Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Fluoride-free Hiyama Coupling by Palladium Abnormal N-heterocyclic Carbene Complexes

Sudipta Modak,[†] Manoj Kumar Gangwar,[†] Mitta Nageswar Rao,[†] Madasu Mahesh,[†]

Alok Ch. Kalita,[†] Vincent Dorcet,[‡] Mayuri Arun Shejale,[†] Ray J. Butcher[¶] and

Prasenjit Ghosh*'[†]

[†]Department of Chemistry,

Indian Institute of Technology Bombay,

Powai, Mumbai 400 076.

[‡]Université de Rennes 1,

Institut des Sciences chimiques de Rennes,

Campus de Beaulieu, 35042 – Rennes, France

[¶] Department of Chemistry

Howard University.

Washington DC 20059, USA

Email: pghosh@chem.iitb.ac.in

Fax: +91-22-2572-3480

Figure S1. Simplified orbital interaction diagram showing major contribution to the (*a*-NHC)–Pd bonding orbital HOMO-15 in **2b**.

Figure S2. Simplified orbital interaction diagram showing major contribution to the (*a*-NHC)–Pd bonding orbital HOMO-15 in **3b**.

Figure S3. Simplified orbital interaction diagram showing major contribution to the (*a*-NHC)–Pd bonding orbitals in 1c.

Figure S4. Simplified orbital interaction diagram showing major contribution to the (*a*-NHC)–Pd bonding orbitals in 2c.

Figure S5. Simplified orbital interaction diagram showing major contribution to the (*a*-NHC)–Pd bonding orbitals in 3c.

Figure S6. Simplified orbital interaction diagram showing major contribution to the Pd–NC₅H₅ bonding orbitals in 2b.

Figure S7. Simplified orbital interaction diagram showing major contribution to the Pd–NC₅H₅ bonding orbitals in **3b**.

Figure S8. Simplified orbital interaction diagram showing major contribution to the Pd–PPh₃ bonding orbitals in 1c.

Figure S9. Simplified orbital interaction diagram showing major contribution to the $Pd-PPh_3$ bonding orbitals in 2c.

Figure S10. Simplified orbital interaction diagram showing major contribution to the $Pd-PPh_3$ bonding orbitals in 3c.

Figure S11. The relative free energies (Δ G, kcal/mol) in the isolated gas phase in B3LYP/SDD, 6-31G(d) level of theory for the *cis* and *trans* isomers of the (*a*-NHC)PdI₂(L) [L = pyridine, (1-3)b and PPh₃ (1-3)c] type complexes with the energy differences between each *cis-trans* pair shown (in red) within the parenthesis.

Figure S12. Computed structure of **1b** (*trans*). Selected bond lengths (Å) and bond angles (°): Pd(1)-C(6) 1.996, Pd(1)-N(1) 2.147, Pd(1)-I(1) 2.717, Pd(1)-I(2) 2.722, C(6)-Pd(1)-N(1) 179.59, C(6)-Pd(1)-I(1) 88.09, N(1)-Pd(1)-I(1) 91.52, C(6)-Pd(1)-I(2) 88.89, N(1)-Pd(1)-I(2) 91.47, I(1)-Pd(1)-I(2) 176.61.

Figure S13. Computed structure of **1b** (*cis*). Selected bond lengths (Å) and bond angles (°): Pd(1)-C(6) 2.034, Pd(1)-N(1) 2.151, Pd(1)-I(1) 2.688, Pd(1)-I(2) 2.720, C(6)-Pd(1)-N(1) 93.11, C(6)-Pd(1)-I(1) 84.42, N(1)-Pd(1)-I(1) 174.66, C(6)-Pd(1)-I(2) 176.25, N(1)-Pd(1)-I(2) 89.92, I(2)-Pd(1)-I(1) 92.72.

Figure S14. Computed structure of **2b** (*trans*). Selected bond lengths (Å) and bond angles (°): Pd(1)-C(6) 1.997, Pd(1)-N(4) 2.149, Pd(1)-I(1) 2.719, Pd-I(2) 2.718, C(6)-Pd(1)-N(4) 179.27, C(6)-Pd(1)-I(1) 87.67, N(4)-Pd(1)-I(1) 91.76, C(6)-Pd(1)-I(2) 89.28, N(4)-Pd(1)-I(2) 91.2, I(1)-Pd(1)-I(2) 176.24.

Figure S15. Computed structure of **2b** (*cis*). Selected bond lengths (Å) and bond angles (°): Pd(1)-C(6) 2.037, Pd(1)-N(4) 2.150, Pd(1)-I(1) 2.686, Pd(1)-I(2) 2.721, C(6)-Pd(1)-N(4) 93.36, C(6)-Pd(1)-I(1) 84.66, N(4)-Pd(1)-I(1) 174.61, C(6)-Pd(1)-I(2) 176.17, N(4)-Pd(1)-I(2) 89.58, I(1)-Pd(1)-I(2) 92.62.

Figure S16. Computed structure of **3b** (*trans*). Selected bond lengths (Å) and bond angles (°): Pd(1)-C(6) 1.988, Pd(1)-N(1) 2.145, Pd(1)-I(1) 2.718, Pd(1)-I(2) 2.710, C(6)-Pd(1)-N(1) 178.71, C(6)-Pd(1)-I(1) 88.59, N(1)-Pd(1)-I(1) 91.45, C(6)-Pd(1)-I(2) 88.63, N(1)-Pd(1)-I(2) 91.38, I(2)-Pd(1)-I(1) 176.18.

Figure S17. Computed structure of **3b** (*cis*). Selected bond lengths (Å) and bond angles (°): Pd(1)-C(6) 2.032, Pd(1)-N(1) 2.131, Pd(1)-I(1) 2.680, Pd(1)-I(2) 2.718, C(6)-Pd(1)-N(1) 93.00, C(6)-Pd(1)-I(1) 85.75, N(1)-Pd(1)-I(1) 178.68, C(6)-Pd(1)-I(2) 178.71, N(1)-Pd(1)-I(2) 88.07, I(2)-Pd(1)-I(1) 93.18.

Figure S18. Computed structure of **1c** (*trans*). Selected bond lengths (Å) and bond angles (°): Pd(1)-P(1) 2.414, Pd(1)-I(2) 2.736, Pd(1)-I(1) 2.717, C(1)-Pd(1) 2.040, C(1)-Pd(1)-P(1) 176.06, C(1)-Pd(1)-I(2) 86.44, P(1)-Pd(1)-I(2) 92.49, C(1)-Pd(1)-I(1) 85.59, P(1)-Pd(1)-I(1) 94.94, I(2)-Pd(1)-I(1) 168.89.

Figure S19. Computed structure of **1c** (*cis*). Selected bond lengths (Å) and bond angles (°): Pd(1)-P(1) 2.357, Pd(1)-I(2) 2.753, Pd(1)-I(1) 2.730, C(1)-Pd(1) 2.037, C(1)-Pd(1)-P(1) 95.52, C(1)-Pd(1)-I(2) 82.31, P(1)-Pd(1)-I(2) 177.78, C(1)-Pd(1)-I(1) 173.08, P(1)-Pd(1)-I(1) 91.20, I(2)-Pd(1)-I(1) 90.94.

Figure S20. Computed structure of **2c** (*trans*). Selected bond lengths (Å) and bond angles (°): Pd(1)-P(1) 2.413, Pd(1)-I(1) 2.718, Pd(1)-I(2) 2.738 C(42)-Pd(1) 2.041, C(42)-Pd(1)-P(1) 176.31, C(42)-Pd(1)-I(2) 85.87, P(1)-Pd(1)-I(2) 95.02, C(42)-Pd(1)-I(1) 86.19, P(1)-Pd(1)-I(1) 92.41, I(2)-Pd(1)-I(1) 168.75.

Figure S21. Computed structure of **2c** (*cis*). Selected bond lengths (Å) and bond angles (°): Pd(1)-P(1) 2.364, Pd(1)-I(1) 2.735, Pd(1)-I(2) 2.737, C(42)-Pd(1) 2.036, C(42)-Pd(1)-P(1) 94.04, C(42)-Pd(1)-I(2) 83.88, P(1)-Pd(1)-I(2) 176.14, C(42)-Pd(1)-I(1) 174.77, P(1)-Pd(1)-I(1) 91.02, I(2)-Pd(1)-I(1) 91.14.

Figure S22. Computed structure of the **3c** (*trans*). Selected bond lengths (Å) and bond angles (°): Pd(1)-P(1) 2.418, Pd(1)-I(2) 2.718, Pd(1)-I(1) 2.728, C(19)-Pd(1) 2.032, C(19)-Pd(1)-P(1) 177.93, C(19)-Pd(1)-I(2) 85.49, P(1)-Pd(1)-I(2) 96.49, C(19)-Pd(1)-I(1) 85.78, P(1)-Pd(1)-I(1) 177.92, I(2)-Pd(1)-I(1) 170.46.

Figure S23. Computed structure of **3c** (*cis*). Selected bond lengths (Å) and bond angles (°): Pd(1)-P(1) 2.358, Pd(1)-I(2) 2.732, Pd(1)-I(1) 2.740, C(19)-Pd(1) 2.029, C(19)-Pd(1)-P(1) 95.27, C(19)-Pd(1)-I(2) 173.39, P(1)-Pd(1)-I(2) 89.91, C(19)-Pd(1)-I(1) 84.08, P(1)-Pd(1)-I(1) 179.05, I(2)-Pd(1)-I(1) 90.78.

Figure S24. ¹H NMR spectrum of the compound **1a** in CDCl₃.

Figure S25. ${}^{13}C{}^{1}H$ NMR spectrum of the compound 1a in CDCl₃.

Figure S26. IR spectrum of the compound 1a.

Figure S27. Mass spectrum of the compound 1a.

Calib. method : using 'K Factors'

!!! Warning missing one or more peaks.

Element Name	90	Ret.Time	Area	BC	Area ratio	K factor
1	0.0000	18	4756	RS		0.0000
Nitrogen	9.9863	44	148900	FU	7.641131	.168861E+07
Carbon	48.4099	67	1137762	FU	1.000000	.266168E+07
Hydrogen	5.9779	178	280394	RS	4.057727	.531204E+07
Totals	64.3741		1571812			

Figure S28. CHN analysis of the compound 1a.

Figure S29. ¹H NMR spectrum of the compound **1b** in CDCl₃.

Figure S30. ${}^{13}C{}^{1}H$ NMR spectrum of the compound **1b** in CDCl₃.

Figure S31. IR spectrum of the compound 1b.

Figure S32. Mass spectrum of the compound 1b [plot (a)] along with its experimental [plot (b)] and theoretical [plot (c)] isotopic mass

(1b)

distributions are shown.

Eager 300 Report

HO-

Page: 1 Sample: PG-SM-2-63-2 (PG-SM-2-63-2)

1310 S					N-N I	
Method Name	:	SP-050312			\rangle .	
Method File	:	D:\CHNS2012\SP-050312.mth			Ph	
Chromatogram	:	PG-SM-2-63-2			(1b)	
Operator ID	:	MNRAO	Company Name	:	C.E. Instruments	
Analysed	:	03/05/2012 15:29	Printed	:	3/5/2012 19:58	
Sample ID	:	PG-SM-2-63-2 (# 13)	Instrument N.	:	Instrument #1	
Analysis Type	:	UnkNown (Area)	Sample weight	:	.845	

Calib. method : using 'K Factors'

!!! Warning missing one or more peaks.

Element Name	00	Ret.Time	Area	BC	Area ratio	K factor
Nitrogen	7.4803	43	85282	FU	8.816761	.134923E+07
Carbon	35.3509	68	751915	FU	1.000000	.251716E+07
Hydrogen	3.3899	181	164092	RS	4.582274	.572859E+07
Totals	46.2210		1001289			

Figure S33. CHN analysis of the compound 1b.

Figure S34. ¹H NMR spectrum of the compound 1c in CDCl₃.

Figure S35. ${}^{13}C{}^{1}H$ NMR spectrum of the compound 1c in CDCl₃.

Figure S36. ³¹P NMR spectrum of the compound **1c** in CDCl₃.

Figure S37. IR spectrum of the compound 1c.

Elemental Composition Report

Monoisotopic Mass, Odd and Even Electron lons

Single Mass Analysis (displaying only valid results) Tolerance = 10.0 PPM / DBE: min = -1.5, max = 200.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

56 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)

Eager 300 Report Page: 1 Sample: PG-SM-2-129-1 (PG-SM-2-129-1)

Method Name:SP240812Method File:D:\CHNS2012\SP240812.mthChromatogram:PG-SM-2-129-1Operator ID:SDAnalysed:08/24/2012Sample ID:PG-SM-2-129-1Analysis Type:UnkNown (Area)

Company	Name	:	C.E. Instru	ments
Printed	1	:	8/24/2012	22:48
Instrum	nent N.	:	Instrument	#1
Sample	weight	:	1.321	

Calib. method : using 'K Factors'

!!! Warning missing one or more peaks.

Element Name	8	Ret.Time	Area	BC	Area ratio	K factor
1	0.0000	17	52004	FU		0.0000
Nitrogen	5.6578	42	88671	FU	16.554720	.118640E+07
Carbon	45.0742	65	1467931	FU	1.000000	.246051E+07
Hydrogen	4.0484	184	285853	RS	5.135264	.534512E+07
Totals	54.7804		1894459			

Figure S39. CHN analysis of the compound 1c.

Figure S40. ¹H NMR spectrum of the compound 2a in CDCl₃.

FG-SM-Z-IUD-Z

File: xp Pulse Sequence: s2pul Solvent: cdc13 Ambient temperature Operator: vnmr1 HO Mercury-400BB "Mercury400" N+ N-N Relax. delay 1.000 sec Θ Pulse 45.0 degrees Acq. time 1.300 sec Width 24154.6 Hz 284 repetitions Рń OBSERVE C13, 100.5500016 MHz DECOUPLE H1, 399.8823229 MHz (2a) Power 39 dB continuously on WALTZ-16 modulated DATA PROCESSING Line broadening 0.5 Hz FT size 65536 Total time 18 hr, 24 min, 37 sec 29. 939 130.996 -129.486 -77.318 .995 -76.680 561 557 20. 68. 857 579 49.218 632 76. 56. 24.344 14 49. 200 180 160 140 120 100 80 60 40 20 ppm

Figure S41. ${}^{13}C{}^{1}H$ NMR spectrum of the compound 2a in CDCl₃.

Figure S42. IR spectrum of the compound 2a.

Figure S43. Mass spectrum of the compound 2a.

Eager 300 Report

Page: 1 Sample: pg-sm-2-105-1

Method Name	:	Nitrogen/Carbon/Hydrogen/Sulphur							
Method File	:):\CHNS2012\SP-020712.mth							
Chromatogram	:	pg-sm-2-53-1							
Operator ID	:		Company Name	:	C.E. Instruments				
Analysed	:	07/02/2012 13:39	Printed	:	7/2/2012 16:47				
Sample ID	:	pg-sm-2-53-1 (# 10)	Instrument N.	:	Instrument #1				
Analysis Type	:	UnkNown (Area)	Sample weight	:	.832				

Calib. method : using 'K Factors'

!!! Warning missing one or more peaks.

Element Name

Nitrogen	12.6818
Carbon	50.2822
Hydrogen	5.7598
Sulphur	0.
Totals	68.7238

Figure S44. CHN analysis of the compound 2a.

File: home/vnmr1/data/PG/2012/Apri1/24-apr/PG-SM-2-113-1-1H.fid

Figure S45. ¹H NMR spectrum of the compound **2b** in CDCl₃.

Figure S46. ${}^{13}C{}^{1}H$ NMR spectrum of the compound **2b** in CDCl₃.

Figure S47. IR spectrum of the compound 2b.

Figure S48. Mass spectrum of the compound **2b** [plot (a)] along with its experimental [plot (b)] and theoretical [plot (c)] isotopic mass distributions are shown.

Eager 300 Report

Sample: PG-SM-2B-2 (PG-SM-2B-2) Page: 1

: PGCP01062015

Method File	:	D:\CHNS-2015\PGCP010620	Ph		
Chromatogram	2	PG-SM-2B-2			
Operator ID	:	CHANDNI	Company Name	e :	C.E. Instruments
Analysed	:	06/01/2015 18:10	Printed	:	6/1/2015 23:39
Sample ID	:	PG-SM-2B-2 (# 14)	Instrument N.	:	Instrument #1
Analysis Type	:	UnkNown (Area)	Sample weight	: :	. 683

Calib. method : using 'K Factors'

Method Name

!!! Warning missing one or more peaks.

Element Name	8	Ret.Time	Area	BC	Area ratio	K factor
Nitrogen	8.5 996	41	74444	FU	8.834227	.126746E+07
Carbon	36. 7489	65	657657	FU	1.000000	.262020E+07
Hydrogen	3.6232	178	178902	RS	3.676073	.661307E+07
Totals	48.9717		911003			

Figure S49. CHN analysis of the compound 2b.

Figure S50. ORTEP diagram of **2b** with thermal ellipsoids shown at the 50 % probability level. Selected bond lengths (Å) and angles (°): Pd(1)-C(6) 1.986(5), Pd(1)-N(1) 2.094(4), Pd(1)-I(1) 2.6287(9), Pd(1)-I(2) 2.6017(9), C(6)-Pd(1)-N(1) 178.7(2), C(6)-Pd(1)-I(1) 90.55(15), N(1)-Pd(1)-I(1) 90.13(13), C(6)-Pd(1)-I(2) 88.80(15), N(1)-Pd(1)-I(2) 90.51(13), I(1)-Pd(1)-I(2) 179.33(2).

Figure S51. ¹H NMR spectrum of the compound **2c** in CDCl₃.

Figure S52. ${}^{13}C{}^{1}H$ NMR spectrum of the compound **2c** in CDCl₃.

Figure S53. ³¹P NMR spectrum of the compound **2c** in CDCl₃.

Figure S54. IR spectrum of the compound 2c.

Elemental Composition Report

Single Mass Analysis (displaying only valid results) Tolerance = 5.0 PPM / DBE: min = -1.5, max = 200.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron Ions

297 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass)

HO

N-N

Ρh

-PPh₃

Pd-

(2c)

Figure S55. Mass spectrum of the compound 2c.

Eager 300 Report

HO

N-M

-PPh₃

Page: 1 Sample: PG-SM-2-165-1 (PG-SM-2-165-1)

Method Name	:	SP-081012			
Method File	:	D:\CHNS2012\SP-081012.r	Ph		
Chromatogram	:	PG-SM-2-165-1			(2 c)
Operator ID	:	MNRAO	Company Name):	C.E. Instruments
Analysed	:	10/08/2012 12:49	Printed	:	10/8/2012 16:47
Sample ID	:	PG-SM-2-165-1 (# 8)	Instrument N.	:	Instrument #1
Analysis Type	:	UnkNown (Area)	Sample weight	: :	.619

Calib. method : using 'K Factors'

!!! Warning missing one or more peaks.

Element Name	00	Ret.Time	Area	BC	Area ratio	K factor
1	0.0000	18	18140	RS		0.0000
Nitrogen	5.2576	44	38795	RS	18.523130	.119206E+07
Carbon	46.5166	68	718605	RS	1.000000	.248813E+07
Hydrogen	3.7126	190	131712	RS	5.455881	.573142E+07
Totals	55.4867		907252			

Figure S56. CHN analysis of the compound 2c.

Figure S57. ORTEP diagram of **2c** with thermal ellipsoids shown at the 50 % probability level. Selected bond lengths (Å) and angles (°): Pd(1)-P(1) 2.3515(9), Pd(1)-I(2) 2.6017(3), Pd(1)-I(1) 2.6195(3) C(42)-Pd(1) 2.042(3), C(42)-Pd(1)-P(1) 177.97(9), C(42)-Pd(1)-I(2) 84.24(8), P(1)-Pd(1)-I(2) 96.58(2), C(42)-Pd(1)-I(1) 88.31(8), P(1)-Pd(1)-I(1) 91.04(2), I(2)-Pd(1)-I(1) 170.950(12).

Figure S58. ¹H NMR spectrum of the compound **3b** in CDCl₃.

Figure S59. ${}^{13}C{}^{1}H$ NMR spectrum of the compound **3b** in CDCl₃.

Figure S60. IR spectrum of the compound 3b.

Figure S61. Mass spectrum of the compound 3b [plot (a)] along with its experimental [plot (b)] and theoretical [plot (c)] isotopic mass

distributions are shown.

Eager 300 Report Page: 1 Sample: PG-SM-3-28 (PG-SM-3-28) N-N Method Name : SP-290413 Ρh : D:\CHNS2012\SP-290413.mth Method File (**3b**) Chromatogram : PG-SM-3-28 Operator ID : MNRAO Company Name : C.E. Instruments : 04/29/2013 15:04 Analysed Printed : 4/29/2013 17:10 Sample ID : PG-SM-3-28 (# 18) Instrument N. : Instrument #1 Analysis Type : UnkNown (Area) Sample weight : .862

Calib. method : using 'K Factors'

!!! Warning missing one or more peaks.

Element Name	ଚ	Ret.Time	Area	BC	Area ratio	K factor
Nitrogen	7.4441	43	97728	RS	8.671081	.152300E+07
Carbon	36.8202	67	847403	RS	1.000000	.266991E+07
Hydrogen	2.6736	184	158256	RS	5.354634	.609525E+07
Totals	46.9379		1103387			

Figure S62. CHN analysis of compound 3b.

Figure S63. ORTEP diagram of **3b** with thermal ellipsoids shown at the 50 % probability level. Selected bond lengths (Å) and angles (°): Pd(1)-C6 1.967(3), Pd(1)-N(1) 2.104(2), Pd(1)-I(1) 2.5968(9), Pd(1)-I(2) 2.6104(9), C(6)-Pd(1)-N(1) 177.24(10), C(6)-Pd(1)-I(1) 86.56(7), N(1)-Pd(1)-I(1) 91.38(6), C(6)-Pd(1)-I(2) 89.39(7), N(1)-Pd(1)-I(2) 92.75(6), I(1)-Pd(1)-I(2) 175.183(10).

Figure S64. ¹H NMR spectrum of the compound **3c** in CDCl₃.

Figure S65. ${}^{13}C{}^{1}H$ NMR spectrum of the compound **3c** in CDCl₃.

Figure S66. ³¹P NMR spectrum of the compound **3c** in CDCl₃.

Figure S67. IR spectrum of the compound 3c.

Figure S68. Mass spectrum of the compound 3c.

Figure S69. CHN analysis of compound 3c.

67

184

937846 FU

182901 RS

1182385

1.000000 .266884E+07

5.127613 .636350E+07

47.9529

57.1903

3.4570

Carbon

Totals

Hydrogen

S. No.	compound	³¹ P NMR (δ, ppm)	C _{carbene} -Pd bond (Å)	Pd-P _{phosphine} bond (Å)	Reference
1.		20.9	2.028(5)	2.3185(14)	1
2.	Br Br O-	21.6	2.031(4)	2.3563(11)	2
3.	Pd P(OMe) ₃	107.9	2.056(4)	2.2694(12)	3
4.	$ \begin{array}{c} $	97.3	2.0482(11)	2.2845(3)	3
5.	$ \begin{array}{c} $	92.2	2.0357(19)	2.2666(5)	3
6.	$ \begin{array}{c} & & \\ & & $	93.1	2.031(2)	2.2729(7)	3
7.		110.0	2.051(2)	2.2710(8)	3
8.		17.0	2.047(5)	2.3571(13)	this work
	(1c)				

Table S1. Selected ³¹P NMR and the metrical data showing the $C_{carbene}$ -Pd and Pd-P_{phosphine} bond distances for the *trans*-(NHC)Pd(PR₃)X₂ (X = Cl, Br, and I; R = Ph, Cy, OMe, O^{*i*}Pr, OPh, and OC₆H₃-2,4-^{*t*}Bu₂) type complexes.

S. No.	compound	³¹ P NMR (δ, ppm)	C _{carbene} -Pd bond (Å)	Pd-P _{phosphine} bond (Å)	Reference
1.	PPh ₃ Pd—Br Br	26.8	1.982(3)	2.2823(10)	2
2.	PPh ₃ Pd—Br Br	26.7	1.979(3)	2.2574(10)	2
3.	PPh ₃ P ^P d-Br	27.1	2.001(4)	2.2667(9)	4
4.	MeO H PPh ₃ PPh ₃ Pd Br	27.2	1.986(2)	2.2620(9)	4
5.	BuO BuO BuO N Pd I	23.5	1.985(3)	2.2973(7)	5
6.	PPh ₃ Pd-1	23.3	1.998(3) 1.995(3)	2.2762(8) 2.2686(8)	a, 5
7.	OBu PPh ₃ Fd—I	27.0	1.993(5)	2.2812(14)	6
8.	N N I Pa-I	29.3	1.996(7)	2.2765(16)	7
9.		29.4	2.012(8)	2.266(3)	7
10.			1.968(8)	2.251(2)	8
11.	N PPh ₃ Pd Br	26.9	1.988(5)	2.2686(14)	9
12.	Ph ₃ P Ph ₃ P Pd Br Br Br	28.0	1.968(5)	2.2663(15)	9
13.	N Br	26.6	1.978(3)	2.2624(8)	10

Table S2. Selected ³¹P NMR and the metrical data showing the C_{carbene}-Pd and Pd-P_{phosphine} bond distances for the *cis*-(NHC)Pd(PR₃) X_2 (X = Cl, Br, and I) type complexes.

a. A small peak due to the *trans* isomer appeared at 16.3 ppm.
Table S3. Bond lengths (*d*), bond dissociation energies (D_e) and Charge Decomposition Analysis (CDA) studies of in (1-3)b depicting (*a*-NHC) \rightarrow PdI₂(NC₅H₅) σ -donation (*d*), the (*a*-NHC) \leftarrow PdI₂(NC₅H₅) π -back donation (*b*) and the *d/b* ratio. The experimental bond lengths are given in parenthesis.

Complex	<i>d</i> /(<i>a</i> -NHC)–PdI ₂ (NC ₅ H ₅) (Å)	D _e /(a-NHC)–PdI ₂ (NC ₅ H ₅) (kcal/mol)	$\begin{array}{c} a\text{-NHC} \rightarrow \text{PdI}_2(\text{NC}_5\text{H}_5) \\ (d) \end{array}$	$a-\text{NHC} \leftarrow \text{PdI}_2(\text{NC}_5\text{H}_5)$ (b)	<i>d/b</i> ratio
$HO \qquad I \qquad $	1.996 [1.980(3)]	80.9	0.324	0.063	5.14
HO H	1.997 [1.986(5)]	81.2	0.325	0.065	5.00
$ \begin{array}{c} $	1.988 [1.967(3)]	81.4	0.281	0.073	3.85

Table S4. Bond lengths (*d*), bond dissociation energies (D_e) and Charge Decomposition Analysis (CDA) studies of in (1-3)c depicting the (*a*-NHC) \rightarrow PdI₂(PPh₃) σ -donation (*d*), the (*a*-NHC) \leftarrow PdI₂(PPh₃) π -back donation (*b*) and the *d/b* ratio. The experimental bond lengths are given in parenthesis.

Complex	d/(a-NHC)–PdI ₂ (PPh ₃) (Å)	<i>D</i> _e /(<i>a</i> -NHC)–PdI ₂ (PPh ₃) (kcal/mol)	$\begin{array}{c} a\text{-NHC} \rightarrow \text{PdI}_2(\text{PPh}_3) \\ (d) \end{array}$	$a-\text{NHC} \leftarrow \text{PdI}_2(\text{PPh}_3)$ (b)	<i>d/b</i> ratio
$HO \qquad I \\ N O \qquad Pd \qquad PPh_3 \\ Ph \\ (1c)$	2.040 [2.047(5)]	64.9	0.318	0.051	6.24
$HO \qquad I \\ N \qquad Pd \qquad PPh_3 \\ Ph \qquad (2c)$	2.041 [2.042(3)]	64.8	0.322	0.049	6.57
$ \begin{array}{c} $	2.029 [2.006(6)]	64.9	0.247	0.064	3.86

Table S5. Bond lengths (*d*), bond dissociation energies (D_e) and Charge Decomposition Analysis (CDA) studies of (1-3)**b** depicting the (*a*-NHC)PdI₂ \leftarrow (NC₅H₅) σ -donation (*d*), the (*a*-NHC)PdI₂ \rightarrow (NC₅H₅) π -back donation (*b*) and the *d/b* ratio. The experimental bond lengths are given in parenthesis.

Complex	<i>d</i> /(<i>a</i> -NHC)PdI ₂ -(NC ₅ H ₅) (Å)	$D_{e}/(a-NHC)PdI_{2}-(NC_{5}H_{5})$ (kcal/mol)	$(NC_5H_5) \rightarrow PdI_2(a-NHC)$ (d)	$(NC_5H_5) \leftarrow PdI_2(a-NHC)$ (b)	<i>d/b</i> ratio
HO I I I I I I I I I I I I I I I I I I I	2.147 [2.091(3)]	30.5	0.172	0.013	13.2
HO H	2.149 [2.094(4)]	30.3	0.173	0.014	12.4
$ \begin{array}{c} $	2.145 [2.104(2)]	30.3	0.171	0.012	14.3

Table S6. Bond lengths (*d*), bond dissociation energies (D_e) and Charge Decomposition Analysis (CDA) studies of (**1-3**)**c** depicting the (*a*-NHC)PdI₂ \leftarrow (PPh₃) σ -donation (*d*), the (*a*-NHC)PdI₂ \rightarrow (PPh₃) π -back donation (*b*) and the *d/b* ratio. The experimental bond lengths are given in parenthesis.

Complex	d/(PPh ₃)–PdI ₂ (<i>a</i> -NHC) (Å)	D _e /(PPh ₃)–PdI ₂ (<i>a</i> -NHC) (kcal/mol)	$(PPh_3) \rightarrow PdI_2(a-NHC)$ (d)	$(PPh_3) \leftarrow PdI_2(a-NHC)$ (b)	<i>d/b</i> ratio
HO I I I I I I I I I I I I I I I I I I I	2.414 [2.3571(13)]	32.7	0.274	0.054	5.07
HO HO N N N Ph (2c)	2.413 [2.3515(9)]	32.7	0.274	0.055	4.98
$ \begin{array}{c} $	2.358 [2.2804(17)]	37.9	0.262	0.127	2.06

	Natural Charge							
specie/compound	Pd	Ccarbene	N _{Pyridine}	Р	I1	I2	0	
	-0.103	0.055	-0.447		-0.328	-0.333	-0.766	
$(\mathbf{1b})$ $(\mathbf{1b})$ $(\mathbf{1b})$ $(\mathbf{1c})$ $(1$	-0.105	0.055	-0.447		-0.329	-0.332	-0.769	
Ph	-0.071	0.066	-0.448		-0.330	-0.342		
(3b) HO N Pd Ph $(1c)$	-0.313	0.027		1.14	-0.287	-0.309	-0.772	
$HO \qquad I \\ N \qquad Pd \qquad PPh_3 \\ Ph \qquad (2c)$	-0.317	0.027		1.14	-0.286	-0.311	-0.769	
PPh_{3} $Pd - I$ Ph $(3c)$	-0.299	0.027		1.17	-0.301	-0.311		

Table S7. Natural charge distribution on selected atoms of in (1-3)b and in (1-3)c.

77

Table S8. Natural charge analyses of the 1b and 2b complexes.

compound/specie	C _{carbene}	Pd	compound/specie	C _{carbene}	Pd
		0.245	Pd—PPh ₃		-0.009
	-0.139			-0.164	
$ \begin{array}{c} $	0.066	-0.071	$HO \qquad I \\ N \qquad Pd \qquad PPh_3 \\ N \qquad N \qquad I \\ Ph \qquad (1c)$	0.027	-0.313

Table S9. Natural charge analyses of the 3b and 1c complexes.

Table S10. Natural charge analyses of the 2c and 3c complexes.

compound/specie	N _{pyridine}	Pd	compound/specie	N _{pyridine}	Pd
N	-0.457		N	-0.457	
HO N N N N HO Pd Ph		0.044	HO N N Ph		0.042
HO - I - Pd - N $Ph - I$ $(1b)$	-0.447	-0.103	HO - I = I $N - N = Pd - N$ $Pd - N = I$ Ph $(2b)$	-0.447	-0.105

Table S11. Natural charge analyses of the 1b and 2b complexes.

compound/specie	N _{pyridine}	Pd	compound/specie	P _{triphenylphosphine}	Pd
N	-0.456		PPh ₃	0.902	
N N N N N N N N N N N N N N N N		0.073	HO N N N Ph		0.054
$ \begin{array}{c} $	-0.447	-0.071	HO HO N N Pd PPh B (1c)	3 1.14	-0.314

Table S12. Natural charge analyses of the 3b and 1c complexes.

compound/specie	P _{triphenylphosphine}	Pd	compound/specie	P _{triphenylphosphine}	Pd
PPh ₃	0.902		PPh ₃	0.901	
HO N N N N I Ph		0.052	N N N N N I Ph		0.113
HO H	1.14	-0.317	PPh_{3} $Pd - I$ Ph $(3c)$	1.17	-0.299

Table S13. Natural charge analyses of the 2c and 3c complexes.

compound/specie	C _{carbene}	Pd	compound/specie	C _{carbene}	Pd
		0.147			0.147
HONON	-0.130		HONNNN	-0.135	
HO I N Pd N Ph $(1b)$	0.192	-0.242	HO - I = N = Pd - N	0.187	-0.236

Table S14. Mulliken charge analyses of the 1b and 2b complexes.

compound/specie	C _{carbene}	Pd	compound/specie	C _{carbene}	Pd
		0.140	Pd—PPh ₃		-0.166
N N N N Ph	-0.108			-0.134	
$ \begin{array}{c} $	0.196	-0.146	HO I N Pd PPh ₃ Ph (1c)	0.169	-0.528

Table S15. Mulliken charge analyses of the 3b and 1c complexes.

compound/specie	C _{carbene}	Pd	compound/specie	Ccarbene	Pd
Pd—PPh ₃		-0.164	PPh ₃ / PdI I		-0.168
HO NON NNN Ph	-0.135		N N N Ph	-0.096	
$HO \qquad I \\ N \qquad Pd \qquad PPh_3 \\ Ph \\ (2c)$	0.169	-0.537	PPh_{3} $Pd - I$ Ph $(3c)$	0.135	-0.342

Table S16. Mulliken charge analyses of the 2c and 3c complexes.

compound/specie	N _{pyridine}	Pd	compound/specie	N _{pyridine}	Pd
N	-0.351		N	-0.351	
HO N N N N HO Pd Ph		-0.147	HO N N Pd Ph		-0.144
HO I I I I I I I I I I I I I I I I I I I	-0.392	-0.242	$HO \qquad I \\ N \qquad Pd \qquad N \qquad Ph \qquad (2b)$	-0.392	-0.236

Table S17. Mulliken charge analyses of the 1b and 2b complexes.

compound/specie	N _{pyridine}	Pd	compound/specie	Ptriphenylphosphine	Pd
N	-0.351		PPh ₃	0.324	
N N N N N N N N N N N N N		-0.051	HO N N N N Ph		-0.144
$ \begin{array}{c} $	-0.393	-0.146	$ HO I HO I HO Pd PPh_3 Ph Ph Ic)$	0.608	-0.528

Table S18. Mulliken charge analyses of the 3b and 1c complexes.

compound/specie	P _{triphenylphosphine}	Pd	compound/specie	Ptriphenylphosphine	Pd
PPh ₃	0.324		PPh ₃	0.316	
HO N N N N I Ph		-0.151	N Pd I N N I Ph		-0.070
$HO \qquad I \\ N \qquad Pd \qquad PPh_3 \\ N \qquad N \qquad I \\ Ph \\ (2c)$	0.610	-0.537	PPh_{3} $Pd - I$ Ph $(3c)$	0.580	-0.342

Table S19. Mulliken charge analyses of the 2c and 3c complexes.

Table S20. Percentage (%) of electron contribution and repulsive polarization (r) in (1-3)b and (1-3)c are shown.

compound	% of electron contribution in (<i>a</i> -NHC)–Pd bond	repulsive polarization (r)	compound	% of electron contribution in (<i>a</i> -NHC)–Pd bond	repulsive polarization (r)
$ \begin{array}{c} $	31.0% (Pd) 69.0% C _{carbene})	-0.197	$HO HO Pd PPh_3$	24.4% (Pd) 75.6% (C _{carbene})	-0.218
	31.1% (Pd) 68.9% C _{carbene})	-0.195	$HO HO Pd PPh_3$	24.5% (Pd) 75.5% (C _{carbene})	-0.221
(3b)	30.8% (Pd) 69.2% C _{carbene})	-0.167	$ \begin{array}{c} $	23.7% (Pd) 76.3% (C _{carbene})	-0.242

compound/specie	repulsive polarization (<i>r</i>) of (<i>a</i> -NHC)PdI ₂ -(NC ₅ H ₅)	compound/specie	repulsive polarization (<i>r</i>) of (PPh ₃)–PdI ₂ (<i>a</i> -NHC)
HO I I I I I I I I I I I I I I I I I I I	-0.132	$HO \qquad I \\ N \qquad Pd \qquad PPh_3 \\ N \qquad N \qquad I \\ Ph \qquad (1c)$	-0.190
	-0.132	HO NO Pd Ph	-0.192
(2b) $(2b)$ I $N = Pd = N$ Ph $(3b)$	-0.130	$(2c)$ PPh_{3} $Pd - I$ Ph $(3c)$	-0.211

Table S21. Repulsive polarization (r) in (1-3)b and (1-3)c are shown.

compound	1b	2b	3b
lattice	Orthorhombic	Monoclinic	Triclinic
formula	$C_{21}H_{26}I_2N_4OPd$	$C_{22}H_{28}I_2N_4OPd$	$C_{21}H_{20}I_2N_4Pd$
formula weight	710.66	724.68	688.61
Space group	Pbcn	Ia	<i>P</i> -1
a/Å	18.784(5)	8.031(3)	9.668(3)
b/Å	16.650(5)	17.800(5)	10.097(4)
c/Å	15.453(4)	17.397(6)	13.798(5)
α/°	90.000	90.000	110.578(3).
β/°	90.000	95.552(14).	90.704(2)
γ/°	90.000	90.000	115.409(5)
$V/Å^3$	4833(2))	2475.2(14)	1117.6(7)
Z	8	4	2
temperature (K)	150(2)	150(2)	150(2)
radiation (λ ,Å)	0.71075	0.71075	0.71075
ρ (calcd.), Mg	1.953	1.945	2.046
m ³			
μ(Mo Ka), mm ⁻	3.342	3.265	3.606
1			
θ max, deg.	25.000	24.990	25.000
No. of data	4243	4304	3875
No. of	263	272	253
parameters			
R ₁	0.0271	0.0251	0.0185
wR_2	0.0504	0.0465	0.0376
GOF	1.247	0.941	0.975

 Table S22.
 X-ray crystallographic data for 1b–3b.

1c	2c	3c
Orthorhombic	Orthorhombic	Orthorhombic
$C_{34}H_{36}I_2N_3OPPd$	$C_{35}H_{38}I_2N_3OPPd$	$C_{34}H_{30}I_2N_3PPd$
893.83	907.85	871.78
Pbca	Pbca	Pbca
15.928(4)	16.1205(3)	17.887(6)
16.099(4)	16.2538(5)	18.351(7)
26.191(6)	26.3092(6)	19.356(6)
90.00	90	90.00
90.00	90	90.00
90.00	90	90.00
6716(3)	6893.5(3)	6353(4)
8	8	8
150(2)	150(2)	150(2)
0.71075	0.71073	0.71075
1.768	1.750	1.823
2.470	2.408	2.606
25.39°.	27.48	25.00
6138	7871	5586
379	390	370
0.0463	0.0323	0.0575
0.0915	0.0644	0.0816
1.409	1.013	1.273
	lc Orthorhombic C ₃₄ H ₃₆ I ₂ N ₃ OPPd 893.83 Pbca 15.928(4) 16.099(4) 26.191(6) 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 90.00 6716(3) 8 150(2) 0.71075 1.768 2.470 25.39°. 6138 379 0.0463 0.0915 1.409	Ic 2c Orthorhombic Orthorhombic C ₃₄ H ₃₆ I ₂ N ₃ OPPd C ₃₅ H ₃₈ I ₂ N ₃ OPPd 893.83 907.85 Pbca Pbca 15.928(4) 16.1205(3) 16.099(4) 16.2538(5) 26.191(6) 26.3092(6) 90.00 90 90.00 90 90.00 90 90.00 90 90.00 90 90.00 90 90.00 90 90.00 90 91.00 90 90.00 90 90.00 90 91.00 90 92.00 90 90.00 90 90.00 90 91.00 90 92.00 90 93.00 20.01 1.768 1.750 2.470 2.408 25.39°. 27.48 6138 7871 379 390

 Table S23.
 X-ray crystallographic data for 1c–3c.

The Density Functional Theory (DFT) computation studies on complexes (1-3)b and

(1-3)c were carried out using GAUSSIAN 09 suite of quantum chemical programs.

Table S24. B3LYP/SDD, 6-31G(d) level optimized coordinates of 1b (trans).

Ground state electronic energy = -1260.9680148 Hartree/Particle.

Pd	-0.802618000	-0.526619000	0.085979000
Ι	-0.167279000	-0.446009000	-2.554894000
Ι	-1.282570000	-0.587513000	2.764325000
0	0.306589000	4.155789000	1.264555000
Н	-0.125254000	3.803886000	2.061518000
Ν	-2.522036000	-1.750978000	-0.308198000
Ν	2.010747000	0.079315000	0.818643000
Ν	2.946036000	0.981174000	1.067992000
Ν	2.342642000	2.132815000	0.861930000
С	-2.654422000	-2.959152000	0.270315000
Η	-1.861389000	-3.252038000	0.948080000
С	-3.751095000	-3.783687000	0.036747000
Н	-3.806355000	-4.750777000	0.525486000
С	-4.760651000	-3.338751000	-0.815336000
Η	-5.632358000	-3.956310000	-1.011876000
С	-4.628101000	-2.084809000	-1.410017000
Н	-5.384184000	-1.693440000	-2.082575000
С	-3.492773000	-1.326989000	-1.138354000
Η	-3.334849000	-0.359778000	-1.600742000
С	0.795911000	0.606455000	0.465473000
С	1.025187000	1.986460000	0.493574000
С	2.347804000	-1.347520000	1.025565000
Η	1.476944000	-1.893413000	0.658777000
Η	2.415204000	-1.506915000	2.105512000
С	3.617563000	-1.771106000	0.323299000
С	3.622504000	-1.987332000	-1.061890000
Η	2.711064000	-1.835084000	-1.635465000
С	4.792370000	-2.393789000	-1.703328000
Η	4.786336000	-2.560550000	-2.777047000
С	5.964363000	-2.593502000	-0.968681000
Η	6.873457000	-2.914832000	-1.470122000
С	5.963600000	-2.384167000	0.411217000
Η	6.870718000	-2.540919000	0.988665000
С	4.793853000	-1.973490000	1.053301000
Η	4.793834000	-1.809912000	2.128340000
С	3.156976000	3.341745000	1.019314000
Η	3.952746000	3.108463000	1.726784000
Η	2.516180000	4.139053000	1.388828000
Η	3.592724000	3.618613000	0.055867000
С	0.121164000	3.182605000	0.213504000

С	0.531513000	3.880131000	-1.104447000
Η	0.487492000	3.127344000	-1.901412000
Η	1.572586000	4.216177000	-1.037930000
С	-0.378962000	5.070481000	-1.445486000
Η	-0.238625000	5.855822000	-0.692876000
Η	-0.070515000	5.491250000	-2.410594000
С	-1.856249000	4.657202000	-1.487663000
Η	-2.489356000	5.532458000	-1.680027000
Η	-2.016370000	3.960913000	-2.323948000
С	-2.270183000	3.977486000	-0.175382000
Η	-3.310230000	3.633030000	-0.231120000
Η	-2.221449000	4.705501000	0.644453000
С	-1.364938000	2.778376000	0.147434000
Η	-1.659186000	2.313291000	1.096572000
Η	-1.483811000	2.006801000	-0.622007000

 Table S25.
 B3LYP/SDD, 6-31G(d) level optimized coordinates of 1b (cis).

Ground state electronic energy $= -1260.9432886$ Hartree/Par	ticle.
--	--------

Pd	0.619427000	-0.768322000	-0.128623000
Ι	1.615127000	0.013975000	-2.500318000
0	1.349419000	3.976683000	-0.365284000
Η	1.756685000	3.478146000	-1.096300000
Ν	-1.741246000	0.917558000	-0.918947000
Ν	-2.253502000	2.122727000	-1.109769000
Ν	-1.373026000	2.933207000	-0.561318000
С	-0.525820000	0.905813000	-0.281260000
С	-0.296669000	2.263641000	-0.022046000
С	-2.455076000	-0.233536000	-1.514228000
Η	-1.845663000	-1.101422000	-1.257225000
Η	-2.414996000	-0.106423000	-2.599483000
С	-3.879136000	-0.363430000	-1.022260000
С	-4.151390000	-0.950389000	0.220969000
Η	-3.332432000	-1.322963000	0.831512000
С	-5.465123000	-1.067421000	0.674813000
Η	-5.664779000	-1.527902000	1.638679000
С	-6.522143000	-0.603920000	-0.112525000
Η	-7.545914000	-0.699930000	0.238714000
С	-6.259502000	-0.024492000	-1.354903000
Н	-7.077432000	0.332429000	-1.974646000
С	-4.943944000	0.095084000	-1.806097000
Η	-4.741414000	0.547175000	-2.773672000
С	-1.647084000	4.370027000	-0.662580000
Η	-2.295730000	4.514997000	-1.526372000
Η	-0.697874000	4.886100000	-0.795316000
Η	-2.154507000	4.721125000	0.239252000
С	0.884956000	3.009944000	0.597160000
С	0.447061000	3.816368000	1.844522000
Η	0.009750000	3.108331000	2.562263000
Н	-0.344010000	4.524920000	1.580847000

С	1.614837000	4.570039000	2.500404000
Η	1.975112000	5.336575000	1.804119000
Η	1.247934000	5.093314000	3.392391000
С	2.765689000	3.622710000	2.861538000
Η	3.607962000	4.189973000	3.276246000
Н	2.436070000	2.929518000	3.650739000
С	3.212633000	2.821280000	1.632780000
Н	3.990805000	2.098577000	1.904098000
Н	3.655464000	3.501712000	0.894920000
С	2.041646000	2.064208000	0.986467000
Н	2.385245000	1.517675000	0.103039000
Н	1.668300000	1.304495000	1.684695000
Ι	2.287019000	-2.912758000	0.010633000
Ν	-0.354775000	-1.412207000	1.677375000
С	-0.763387000	-2.691359000	1.805305000
Η	-0.532723000	-3.348884000	0.976516000
С	-1.414377000	-3.155853000	2.945878000
Н	-1.724399000	-4.194560000	2.993412000
С	-1.636582000	-2.279977000	4.006664000
Η	-2.130380000	-2.618098000	4.913054000
С	-1.206421000	-0.959582000	3.879506000
Η	-1.349190000	-0.237121000	4.676569000
С	-0.580371000	-0.566743000	2.700547000
Н	-0.245567000	0.453598000	2.558865000

 Table S26.
 B3LYP/SDD, 6-31G(d) level optimized coordinates of 2b (trans).

Ground state electronic energy = -1300.2835972 Hartree/Particle.

0 554520000		
0.554530000	-0.727080000	-2.527642000
1.265066000	-0.098124000	2.823622000
-1.254160000	4.069864000	0.636053000
-0.827049000	4.012435000	1.507232000
2.956319000	-1.258139000	-0.034773000
-1.928487000	-0.356207000	0.631387000
-3.047967000	0.337593000	0.752661000
-2.688949000	1.577524000	0.490966000
3.874345000	-0.728567000	-0.864308000
3.555055000	0.131081000	-1.441528000
5.155057000	-1.256848000	-0.997762000
5.858968000	-0.787941000	-1.677341000
5.498791000	-2.387668000	-0.258458000
6.488260000	-2.827318000	-0.345455000
4.546005000	-2.942824000	0.594254000
4.763198000	-3.821939000	1.191897000
3.291910000	-2.345693000	0.683687000
2.530570000	-2.727416000	1.353580000
-0.829235000	0.396145000	0.311370000
-1.344812000	1.692974000	0.217365000
	0.534530000 1.265066000 -1.254160000 -0.827049000 2.956319000 -1.928487000 -3.047967000 -2.688949000 3.874345000 3.874345000 5.155057000 5.858968000 5.498791000 6.488260000 4.546005000 4.763198000 3.291910000 2.530570000 -0.829235000 -1.344812000	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

С	-1.969269000	-1.808509000	0.910108000
Η	-2.016223000	-1.927835000	1.996552000
Η	-0.999875000	-2.180762000	0.572819000
С	-3.114454000	-2.515950000	0.222783000
С	-3.097126000	-2.706152000	-1.166348000
Η	-2.260939000	-2.329618000	-1.751353000
С	-4.146742000	-3.375165000	-1.794725000
Η	-4.124317000	-3.519165000	-2.871555000
С	-5.218344000	-3.866279000	-1.043373000
Η	-6.032959000	-4.391416000	-1.535102000
С	-5.237543000	-3.684456000	0.339999000
Η	-6.066337000	-4.065924000	0.930317000
С	-4.189391000	-3.009467000	0.969195000
Η	-4.206329000	-2.865871000	2.047041000
С	-3.760433000	2.591867000	0.588094000
Η	-3.432356000	3.467610000	0.035915000
Η	-4.629959000	2.152804000	0.093462000
С	-4.072089000	2.950477000	2.039249000
Η	-4.894055000	3.673696000	2.063911000
Η	-3.200561000	3.404969000	2.517730000
Η	-4.371274000	2.064750000	2.606961000
С	-0.700322000	3.015927000	-0.179047000
С	-1.060384000	3.353245000	-1.645821000
Η	-0.725904000	2.511431000	-2.265147000
Η	-2.150158000	3.412565000	-1.754519000
С	-0.407851000	4.658626000	-2.125283000
Η	-0.659745000	4.818315000	-3.181025000
Η	-0.829927000	5.500416000	-1.562684000
С	1.114930000	4.625590000	-1.936117000
Η	1.556194000	5.583987000	-2.237172000
Η	1.546652000	3.857367000	-2.594454000
С	1.477567000	4.307167000	-0.479035000
Η	1.146717000	5.130930000	0.166722000
Η	2.565432000	4.230632000	-0.360217000
С	0.832066000	2.992910000	-0.010736000
Η	1.080901000	2.785736000	1.038178000
Η	1.238099000	2.154965000	-0.589562000

 Table S27.
 B3LYP/SDD, 6-31G(d) level optimized coordinates of 2b (cis).

Ground state electronic energy = -1300.2582901 Hartree/Particle.

Pd	0.947747000	-0.529683000	-0.191006000
Ι	1.454714000	0.709870000	-2.520030000
0	-0.273014000	4.176018000	0.088329000
Η	0.246313000	3.999454000	-0.715835000
Ν	-1.916230000	0.170707000	-0.793789000
Ν	-2.866431000	1.089388000	-0.854792000
Ν	-2.340390000	2.137189000	-0.258478000
С	-0.757213000	0.584763000	-0.187731000

С	-1.057801000	1.900453000	0.190220000
С	-2.169721000	-1.119841000	-1.470964000
Η	-1.249486000	-1.690832000	-1.338212000
Η	-2.279464000	-0.903547000	-2.537038000
С	-3.381227000	-1.842552000	-0.925102000
С	-3.288467000	-2.598843000	0.251026000
Η	-2.335340000	-2.674670000	0.768318000
С	-4.407572000	-3.260921000	0.756147000
Η	-4.322476000	-3.848054000	1.666639000
С	-5.631500000	-3.178061000	0.087696000
Η	-6.501962000	-3.698107000	0.478303000
С	-5.730504000	-2.431895000	-1.087798000
Η	-6.677955000	-2.368577000	-1.615882000
С	-4.610350000	-1.767552000	-1.590249000
Η	-4.689516000	-1.186855000	-2.505714000
С	-3.168206000	3.363928000	-0.189499000
Η	-2.472749000	4.178170000	0.001303000
Η	-3.845152000	3.257010000	0.664634000
С	-0.232260000	2.979292000	0.891116000
С	-0.858569000	3.356487000	2.257384000
Η	-0.907280000	2.441835000	2.864623000
Η	-1.890883000	3.695649000	2.121996000
С	-0.048959000	4.430755000	2.999858000
Η	-0.091093000	5.364830000	2.427147000
Η	-0.520740000	4.628589000	3.970691000
С	1.413496000	4.005919000	3.184776000
Η	1.983486000	4.809053000	3.667786000
Η	1.460040000	3.138570000	3.861224000
С	2.046407000	3.634930000	1.837680000
Η	3.070593000	3.270748000	1.978545000
Η	2.111612000	4.530434000	1.207182000
С	1.236233000	2.554924000	1.103843000
Η	1.694596000	2.326751000	0.136674000
Η	1.267583000	1.620148000	1.677046000
Ι	3.316168000	-1.868887000	-0.244613000
Ν	0.391108000	-1.617194000	1.577903000
С	0.497653000	-2.961637000	1.604084000
Η	0.899594000	-3.423559000	0.711102000
С	0.146394000	-3.716025000	2.721179000
Η	0.250075000	-4.795519000	2.686091000
С	-0.312791000	-3.064921000	3.864627000
Η	-0.581242000	-3.626798000	4.754539000
С	-0.415404000	-1.674452000	3.841740000
Η	-0.761835000	-1.116748000	4.705781000
С	-0.062381000	-0.993233000	2.680861000
Η	-0.139514000	0.085444000	2.620265000
С	-3.946679000	3.608227000	-1.479626000
Η	-3.267309000	3.706359000	-2.332029000
Η	-4.653347000	2.802146000	-1.687317000
Η	-4.505409000	4.544186000	-1.375620000

 Table S28.
 B3LYP/SDD, 6-31G(d) level optimized coordinates of 3b (*trans*).

Ground state electronic energy = -1182.1297983 Hartree/Particle.

Pd	-0.803557000	-0.408902000	0.073907000
Ι	-0.022800000	-0.665634000	-2.509121000
Ι	-1.413321000	-0.171349000	2.712829000
Ν	-2.515011000	-1.656592000	-0.265228000
Ν	1.981758000	0.403456000	0.857343000
Ν	2.859965000	1.391907000	0.973975000
Ν	2.197378000	2.450481000	0.550311000
С	-3.754563000	-1.184279000	-0.039475000
Н	-3.815697000	-0.170172000	0.337543000
С	-4.896436000	-1.949396000	-0.257814000
Η	-5.873769000	-1.519440000	-0.065101000
С	-4.753568000	-3.259457000	-0.712687000
Η	-5.625268000	-3.883679000	-0.887142000
С	-3.469301000	-3.752073000	-0.939247000
Η	-3.304522000	-4.763781000	-1.294865000
С	-2.378225000	-2.918495000	-0.711614000
Η	-1.363695000	-3.249050000	-0.900276000
С	0.758032000	0.783400000	0.377622000
С	0.913365000	2.157552000	0.168999000
С	2.386213000	-0.948807000	1.299283000
Η	1.550462000	-1.590453000	1.014032000
Η	2.438200000	-0.929643000	2.391483000
С	3.690662000	-1.412259000	0.691574000
С	3.763794000	-1.730195000	-0.672109000
Η	2.881105000	-1.624803000	-1.298957000
С	4.964070000	-2.176987000	-1.223440000
Η	5.011216000	-2.421716000	-2.281129000
С	6.098781000	-2.317721000	-0.419269000
Η	7.031764000	-2.670840000	-0.850573000
С	6.029683000	-2.007476000	0.939396000
Η	6.907343000	-2.116737000	1.570785000
С	4.829491000	-1.554021000	1.491032000
Η	4.777165000	-1.310534000	2.549614000
С	2.884953000	3.739064000	0.551279000
Η	3.673151000	3.693242000	1.302426000
Η	2.166268000	4.521099000	0.797971000
Η	3.320900000	3.937307000	-0.431032000
С	-0.036465000	3.163926000	-0.337040000
С	0.277045000	3.956742000	-1.452611000
Η	1.218643000	3.807366000	-1.973939000
С	-0.633454000	4.903263000	-1.921523000
Η	-0.385073000	5.504431000	-2.791644000
С	-1.865947000	5.064130000	-1.284867000
Η	-2.575717000	5.799985000	-1.652849000
С	-2.187021000	4.272640000	-0.179621000

Η	-3.144879000	4.394082000	0.318642000
С	-1.280074000	3.325344000	0.295263000
Η	-1.524407000	2.708788000	1.155187000

 Table S29.
 B3LYP/SDD, 6-31G(d) level optimized coordinates of 3b (cis).

Ground state electronic energy = -1182.1089253 Hartree/Particle.

Pd	0.747091000	-0.483848000	-0.107167000
Ι	1.286899000	-0.164086000	-2.712910000
Ν	-1.948183000	0.640225000	-0.963939000
Ν	-2.711020000	1.712278000	-1.135034000
Ν	-1.979414000	2.698757000	-0.654188000
С	-0.724782000	0.886327000	-0.398860000
С	-0.762916000	2.270619000	-0.179951000
С	-2.468697000	-0.656595000	-1.446233000
Η	-1.652195000	-1.362581000	-1.283489000
Η	-2.619548000	-0.560891000	-2.524170000
С	-3.742565000	-1.075196000	-0.745359000
С	-3.716013000	-1.491234000	0.593089000
Η	-2.772293000	-1.507774000	1.133119000
С	-4.890344000	-1.885089000	1.233306000
Η	-4.858119000	-2.208263000	2.270393000
С	-6.104092000	-1.874916000	0.540434000
Η	-7.017941000	-2.187883000	1.038066000
С	-6.137445000	-1.467289000	-0.793542000
Η	-7.076904000	-1.460348000	-1.339328000
С	-4.961420000	-1.066779000	-1.431397000
Η	-4.989611000	-0.747384000	-2.470199000
С	-2.521661000	4.052920000	-0.745437000
Η	-3.213327000	4.075477000	-1.587293000
Η	-1.700024000	4.750494000	-0.909541000
Η	-3.051746000	4.316349000	0.173444000
С	0.251849000	3.163186000	0.404896000
С	-0.089857000	4.134444000	1.363639000
Η	-1.119699000	4.231139000	1.696773000
С	0.891025000	4.954538000	1.921029000
Η	0.612801000	5.698346000	2.662577000
С	2.226080000	4.810115000	1.536396000
Η	2.990146000	5.446955000	1.973342000
С	2.575561000	3.841600000	0.592450000
Η	3.611657000	3.720974000	0.289986000
С	1.599175000	3.022297000	0.025911000
Η	1.871156000	2.274861000	-0.712457000
Ι	2.750353000	-2.286797000	0.241917000
Ν	0.273746000	-0.718128000	1.957652000
С	0.374086000	0.317346000	2.810957000
Η	0.667164000	1.266800000	2.378990000
С	0.128825000	0.187070000	4.175401000
Η	0.238741000	1.051032000	4.822686000

С	-0.248365000	-1.057126000	4.678351000
Н	-0.446901000	-1.190229000	5.737903000
С	-0.356032000	-2.129216000	3.793635000
Η	-0.635288000	-3.120512000	4.135125000
С	-0.076171000	-1.924800000	2.445362000
Н	-0.101956000	-2.738021000	1.730449000

 Table S30.
 B3LYP/SDD, 6-31G(d) level optimized coordinates of 1c (trans).

Ground state electronic energy = -2048.9638913 Hartree/Particle.

Pd	0.030366000	0.163397000	0.222587000
Ι	0.182488000	0.161618000	2.935818000
Ι	-0.560546000	-0.123039000	-2.433105000
Р	2.337573000	-0.459538000	-0.115321000
0	-3.215572000	3.955368000	1.006984000
Η	-2.991010000	4.884710000	0.849932000
Ν	-4.013245000	1.320100000	0.750933000
Ν	-2.873364000	-0.422124000	0.761286000
Ν	-4.109042000	0.018007000	0.931863000
С	-1.953775000	0.555630000	0.491095000
С	-2.726307000	1.719732000	0.483426000
С	-2.358991000	3.155581000	0.167862000
С	-0.881046000	3.452526000	0.497905000
Η	-0.248833000	2.738473000	-0.045114000
Η	-0.713503000	3.274946000	1.564781000
С	-0.477835000	4.883521000	0.103684000
Η	-1.008974000	5.616207000	0.732412000
Η	0.586361000	5.028030000	0.324817000
С	-0.765112000	5.171550000	-1.378094000
Η	-0.122198000	4.531336000	-1.998965000
Η	-0.509315000	6.209866000	-1.623456000
С	-2.234050000	4.885309000	-1.723078000
Η	-2.883227000	5.612584000	-1.210231000
Η	-2.413018000	5.030182000	-2.795103000
С	-2.634945000	3.454136000	-1.330467000
Η	-2.066325000	2.734238000	-1.931533000
Η	-3.696987000	3.283746000	-1.546028000
С	-5.256160000	2.087347000	0.882547000
Η	-6.061066000	1.358505000	0.973051000
Η	-5.401022000	2.708339000	-0.000957000
Η	-5.200447000	2.726059000	1.762400000
С	-2.612168000	-1.867545000	0.947442000
Η	-2.558022000	-2.047879000	2.025023000
Η	-1.616003000	-2.026260000	0.530939000
С	-3.644852000	-2.751296000	0.286843000
С	-3.625855000	-2.944984000	-1.101549000
Η	-2.870310000	-2.445155000	-1.703295000
С	-4.570479000	-3.773317000	-1.707056000

Η	-4.546820000	-3.918830000	-2.783719000
С	-5.537708000	-4.420224000	-0.932950000
Η	-6.269992000	-5.068960000	-1.406458000
С	-5.557675000	-4.235468000	0.450316000
Η	-6.305028000	-4.738182000	1.058372000
С	-4.614571000	-3.403100000	1.056215000
Η	-4.631419000	-3.257894000	2.133754000
С	2.330193000	-2.241998000	-0.576007000
С	1.847115000	-3.161749000	0.372923000
Η	1.552549000	-2.816925000	1.361073000
С	1.745114000	-4.515640000	0.055363000
Η	1.378837000	-5.216343000	0.800986000
С	2.106453000	-4.967332000	-1.216909000
Η	2.021009000	-6.021683000	-1.465761000
С	2.571171000	-4.058219000	-2.167294000
Η	2.845317000	-4.400084000	-3.161673000
С	2.682993000	-2.701697000	-1.851550000
Η	3.035461000	-2.005172000	-2.604303000
С	3.533554000	-0.342975000	1.291493000
С	4.349679000	-1.407292000	1.696267000
Η	4.260018000	-2.377382000	1.219075000
С	5.284231000	-1.231205000	2.720579000
Η	5.907020000	-2.067582000	3.027005000
С	5.419009000	0.008892000	3.343738000
Η	6.145803000	0.144038000	4.140295000
С	4.611336000	1.076423000	2.942552000
Η	4.703040000	2.044013000	3.428321000
С	3.671790000	0.900366000	1.928952000
Η	3.033710000	1.730804000	1.641157000
С	3.307976000	0.421632000	-1.418180000
С	4.622332000	0.022820000	-1.718407000
Η	5.058251000	-0.835425000	-1.215310000
С	5.381082000	0.728018000	-2.650827000
Η	6.393510000	0.404239000	-2.877021000
С	4.845136000	1.853366000	-3.283326000
Η	5.439201000	2.405828000	-4.006493000
С	3.548751000	2.267184000	-2.978971000
Η	3.125613000	3.141913000	-3.465313000
С	2.782145000	1.554065000	-2.053308000
Η	1.767418000	1.868646000	-1.837454000

 Table S31.
 B3LYP/SDD, 6-31G(d) level optimized coordinates of 1c (*cis*).

Ground state electronic energy = -2048.9570302 Hartree/Particle.

Pd	0.533702000	-0.139535000	-0.970943000
Ι	0.224700000	-1.924203000	-3.044307000
0	-0.167021000	-4.622764000	0.372784000
Η	0.046780000	-4.462247000	-0.564933000
Ν	-2.418741000	-2.772767000	0.501877000

Ν	-2.320281000	-0.955669000	-0.508652000
Ν	-3.173118000	-1.891318000	-0.119301000
С	-1.011193000	-1.208947000	-0.182095000
С	-1.089365000	-2.420640000	0.516659000
С	-0.018758000	-3.363755000	1.060183000
С	1.405384000	-2.810235000	0.845159000
Η	1.479106000	-1.842437000	1.355543000
Η	1.570810000	-2.618266000	-0.220050000
С	2.480687000	-3.764590000	1.387212000
Η	2.451596000	-4.701178000	0.817193000
Η	3.469433000	-3.321269000	1.216580000
С	2.272088000	-4.065359000	2.876692000
Н	2.418462000	-3.143082000	3.459299000
Н	3.021386000	-4.783831000	3.231806000
С	0.858062000	-4.604878000	3.125225000
Н	0.750646000	-5.586548000	2.648425000
Н	0.683590000	-4.749563000	4.199055000
С	-0.216626000	-3.657983000	2.566519000
Н	-0.186142000	-2.698966000	3.098561000
Н	-1.205410000	-4.090014000	2.745552000
С	-3.088148000	-3.977482000	0.999650000
Н	-4.008797000	-4.093546000	0.428001000
Н	-3.325082000	-3.866896000	2.060356000
Н	-2.421583000	-4.823511000	0.839792000
С	-2.833581000	0.103422000	-1.410862000
Н	-3.061455000	-0.388828000	-2.361438000
Н	-1.984873000	0.766182000	-1.580974000
С	-4.030293000	0.852343000	-0.865586000
С	-3.869578000	2.136374000	-0.328804000
Н	-2.884332000	2.593929000	-0.310424000
С	-4.969532000	2.843170000	0.163049000
Н	-4.826981000	3.839511000	0.572180000
С	-6.242629000	2.274135000	0.118802000
Н	-7.100273000	2.823919000	0.497129000
С	-6.413284000	0.998675000	-0.426367000
Н	-7.404254000	0.555447000	-0.475272000
С	-5.315377000	0.294104000	-0.919350000
Н	-5.453175000	-0.695127000	-1.345704000
Ι	2.537024000	1.141766000	-2.312798000
Р	0.717977000	1.360968000	0.837752000
С	2.430379000	1.757017000	1.395505000
С	3.429797000	0.779151000	1.278798000
Н	3.210773000	-0.160520000	0.782346000
С	4.715089000	1.023570000	1.762619000
Н	5.481908000	0.261147000	1.658301000
C	5.021053000	2.253161000	2.349724000
H	6.026249000	2.448065000	2.713503000
Ċ	4.035729000	3.236091000	2.454929000
H	4.270069000	4.199657000	2.899226000
C	2.744665000	2.989741000	1.984695000
-			

Η	1.989850000	3.764702000	2.068303000
С	-0.090055000	2.994274000	0.523738000
С	-0.638309000	3.761703000	1.566724000
Η	-0.616835000	3.392584000	2.586935000
С	-1.223670000	5.001125000	1.301531000
Η	-1.642603000	5.582399000	2.118688000
С	-1.269027000	5.491236000	-0.005605000
Η	-1.725694000	6.455842000	-0.210423000
С	-0.723896000	4.737527000	-1.046593000
Η	-0.751295000	5.111205000	-2.066317000
С	-0.139010000	3.496204000	-0.787274000
Η	0.296776000	2.923846000	-1.600023000
С	-0.089789000	0.789237000	2.406674000
С	0.668022000	0.357218000	3.505578000
Η	1.751312000	0.395483000	3.467524000
С	0.040252000	-0.111268000	4.663826000
Η	0.645803000	-0.434823000	5.506232000
С	-1.351760000	-0.151519000	4.743594000
Η	-1.838311000	-0.508360000	5.647340000
С	-2.116495000	0.278670000	3.655661000
Η	-3.201892000	0.261644000	3.707801000
С	-1.492326000	0.739535000	2.497069000
Η	-2.106798000	1.080958000	1.670158000

 Table S32.
 B3LYP/SDD, 6-31G(d) level optimized coordinates of 2c (*trans*).

Ground state electronic energy = -2088.2791849 Hartree/Particle.

С	-3.679925000	0.177428000	1.236099000
С	-3.737511000	-1.063768000	1.889759000
Η	-3.023688000	-1.842337000	1.637546000
С	-4.693623000	-1.302188000	2.874929000
Η	-4.721973000	-2.266980000	3.373916000
С	-5.598935000	-0.299307000	3.231386000
Н	-6.339156000	-0.482633000	4.005638000
С	-5.544388000	0.939168000	2.592664000
Н	-6.243216000	1.725854000	2.864794000
С	-4.593137000	1.176986000	1.596754000
Н	-4.566427000	2.144677000	1.107069000
С	-2.542716000	2.148652000	-0.599466000
С	-2.855820000	2.587631000	-1.892802000
Н	-3.123167000	1.871510000	-2.662000000
С	-2.813861000	3.949054000	-2.204024000
Н	-3.056889000	4.274793000	-3.211825000
С	-2.457256000	4.883823000	-1.231954000
Η	-2.425620000	5.941947000	-1.477443000
С	-2.134809000	4.453264000	0.057935000
Η	-1.852503000	5.174076000	0.820691000
С	-2.168824000	3.095116000	0.371997000

Η	-1.906107000	2.767827000	1.374811000
С	-3.351227000	-0.560401000	-1.469262000
С	-2.760120000	-1.677116000	-2.074163000
Η	-1.741738000	-1.949053000	-1.820996000
С	-3.465531000	-2.428150000	-3.018239000
Η	-2.991607000	-3.289478000	-3.481139000
С	-4.765684000	-2.068346000	-3.371281000
Η	-5.311993000	-2.649871000	-4.109172000
С	-5.366807000	-0.959603000	-2.768802000
Η	-6.382567000	-0.677794000	-3.033046000
С	-4.668895000	-0.216712000	-1.818216000
Η	-5.154836000	0.628898000	-1.340321000
С	3.357324000	3.125690000	-1.053914000
Η	2.648636000	2.560432000	-1.654681000
С	4.245248000	4.010940000	-1.664215000
Н	4.223978000	4.135118000	-2.743624000
С	5.152254000	4.742088000	-0.891856000
Н	5.839954000	5.435207000	-1.369332000
С	5.169025000	4.583613000	0.494575000
Н	5.869599000	5.150951000	1.101492000
С	4.283075000	3.693811000	1.105460000
Н	4.297816000	3.569272000	2.185657000
С	3.373350000	2.958615000	0.338077000
С	2.398534000	2.015516000	1.004943000
Н	2.350266000	2.185761000	2.084474000
Н	1.388764000	2.123989000	0.604872000
Ν	2.734159000	0.588169000	0.803032000
Ν	3.993613000	0.213819000	0.956033000
Ν	3.967871000	-1.089601000	0.770889000
С	2.698463000	-1.559445000	0.523572000
С	1.865816000	-0.435827000	0.539681000
С	5.278786000	-1.773477000	0.813403000
Н	5.067842000	-2.838432000	0.858784000
Н	5.749674000	-1.471399000	1.752530000
С	6.151291000	-1.394467000	-0.382676000
Н	5.680923000	-1.687482000	-1.326975000
Н	7.113344000	-1.912246000	-0.303920000
Н	6.336894000	-0.317249000	-0.407715000
С	2.379075000	-3.018257000	0.248123000
С	2.732069000	-3.378833000	-1.219316000
Н	2.189491000	-2.689660000	-1.878085000
Н	3.802520000	-3.209239000	-1.385911000
С	2.364576000	-4.829356000	-1.572597000
Н	2.595415000	-5.014221000	-2.628434000
Н	2.997021000	-5.524581000	-0.999031000
С	0.884372000	-5.121467000	-1.285020000
Н	0.651922000	-6.171470000	-1.502042000
Н	0.262846000	-4.512949000	-1.957372000
С	0.528381000	-4.781797000	0.169634000
Н	1.039652000	-5.484330000	0.848100000

Η	-0.542292000	-4.933580000	0.351028000
С	0.892315000	-3.329423000	0.522699000
Η	0.672692000	-3.111637000	1.572360000
Η	0.272321000	-2.651576000	-0.077557000
0	3.198650000	-3.775227000	1.165627000
Η	2.928364000	-4.703539000	1.098499000
Р	-2.460150000	0.367490000	-0.141953000
Pd	-0.131629000	-0.135325000	0.244020000
Ι	0.490422000	0.157344000	-2.406551000
Ι	-0.328667000	-0.108883000	2.954376000

Table S33. B3LYP/SDD, 6-31G(d) level optimized coordinates of 2c (*cis*).

Ground state electronic energy = -2088.2718763 Hartree/Particle.

С	-3.891900000	-2.565120000	-1.172832000
Η	-3.431844000	-1.895904000	-1.896003000
С	-5.106557000	-3.185644000	-1.464157000
Η	-5.589076000	-2.999502000	-2.419745000
С	-5.695592000	-4.049707000	-0.537068000
Η	-6.639303000	-4.536215000	-0.769273000
С	-5.066269000	-4.291707000	0.685124000
Η	-5.517318000	-4.965872000	1.408340000
С	-3.852348000	-3.668137000	0.978893000
Η	-3.362479000	-3.855530000	1.931596000
С	-3.258378000	-2.800787000	0.055455000
С	-1.930938000	-2.148959000	0.366157000
Η	-1.418113000	-2.667235000	1.181765000
Η	-1.275399000	-2.138705000	-0.506859000
Ν	-2.046025000	-0.725647000	0.758967000
Ν	-3.021717000	-0.379768000	1.582169000
Ν	-2.861848000	0.915844000	1.744751000
С	-1.781233000	1.404833000	1.045690000
С	-1.223239000	0.304716000	0.384846000
С	-3.849604000	1.585511000	2.618136000
Η	-3.466360000	2.585859000	2.802963000
Η	-3.841379000	1.036586000	3.563809000
С	-5.247550000	1.584763000	2.001603000
Η	-5.263536000	2.121854000	1.048043000
Η	-5.942727000	2.080563000	2.687625000
Η	-5.598116000	0.563772000	1.828802000
С	-1.415459000	2.878708000	1.025493000
С	-2.460583000	3.682810000	0.205509000
Η	-2.496733000	3.249781000	-0.802043000
Η	-3.454951000	3.553897000	0.647232000
С	-2.117529000	5.179067000	0.112010000
Η	-2.867527000	5.680576000	-0.510978000
Η	-2.194978000	5.644880000	1.107509000
С	-0.708475000	5.400389000	-0.454849000

Η	-0.464653000	6.469855000	-0.467670000
Η	-0.681309000	5.054371000	-1.497139000
С	0.334328000	4.621108000	0.357925000
Н	0.415705000	5.052981000	1.369266000
Н	1.330209000	4.728344000	-0.086862000
С	-0.010685000	3.124024000	0.438315000
Н	0.731936000	2.599008000	1.046308000
Н	0.034736000	2.695825000	-0.569076000
0	-1.430214000	3.281333000	2.418551000
Н	-1.164913000	4.213754000	2.451437000
Pd	0.338102000	0.063465000	-0.898917000
Ι	-1.520878000	0.675616000	-2.812212000
Ι	2.301753000	-0.135940000	-2.792740000
Р	1.850195000	-0.586497000	0.798094000
С	1.046825000	-1.040837000	2.408683000
C	0.467571000	-0.038765000	3.208278000
Н	0.522427000	1.003120000	2.909450000
C	-0.179117000	-0.364694000	4.399965000
Н	-0.612747000	0.426625000	5.005570000
C	-0.265676000	-1.696812000	4.813902000
Н	-0.769477000	-1.949270000	5.743006000
C	0.304688000	-2.698788000	4.029320000
Н	0.252827000	-3.737289000	4.345567000
С	0.958339000	-2.374496000	2.836479000
Н	1.409953000	-3.164814000	2.246299000
С	2.831656000	-2.097851000	0.404601000
С	4.087850000	-2.335501000	0.980108000
Н	4.540552000	-1.594302000	1.630516000
С	4.773368000	-3.520600000	0.707871000
Н	5.751405000	-3.688638000	1.150675000
С	4.209549000	-4.481422000	-0.133318000
Н	4.747008000	-5.401436000	-0.346695000
С	2.959638000	-4.250560000	-0.711604000
Н	2.523445000	-4.983355000	-1.384597000
С	2.277952000	-3.061502000	-0.451769000
Н	1.328928000	-2.865791000	-0.941048000
С	3.082164000	0.691341000	1.315716000
С	3.619047000	0.705112000	2.615622000
Н	3.290411000	-0.022540000	3.350534000
С	4.573612000	1.656389000	2.978156000
Н	4.979394000	1.652083000	3.986340000
С	5.003533000	2.607942000	2.051081000
Н	5.746337000	3.348684000	2.335027000
С	4.474358000	2.603119000	0.759639000
Н	4.804610000	3.337117000	0.029725000
С	3.518788000	1.653887000	0.391446000
Н	3.127083000	1.647457000	-0.620363000

 Table S34.
 B3LYP/SDD, 6-31G(d) level optimized coordinates of 3c (trans).
Ground state electronic energy = -1970.1291288 Hartree/Particle.

Pd	-0.044167000	0.154436000	0.223794000
Ι	0.138574000	0.507919000	2.912399000
Ν	-3.016169000	-0.056133000	0.841385000
Ν	-4.189772000	0.560119000	0.918239000
Ν	-3.918171000	1.795356000	0.544203000
С	-1.978535000	0.737220000	0.440068000
С	-2.593725000	1.976662000	0.233236000
С	-2.945808000	-1.476751000	1.244055000
Н	-3.028402000	-1.508775000	2.334095000
Н	-1.934134000	-1.786801000	0.975795000
C	-3.997908000	-2.338907000	0.583974000
Ċ	-3.932374000	-2.612247000	-0.789845000
H	-3.129371000	-2.185569000	-1.386849000
C	-4.894783000	-3.424536000	-1.388518000
H	-4.835657000	-3.631607000	-2.453655000
C	-5.925813000	-3.976316000	-0.622574000
Н	-6 672027000	-4 612606000	-1 091122000
C	-5.992592000	-3.710974000	0.745678000
н	-6 790396000	-4 137967000	1 347450000
C	-5.032364000	-2 892875000	1 344927000
н	-5.086607000	-2 684077000	2 410795000
C	-5.01/068000	2.004077000	0 533/3/000
н	-5.746132000	2.700755000	1 27/378000
н	-5.480703000	2.796115000	-0.454257000
и П	-5.480705000	2.770113000	0.788001000
Γ	2 026040000	3.744410000	0.788091000
C	-2.020940000	3.238473000	-0.217043000
с u	-2.013370000	2 5 2 5 0 5 2 0 0 0	-1.207003000
П	-3.463617000	5.363932000	-1./01000000
	-2.039400000	5.195/50000	-1.083094000
П	-2.518298000	5.740870000	-2.504504000
C H	-0.910122000	5.689009000	-1.000111000
H	-0.4//901000	0.030558000	-1.393863000
C	-0.314/29000	4.96/24/000	-0.028/86000
H	0.5/9968000	5.346918000	0.456860000
C	-0.865/52000	3./58614000	0.396232000
H	-0.40/233000	3.198196000	1.205028000
I D	-0.6/1421000	-0.254149000	-2.39968/000
P	2.251388000	-0.524631000	-0.119573000
C	3.358493000	-0.761846000	1.344244000
C	3.717941000	0.369040000	2.096843000
Н	3.339375000	1.348097000	1.819693000
С	4.556569000	0.247268000	3.202475000
Η	4.825328000	1.132445000	3.772490000
С	5.038798000	-1.007731000	3.583666000
Η	5.688499000	-1.102714000	4.449648000
С	4.680622000	-2.136698000	2.848150000
Η	5.052192000	-3.116953000	3.134938000
С	3.847445000	-2.016252000	1.732357000

3.589114000	-2.903740000	1.165049000
3.249214000	0.653413000	-1.132701000
4.648093000	0.528875000	-1.210557000
5.153254000	-0.264637000	-0.668050000
5.397914000	1.426356000	-1.969757000
6.477723000	1.315446000	-2.023066000
4.763724000	2.468564000	-2.651384000
5.349689000	3.170441000	-3.239016000
3.378331000	2.608218000	-2.569242000
2.877304000	3.418361000	-3.091959000
2.622980000	1.706418000	-1.815152000
1.545460000	1.816831000	-1.765656000
2.322158000	-2.151022000	-0.983662000
3.126599000	-2.397018000	-2.103367000
3.747518000	-1.608120000	-2.514119000
3.123729000	-3.655002000	-2.710853000
3.746025000	-3.829035000	-3.584606000
2.325163000	-4.680545000	-2.204297000
2.324578000	-5.657700000	-2.679746000
1.519079000	-4.443689000	-1.087992000
0.887502000	-5.234092000	-0.691445000
1.510152000	-3.185163000	-0.488125000
0.865125000	-3.001733000	0.367509000
	3.589114000 3.249214000 4.648093000 5.153254000 5.397914000 6.477723000 4.763724000 5.349689000 3.378331000 2.877304000 2.622980000 1.545460000 2.322158000 3.126599000 3.747518000 3.123729000 3.746025000 2.324578000 1.519079000 0.887502000 1.510152000 0.865125000	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

 Table S35.
 B3LYP/SDD, 6-31G(d) level optimized coordinates of 3c (cis).

Ground state electronic energy = -1970.1224475 Hartree/Particle.

Pd	0.620330000	-0.126673000	-0.927633000
Ι	1.402944000	-1.833261000	-2.924059000
Ι	2.120547000	1.885001000	-2.007910000
Р	-0.089815000	1.328267000	0.786828000
Ν	-1.471886000	-2.350860000	-0.632656000
Ν	-1.798135000	-3.480718000	-0.012613000
Ν	-0.837296000	-3.641808000	0.876001000
С	1.287901000	2.224334000	1.618256000
С	2.479841000	1.526176000	1.869046000
Н	2.590826000	0.501615000	1.526822000
С	3.533734000	2.149285000	2.535937000
Η	4.452327000	1.598887000	2.719322000
С	3.417457000	3.480408000	2.943197000
Н	4.244683000	3.969759000	3.450266000
С	2.240500000	4.183601000	2.684226000
Η	2.147435000	5.223273000	2.986335000
С	1.177547000	3.559508000	2.028016000
Н	0.272386000	4.121557000	1.824535000
С	-1.306805000	2.621522000	0.268892000
С	-2.170462000	3.212842000	1.208280000
Η	-2.142397000	2.901121000	2.247497000

С	-3.075237000	4.200043000	0.816512000
Η	-3.733544000	4.648912000	1.555583000
С	-3.134829000	4.607484000	-0.518257000
Η	-3.839136000	5.377574000	-0.822059000
С	-2.283542000	4.023957000	-1.457931000
Η	-2.317755000	4.337413000	-2.497785000
С	-1.374834000	3.036615000	-1.069670000
Η	-0.702133000	2.605333000	-1.803001000
С	-0.982213000	0.524992000	2.202956000
С	-0.433406000	0.446979000	3.490378000
Η	0.541509000	0.875954000	3.693713000
С	-1.137443000	-0.175488000	4.526229000
Η	-0.699039000	-0.217029000	5.519994000
С	-2.395741000	-0.729324000	4.290643000
Η	-2.944641000	-1.205447000	5.099072000
С	-2.951877000	-0.655753000	3.009758000
Η	-3.935506000	-1.072713000	2.811057000
С	-2.251570000	-0.035677000	1.976178000
Н	-2.706311000	0.025809000	0.992994000
С	-0.318510000	-1.764238000	-0.183127000
С	0.096386000	-2.638342000	0.830852000
С	-2.326047000	-1.935959000	-1.764884000
Н	-2.569274000	-2.855273000	-2.304027000
Н	-1.688468000	-1.326524000	-2.405320000
С	-3.579001000	-1.195311000	-1.345530000
С	-3.732544000	0.158966000	-1.663484000
Н	-2.942118000	0.679605000	-2.196710000
С	-4.890764000	0.847840000	-1.293072000
Н	-4.988545000	1.901443000	-1.537636000
С	-5.906784000	0.185576000	-0.603845000
Η	-6.808594000	0.719123000	-0.315959000
С	-5.764160000	-1.169472000	-0.288898000
Η	-6.557988000	-1.692708000	0.237766000
С	-4.608662000	-1.856795000	-0.659848000
Η	-4.500963000	-2.910505000	-0.416686000
С	-0.873835000	-4.837011000	1.714795000
Η	-1.445703000	-5.597246000	1.183114000
Η	-1.351433000	-4.614869000	2.672352000
Η	0.147499000	-5.178873000	1.884722000
С	1.309910000	-2.624856000	1.666637000
С	1.242026000	-2.781951000	3.061344000
Η	0.275791000	-2.868300000	3.549809000
С	2.406527000	-2.781040000	3.829008000
Н	2.340273000	-2.897961000	4.907258000
С	3.650608000	-2.617406000	3.215603000
Η	4.556926000	-2.616932000	3.815038000
С	3.725600000	-2.451587000	1.830459000
Н	4.689301000	-2.324786000	1.345396000
С	2.565055000	-2.455674000	1.055763000
Н	2.623878000	-2.339187000	-0.022031000

Table S36. Selected results for the Hiyama cross-coupling reaction of aryl halides (ArX; X = I, Br) with PhSi(OMe)₃ as catalyzed by **1b**.

[a] The yields (%) were determined by GC using diethylene glycol dibutyl ether as an internal standard. Reaction conditions: 1.00 mmol of aryl halides, 1.20 mmol of PhSi(OMe)₃, 3.00 mmol of NaOH, 1.00 mmol of diethylene glycol dibutyl ether, 2 mol% of catalyst **1b** and 6 mL of MeOH, DMSO, DMF, 1,4-dioxane, and in mixed media of DMSO:H₂O, 1,4-dioxane:H₂O and DMF:H₂O (each in a 4:2 v/v ratio) at 80 °C for 4 hours.

Table S37. Selected results for the Hiyama cross-coupling reaction of aryl halides (ArX; X = I, Br) with PhSi(OMe)₃ as catalyzed by **1b** in the presence of NEt₃, K₂CO₃, Cs₂CO₃, NaO^tBu, KO^tBu and NaOH.

[a] The yields (%) were determined by GC using diethylene glycol dibutyl ether as an internal standard. Reaction conditions: 1.00 mmol of aryl halides, 1.20 mmol of PhSi(OMe)₃, 3.00 mmol of base, 1.00 mmol of diethylene glycol dibutyl ether, 2 mol% of catalyst **1b** and 6 mL of 1,4-dioxane/H₂O (2:1) at 80 °C for 4 hours.

Table S38. Selected results for the Hiyama cross-coupling reaction of aryl halides (ArX; X = I, Br) with PhSi(OMe)₃ as catalyzed by **1b**.

[a] The yields (%) were determined by GC using diethylene glycol dibutyl ether as an internal standard. Reaction conditions: 1.00 mmol of aryl halides, 1.20 mmol of PhSi(OMe)₃, 3.00 mmol of NaOH, 1.00 mmol of diethylene glycol dibutyl ether, 2 mol % of catalyst **1b** and 6 mL of 1,4-dioxane/H₂O (2:1) at 80 °C for 4 hours.

Table S39. Selected results for Hiyama cross-coupling reaction of aryl halides (ArX; X = I, Br) catalyzed by PdCl₂ and **3b**/Hg alongside theblank runs.

[a] The yields (%) were determined by GC using diethylene glycol dibutyl ether as an internal standard. Reaction conditions: 1.00 mmol of aryl halides, 1.20 mmol of phenyltrimethoxysilane, 3.00 mmol of NaOH, 2 mol % of catalyst PdCl₂ and **3b**/Hg in 6 mL of 1,4-dioxane/H₂O (2:1) at 80 °C for 4 hours.

Table S40. Selected results for Hiyama cross-coupling reaction of aryl chlorides with with $PhSi(OMe)_3$ as catalyzed by **3c**.

[a] The yields (%) were determined by GC using diethylene glycol dibutyl ether as an internal standard. Reaction conditions: 1.00 mmol of aryl halides, 1.20 mmol of phenyltrimethoxysilane, 3.00 mmol of NaOH, 2 mol % of catalyst **3c** in 6 mL of 1,4-dioxane/H₂O (2:1) at 80 °C for 4 hours.

References

- 1. R. Sevincek, H. Turkmen, M. Aygun, B. Cetinkaya and S. Garcia-Granda, *Acta Crystallogr. Sect. C: Cryst. Struct. Commun.*, 2007, **63**, M277-M279.
- 2. H. Tuerkmen, T. Pape, F. E. Hahn and B. Cetinkaya, *Eur. J. Inorg. Chem.*, 2009, 285-294.
- O. Diebolt, V. Jurcik, R. C. da Costa, P. Braunstein, L. Cavallo, S. P. Nolan,
 A. M. Z. Slawin and C. S. J. Cazin, *Organometallics*, 2010, 29, 1443-1450.
- 4. S. Gulcemal, S. Kahraman, J.-C. Daran, E. Cetinkaya and B. Cetinkaya, J. Organomet. Chem., 2009, **694**, 3580-3589.
- M. V. Baker, D. H. Brown, P. V. Simpson, B. W. Skelton and A. H. White, *Eur. J. Inorg. Chem.*, 2009, 1977-1988.
- 6. R. Jothibasu and H. V. Huynh, *Chem. Commun.*, 2010, **46**, 2986-2988.
- 7. Y. Han and H. V. Huynh, *Chem. Commun.*, 2007, 1089-1091.
- 8. A. Furstner, G. Seidel, D. Kremzow and C. W. Lehmann, *Organometallics*, 2003, **22**, 907-909.
- 9. S. Guo and H. Han Vinh, *Organometallics*, 2014, **33**, 2004-2011.
- H. V. Huynh, Y. Han, J. H. H. Ho and G. K. Tan, *Organometallics*, 2006, 25, 3267-3274.