-13}C$ HSQC NMR spectrum of [(2,6- $iPr_2C_6H_3N)P(Ph_2)(NtBu)$]Ge(S)OtBu (7).

¹H-¹³C HMBC NMR spectrum of compound 7

Fig. S25 ¹H-¹³C HMBC NMR spectrum of [(2,6-*i*Pr₂C₆H₃N)P(Ph₂)(N*t*Bu)]Ge(S)O*t*Bu (7).

Fig. S26 Expansion of the aliphatic region of ${}^{1}\text{H}{}^{-13}\text{C}$ HMBC NMR spectrum of $[(2,6-iPr_2C_6H_3N) P(Ph_2)(NtBu)]Ge(S)OtBu$ (7).

Fig. S27 Expansion of the aromatic region of ${}^{1}\text{H}{}^{-13}\text{C}$ HMBC NMR spectrum of [(2,6- $iPr_2C_6H_3N)P(Ph_2)(NtBu)$]Ge(S)OtBu (7).

Assignment of ¹H and ¹³C NMR signals of [(2,6-*i*Pr₂C₆H₃N)P(Ph₂)(N*t*Bu)]Ge(S)O*t*Bu (7)

¹H NMR (400 MHz, CDCl₃): $\delta = -0.12$ (d, ³*J*_{H-H} = 6.8 Hz, 3 H, C^{2or6}(CH)(CH₃)(CH₃)), 0.22 (d, ³*J*_{H-H} = 6.8 Hz, 3 H, C^{2or6}(CH)(CH₃)(CH₃)), 1.17 (overlapped doublets, ³*J*_{H-H} = 6.4 & 5.1 Hz, 6 H, 2x C^{2&6}(CH)(CH₃)(CH₃)), 1.35 (s, 9 H, NC(CH₃)₃), 1.60 (s, 9 H, OC(CH₃)₃), 3.12 (sept, ³*J*_{H-H} = 6.8 Hz, 1 H, C^{2or6}(CH)(CH₃)(CH₃)), 3.84 (sept, ³*J*_{H-H} = 6.8 Hz, 1 H, C^{2or6}(CH)(CH₃)(CH₃)), 6.84–6.88

(m, 1 H, C^{3or5}–*H*, Dipp), 6.94–6.97 (m, 1 H, C^{3or5}–*H*, Dipp), 7.00–7.07 (m, 1 H, C⁴–*H*, Dipp), 7.43–7.55 (m, 4 H, 2xC^{(3'&5')or(9'&11')}–*H*, Ph), 7.55–7.64 (m, 4 H, 2xC^{(2'&6')or(8'&12')}–*H*, Ph), 8.29–8.37 (m, 2 H, C^{4'&10'}–*H*, Ph).

¹³C NMR (100 MHz, CDCl₃): $\delta = 22.3$ (s, 1 C, C^{2or6}CH(CH₃)(CH₃)), 24.6 (s, 1 C, C^{2or6}CH(CH₃)(CH₃)), 25.6 (s, 1 C, C^{2or6}CH(CH₃)(CH₃)), 27.8 (s, 1 C, C^{2or6}CH(CH₃)(CH₃)), 28.6 (s, 1 C, C^{2or6}CH(CH₃)₂), 29.3 (s, 1 C, C^{2or6}CH(CH₃)₂), 32.2 (s, 3 C, 1xOC(CH₃)₃), 32.8 (d, *J*_{C-P} = 5.6 Hz, 3 C, 1xNC(CH₃)₃), 55.0 (s, 1 C, NC(CH₃)₃), 75.3 (s, 1 C, OC(CH₃)₃), 123.6 (d, *J*_{C-P} = 2.5 Hz, 1 C, C^{2or6}, Dipp), 124.1 (d, *J*_{C-P} = 2.6 Hz, 1 C, C^{2or6}, Dipp), 124.6 (d, *J*_{C-P} = 102.0 Hz, C_{*ipso*^{1/or7'}, Ph), 126.3 (d, *J*_{C-P} = 2.8 Hz, C⁴, Dipp), 128.4 (d, *J*_{C-P} = 13.0 Hz, 2 C, 1xC^{(3'&5')or(9'&11')}, Ph), 128.7 (d, *J*_{C-P} = 12.9 Hz, 2 C, 1xC^{(3'&5')or(9'&11')}, Ph), 131.0 (d, *J*_{C-P} = 99.2 Hz, 1 C, C_{*ipso*^{1/or7'}, Ph), 131.3 (d, *J*_{C-P} = 1.5 Hz, C_{*ipso*¹, Dipp), 132.6 (d, *J*_{C-P} = 10.4 Hz, 2 C, 1xC^{(2'&6')or(8'&12')}, Ph), 133.2 (vtr, *J*_{C-P} = 6.9 & 3.4 Hz, 2 C, C^{4'&10'}, Ph), 134.8 (d, *J*_{C-P} = 11.6 Hz, 2 C, 1xC^{(2'&6')or(8'&12')}, Ph), 148.4 (d, *J*_{C-P} = 4.2 Hz, 1 C, C³, Dipp), 150.1 (d, *J*_{C-P} = 4.5 Hz, 1 C, C⁵, Dipp).}}}

Fig. S28 ¹H NMR (400MHz, CDCl₃) spectrum of [(2,6-*i*Pr₂C₆H₃N)P(Ph₂)(N*t*Bu)]Ge(Se)O*t*Bu (8).

Fig. S29 ³¹P{¹H} NMR (162 MHz, CDCl₃) spectrum of [(2,6-*i*Pr₂C₆H₃N)P(Ph₂)(N*t*Bu)]Ge(Se)O*t*Bu (8).

Fig. S30 ¹³C NMR (100MHz, CDCl₃) spectrum of $[(2,6-iPr_2C_6H_3N)P(Ph_2)(NtBu)]Ge(Se)OtBu$ (8). Inset shows expansion of the aromatic region.