Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2015

## Fluoride solid electrolytes: investigation of the tysonite-type solid solutions La<sub>1-x</sub>Ba<sub>x</sub>F<sub>3-x</sub> (x < 0.15)

Johann Chable, Belto Dieudonné, Monique Body, Christophe Legein, Marie-Pierre Crosnier-Lopez, Cyrille Galven, Fabrice Mauvy, Etienne Durand, Sébastien Fourcade, Denis Sheptyakov, Marc Leblanc, Alain Tressaud, Vincent Maisonneuve, and Alain Demourgues

## **Electronic Supporting Information**

| <b>Fig. S1.</b> XRD patterns of $La_{1-x}Ba_xF_{3-x}$ (0.03 $\leq x \leq 0.1$ ) synthesized by solid-state synthesis                                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Table S1.</b> Synthesis conditions to obtain $La_{1-x}Ba_xF_{3-x}$ solid solutions above x = 0.05                                                                                                                                                           |
| Fig. S2. XRD Rietveld refinement of La <sub>0.95</sub> Ba <sub>0.05</sub> F <sub>2.95</sub> 4                                                                                                                                                                  |
| Table S2. List of all the refinements models applied to La <sub>0.90</sub> Ba <sub>0.10</sub> F <sub>2.90</sub> 4                                                                                                                                              |
| Fig. S3. Experimental and calculated patterns of powder neutron diffraction on La <sub>0.93</sub> Ba <sub>0.07</sub> F <sub>2.93</sub>                                                                                                                         |
| Fig. S4. Experimental and calculated patterns of powder neutron diffraction on La <sub>0.97</sub> Ba <sub>0.03</sub> F <sub>2.97</sub>                                                                                                                         |
| <b>Table S3.</b> Relevant distances (Å) between the fluorine atoms and their nearest neighbors (up to 4 Å), obtained byrefinement on powder neutron diffraction                                                                                                |
| <b>Table S4.</b> Relevant distances (Å) between the (La,Ba) atoms and their nearest neighbors (up to 3 Å), obtained by   refinement on powder neutron diffraction                                                                                              |
| <b>Fig. S5.</b> Evolution with x of the cell parameters in the $La_{1-x}Ba_xF_{3-x}$ ( $0 \le x \le 0.15$ ) solid solutions10                                                                                                                                  |
| Fig. S6. Experimental and fitted <sup>19</sup> F MAS (64 kHz) NMR spectra of LaF <sub>3</sub> 11                                                                                                                                                               |
| <b>Table S5.</b> Isotropic chemical shifts, linewidths and relative intensities of the NMR resonances used for the fit ofthe $^{19}$ F MAS (64 kHz) NMR spectrum of LaF3 and assignment of these resonances.11                                                 |
| Fig. S7. Experimental and fitted <sup>19</sup> F MAS (64 kHz) NMR spectra of La <sub>0.97</sub> Ba <sub>0.03</sub> F <sub>2.97</sub> 12                                                                                                                        |
| <b>Table S6.</b> Isotropic chemical shifts, linewidths and relative intensities of the NMR resonances used for the fit ofthe $^{19}$ F MAS (64 kHz) NMR spectrum of La <sub>0.97</sub> Ba <sub>0.03</sub> F <sub>2.97</sub> and assignment of these resonances |
| Fig. S8. Experimental and fitted <sup>19</sup> F MAS (64 kHz) NMR spectra of La <sub>0.95</sub> Ba <sub>0.05</sub> F <sub>2.95</sub>                                                                                                                           |
| <b>Table S7.</b> Isotropic chemical shifts, linewidths and relative intensities of the NMR resonances used for the fit ofthe ${}^{19}$ F MAS (64 kHz) NMR spectrum of La $_{0.95}$ Ba $_{0.05}$ F $_{2.95}$ and assignment of these resonances                 |
| Fig. S9. Experimental and fitted <sup>19</sup> F MAS (64 kHz) NMR spectra of La <sub>0.93</sub> Ba <sub>0.07</sub> F <sub>2.93</sub> 14                                                                                                                        |

| <b>Table S8.</b> Isotropic chemical shifts, linewidths and relative intensities of the NMR resonances used for the fit ofthe $^{19}$ F MAS (64 kHz) NMR spectrum of La <sub>0.93</sub> Ba <sub>0.07</sub> F <sub>2.93</sub> and assignment of these resonances |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fig. S10. Experimental and fitted <sup>19</sup> F MAS (64 kHz) NMR spectra of La <sub>0.90</sub> Ba <sub>0.10</sub> F <sub>2.90</sub>                                                                                                                          |
| <b>Table S9.</b> Isotropic chemical shifts, linewidths and relative intensities of the NMR resonances used for the fit ofthe <sup>19</sup> F MAS (64 kHz) NMR spectrum of $La_{0.90}Ba_{0.10}F_{2.90}$ and assignment of these resonances                      |
| Fig. S11. Room temperature conductivity versus x in the La <sub>1-x</sub> Ba <sub>x</sub> F <sub>3-x</sub> solid solutions16                                                                                                                                   |
| <b>Fig. S12.</b> Impedance Nyquist diagram obtained at 25°C for La <sub>0.95</sub> Ba <sub>0.05</sub> F <sub>2.95</sub> pellet using uniaxially and isostatically pressing                                                                                     |
| <b>Fig. S13.</b> Equivalent capacity and frequency diagrams for sintered pellets of La <sub>0.95</sub> Ba <sub>0.05</sub> F <sub>2.95</sub> , estimated from impedance measurements fitting with equivalent circuits                                           |
| References                                                                                                                                                                                                                                                     |



Fig. S1. XRD patterns of  $La_{1-x}Ba_xF_{3-x}$  (0.03  $\leq x \leq 0.1$ ) synthesized by solid-state synthesis. The stars indicate the fluorite-like ( $Ba_{1-y}La_yF_{2+y}$ ) impurity.

|                  | La <sub>0.93</sub> Ba <sub>0.07</sub> F <sub>2.93</sub> | $La_{0.90}Ba_{0.10}F_{2.90}$ | $La_{0.88}Ba_{0.12}F_{2.88}$                             | $La_{0.85}Ba_{0.15}F_{2.85}$                             |
|------------------|---------------------------------------------------------|------------------------------|----------------------------------------------------------|----------------------------------------------------------|
| Гemperature (°C) | 950                                                     | 1250                         | 1350                                                     | 1350                                                     |
| Time (h)         | 96                                                      | 96                           | 96                                                       | 96                                                       |
| Result           | Pure compound                                           | Pure compound                | Two phases:<br>tysonite and<br>fluorite-like<br>(≈ 0.5%) | Two phases:<br>tysonite and<br>fluorite-like<br>(≈ 1.5%) |

**Table S1.** Synthesis conditions to obtain  $La_{1-x}Ba_xF_{3-x}$  solid solutions above x = 0.05.



**Fig. S2.** XRD Rietveld refinement of La<sub>0.95</sub>Ba<sub>0.05</sub>F<sub>2.95</sub>. The XRD pattern was refined using the Thompson-Cox-Hastings function.

**Table S2.** List of all the refinements models applied to La<sub>0.90</sub>Ba<sub>0.10</sub>F<sub>2.90</sub>: the main changes in refined parameters are detailed for each case (*e.g.* repartition of the vacancies on the fluorine sites) such as the resulting reliability parameters, the occupancy rate and two examples of relevant Hamilton's test.<sup>1</sup>

| $La_{0.90} Ba_{0.10} F_{2.90}$ |        | Full occupancy | Vacancies statistically distributed | Vacancies statistically distributed<br>+ restrained refinement (occ max<br>3F = 1.45, occ max F3 = |
|--------------------------------|--------|----------------|-------------------------------------|----------------------------------------------------------------------------------------------------|
|                                |        | Biso           | Biso                                | 0.16667) Biso                                                                                      |
|                                | Rp     | 18.4           | 18.2                                | 18.2                                                                                               |
|                                | Rwp    | 16.7           | 16.7                                | 16.4                                                                                               |
| Reliability factors (%)        | Rexp   | 9.03           | 8.93                                | 9.01                                                                                               |
|                                | Chi2   | 3.42           | 3.5                                 | 3.32                                                                                               |
|                                | Rbragg | 8.76           | 8.81                                | 8.58                                                                                               |
|                                | F1     | 1              | 0.9667                              | 0.9643                                                                                             |
| Occupancy                      | F2     | 1              | 0.9667                              | 0.9570                                                                                             |
|                                | F3     | 1              | 0.9667                              | 1.0000                                                                                             |

| La <sub>0.90</sub> Ba <sub>0.10</sub> F <sub>2.90</sub> |        | Full occupancy | Vacancies statistically | Vacancies statistically<br>distributed + restrained<br>refinement (occ max 3F =<br>1.45, occ max F3 = 0.16667) |
|---------------------------------------------------------|--------|----------------|-------------------------|----------------------------------------------------------------------------------------------------------------|
|                                                         |        | βaniso         | distributed ßaniso      | βaniso                                                                                                         |
|                                                         | Rp     | 13.3           | 13.8                    | 13.2                                                                                                           |
|                                                         | Rwp    | 11.5           | 12.6                    | 11.4                                                                                                           |
| Reliability factors (%)                                 | Rexp   | 9.11           | 8.99                    | 9.1                                                                                                            |
|                                                         | Chi2   | 1.6            | 2.037                   | 1.57                                                                                                           |
|                                                         | Rbragg | 3.78           | 4.965                   | 3.292                                                                                                          |
|                                                         | F1     | 1              | 0.9667                  | 0.9572                                                                                                         |
| Occupancy                                               | F2     | 1              | 0.9667                  | 0.9783                                                                                                         |
|                                                         | F3     | 1              | 0.9667                  | 1.0000                                                                                                         |

| La <sub>0.90</sub> Ba <sub>0.10</sub> F <sub>2.90</sub> |        | Vacancies statistically       | Vacancies statistically distributed |
|---------------------------------------------------------|--------|-------------------------------|-------------------------------------|
|                                                         |        |                               | on F1 and F2 only + restrained      |
|                                                         |        | distributed on F1 and F2 only | refinement (occ max F1 + F2 =       |
|                                                         |        | Biso                          | 1.2833) Biso                        |
|                                                         | Rp     | 18                            | 18                                  |
|                                                         | Rwp    | 16.3                          | 16.3                                |
| Reliability factors (%)                                 | Rexp   | 9.01                          | 9.01                                |
|                                                         | Chi2   | 3.28                          | 3.28                                |
|                                                         | Rbragg | 8.596                         | 8.584                               |
|                                                         | F1     | 0.9625                        | 0.9648                              |
| Occupancy                                               | F2     | 0.9625                        | 0.9556                              |
|                                                         | F3     | 1.0000                        | 1.0000                              |

| La <sub>0.90</sub> Ba <sub>0.10</sub> F <sub>2.90</sub> |        | Vacancies statistically distributed | Vacancies statistically distributed<br>on F1 and F2 only + restrained<br>refinement (occ max F1 + F2 = |
|---------------------------------------------------------|--------|-------------------------------------|--------------------------------------------------------------------------------------------------------|
|                                                         |        | on F1 and F2 only βaniso            | 1.2833) βaniso                                                                                         |
|                                                         | Rp     | 12.7                                | 12.7                                                                                                   |
|                                                         | Rwp    | 11                                  | 11                                                                                                     |
| Reliability factors (%)                                 | Rexp   | 9.1                                 | 9.1                                                                                                    |
|                                                         | Chi2   | 1.47                                | 1.47                                                                                                   |
|                                                         | Rbragg | 3.253                               | 3.205                                                                                                  |
|                                                         | F1     | 0.9625                              | 0.9577                                                                                                 |
| Occupancy                                               | F2     | 0.9625                              | 0.9769                                                                                                 |
|                                                         | F3     | 1.0000                              | 1.0000                                                                                                 |

| La <sub>0.90</sub> Ba <sub>0.10</sub> F <sub>2.90</sub> |        | Vacancies on F1 only Biso | Vacancies on F1 only βaniso |
|---------------------------------------------------------|--------|---------------------------|-----------------------------|
|                                                         | Rp     | 18                        | 12.7                        |
|                                                         | Rwp    | 16.4                      | 11                          |
| Reliability factors (%)                                 | Rexp   | 9                         | 9.1                         |
|                                                         | Chi2   | 3.31                      | 1.47                        |
|                                                         | Rbragg | 8.581                     | 3.202                       |
|                                                         | F1     | 0.9500                    | 0.9500                      |
| Occupancy                                               | F2     | 0.9999                    | 0.9999                      |
|                                                         | F3     | 1.0000                    | 1.0000                      |

| La <sub>0.90</sub> Ba <sub>0.10</sub> F <sub>2.90</sub> |        | Vacancies on F2 only Biso | Vacancies on F2 only βaniso |
|---------------------------------------------------------|--------|---------------------------|-----------------------------|
|                                                         | Rp     | 18.2                      | 13.6                        |
|                                                         | Rwp    | 16.8                      | 11.9                        |
| Reliability factors (%)                                 | Rexp   | 9.03                      | 9.1                         |
|                                                         | Chi2   | 3.47                      | 1.71                        |
|                                                         | Rbragg | 8.733                     | 4.366                       |
|                                                         | F1     | 1.0000                    | 1.0000                      |
| Occupancy                                               | F2     | 0.9500                    | 0.9500                      |
|                                                         | F3     | 1.0000                    | 1.0000                      |

| La <sub>0.90</sub> Ba <sub>0.10</sub> F <sub>2.90</sub> |        | Vacancies on F3 only Biso | Vacancies on F3 only βaniso | Vacancies on F1 only βaniso<br>(without use of asymetry and<br>transparence parameters) |
|---------------------------------------------------------|--------|---------------------------|-----------------------------|-----------------------------------------------------------------------------------------|
|                                                         | Rp     | 19                        | 14                          | 12.4                                                                                    |
|                                                         | Rwp    | 17.6                      | 12.3                        | 10.9                                                                                    |
| Reliability factors (%)                                 | Rexp   | 9.06                      | 9.1                         | 9                                                                                       |
|                                                         | Chi2   | 3.76                      | 1.82                        | 1.48                                                                                    |
|                                                         | Rbragg | 9.338                     | 4.881                       | 3.25                                                                                    |
|                                                         | F1     | 1.0000                    | 1.0000                      | 0.9500                                                                                  |
| Occupancy                                               | F2     | 1.0000                    | 1.0000                      | 0.9999                                                                                  |
|                                                         | F3     | 0.9500                    | 0.9500                      | 1.0000                                                                                  |

| Hamilton's test   |                                                             |                                            |  |  |
|-------------------|-------------------------------------------------------------|--------------------------------------------|--|--|
|                   |                                                             |                                            |  |  |
| Aim               | Formula                                                     | Method                                     |  |  |
| To define the     | Hypothesis dimension :                                      | 1) calculation of the                      |  |  |
| pertinence of the | b = m <sub>b</sub> -m <sub>a</sub>                          | relation bewteen the Rbragg-factor of both |  |  |
| addition of (a)   | m <sub>a,b</sub> : number of refined<br>parameters case a,b | cases 2)<br>Confrontation of this          |  |  |
| new parameter(s)  | Nnumber of degree of freedom :                              | relation and the                           |  |  |
|                   | N = n-m <sub>b</sub>                                        | Hamilton's confidence                      |  |  |
| in the refinement | n = number of reflections                                   | coefficient                                |  |  |
|                   | Confidence coefficient :                                    |                                            |  |  |
|                   | <b>R</b> <sub>b, N, α</sub>                                 |                                            |  |  |
|                   | α = level of trust (1, 5, 10%)                              |                                            |  |  |
|                   | For N>120 :                                                 |                                            |  |  |
|                   | R <sub>b, N, α</sub> ?1+                                    |                                            |  |  |
|                   | 120/N <sub>1</sub> * (R <sub>b, 120, α</sub> -1)            |                                            |  |  |

|                       | Case n°1 : Full occupancy vs Vacancies statisticly distributed     |       |  |
|-----------------------|--------------------------------------------------------------------|-------|--|
|                       | a = Full Occupancy Biso                                            |       |  |
|                       |                                                                    |       |  |
| _                     | b = Vacancies statisticly distributed + restrained refinement Bisc |       |  |
|                       | Rbragg (a) =                                                       | 8.76  |  |
|                       | Rbragg (b) =                                                       | 8.58  |  |
|                       | R <sub>a/b</sub> =                                                 | 1.021 |  |
|                       | ma =                                                               | 55    |  |
|                       | m <sub>b</sub> =                                                   | 58    |  |
|                       | b =                                                                | 3     |  |
|                       | n =                                                                | 282   |  |
|                       | N =                                                                | 224   |  |
|                       | <b>R</b> <sub>b, N, 0,5%</sub>                                     | 1.029 |  |
|                       | <b>R</b> <sub>b, N, 1%</sub>                                       | 1.026 |  |
| _                     | <b>R</b> <sub>b, N, 2,5%</sub>                                     | 1.021 |  |
|                       |                                                                    |       |  |
| -<br>Coefficient from | 120                                                                | 224   |  |
|                       |                                                                    |       |  |
| Coef 2,5%             | 1.04                                                               | 1.021 |  |
| Coef 1%               | 1.048                                                              | 1.026 |  |
| Coef 0,5%             | 1.055                                                              | 1.029 |  |

|                                                  | Case nº2 : Vacancies on 2 sites                                                                                                 | Baniso ve Vacancies on 2 sitos |  |  |
|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--|--|
|                                                  | Case II 2 . Vacancies OII 2 sites pariso vs vacancies OII 2 sites                                                               |                                |  |  |
|                                                  | a = Vacancies statistically distributed on F1 and F2 only βaniso<br>b = Vacancies statistically distributed on F1 and F2 only + |                                |  |  |
|                                                  |                                                                                                                                 |                                |  |  |
|                                                  | b - vacancies statistically dis                                                                                                 |                                |  |  |
|                                                  | restrained refir                                                                                                                | nement Baniso                  |  |  |
|                                                  | Rbragg (a) = 3.253                                                                                                              |                                |  |  |
|                                                  | Rbragg (b) =                                                                                                                    | 3.205                          |  |  |
|                                                  | R <sub>a/b</sub> =                                                                                                              | 1.015                          |  |  |
|                                                  | m <sub>a</sub> =                                                                                                                | 65                             |  |  |
|                                                  | m <sub>b</sub> =                                                                                                                | 67                             |  |  |
|                                                  | b =                                                                                                                             | 2                              |  |  |
|                                                  | n = 280                                                                                                                         |                                |  |  |
|                                                  | N =                                                                                                                             | 213                            |  |  |
|                                                  | <b>R</b> <sub>b, N, 0,5%</sub>                                                                                                  | 1.025                          |  |  |
|                                                  | R <sub>b, N, 1%</sub>                                                                                                           | 1.022                          |  |  |
|                                                  | R <sub>b, N, 2,5%</sub>                                                                                                         | 1.017                          |  |  |
|                                                  | R <sub>b, N, 5%</sub>                                                                                                           | 1.014                          |  |  |
|                                                  |                                                                                                                                 |                                |  |  |
| Confidence Coefficient from<br>Hamilton's tables | 120                                                                                                                             | 213                            |  |  |
| Coef 5%                                          | 1.025                                                                                                                           | 1.014                          |  |  |
| Coef 2,5%                                        | 1.031                                                                                                                           | 1.017                          |  |  |
| Coef 1%                                          | 1.039                                                                                                                           | 1.022                          |  |  |
| Coef 0,5%                                        | 1.045                                                                                                                           | 1.025                          |  |  |
|                                                  |                                                                                                                                 |                                |  |  |



**Fig. S3.** Experimental and calculated patterns of powder neutron diffraction on La<sub>0.93</sub>Ba<sub>0.07</sub>F<sub>2.93</sub>. Inset: reliability factors for this refinement.



**Fig. S4.** Experimental and calculated patterns of powder neutron diffraction on La<sub>0.97</sub>Ba<sub>0.03</sub>F<sub>2.97</sub>. Inset: reliability factors for this refinement.

| Atom 1 | Atom 2   | LaF <sub>3</sub> | La <sub>0,97</sub> Ba <sub>0,03</sub> F <sub>2,97</sub> | La <sub>0,93</sub> Ba <sub>0,07</sub> F <sub>2,93</sub> | La <sub>0,90</sub> Ba <sub>0,10</sub> F <sub>2,90</sub> |
|--------|----------|------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|
|        | La,Ba    | 2.4581(15)       | 2.4576(14)                                              | 2.4598(13)                                              | 2.4620(15)                                              |
| F1     | La,Ba    | 2.4885(17)       | 2.4995(21)                                              | 2.5267(35)                                              | 2.5359(61)                                              |
| FI     | La,Ba    | 2.6379(18)       | 2.6604(29)                                              | 2.6908(56)                                              | 2.7460(103)                                             |
|        | La,Ba    | 3.0028(12)       | 2.9814(16)                                              | 2.9342(28)                                              | 2.8716(50)                                              |
|        | F1 1x    | 2.5684(21)       | 2.5649(20)                                              | 2.5480(19)                                              | 2.5295(22)                                              |
|        | F1 1x    | 2.6869(24)       | 2.6976(31)                                              | 2.7283(66)                                              | 2.8101(122)                                             |
|        | F2 1x    | 2.7006(19)       | 2.6970(27)                                              | 2.7209(36)                                              | 2.7637(57)                                              |
|        | F2 1x    | 2.7790(17)       | 2.7834(20)                                              | 2.7719(33)                                              | 2.7662(58)                                              |
| E1     | F2 1x    | 2.8678(20)       | 2.9189(29)                                              | 2.9983(38)                                              | 3.0730(58)                                              |
| ГІ     | F2 1x    | 3.9473(23)       | 3.9105(31)                                              | 3.8667(40)                                              | 3.8422(59)                                              |
|        | F3 1x    | 2.7541(15)       | 2.7485(21)                                              | 2.7278(46)                                              | 2.6801(84)                                              |
|        | F3 1x    | 3.4610(15)       | 3.4568(19)                                              | 3.4450(37)                                              | 3.4119(67)                                              |
|        | F1 2x    | 2.7342(23)       | 2.7263(26)                                              | 2.7065(32)                                              | 2.6615(57)                                              |
|        | F1 2x    | 3.6192(19)       | 3.6662(27)                                              | 3.7721(64)                                              | 3.8971(119)                                             |
| F2     | La,Ba 3x | 2.4171 (9)       | 2.4192(22)                                              | 2.4219(36)                                              | 2.4268(44)                                              |
|        | F1 3x    | 2.7006(19)       | 2.6970(27)                                              | 2.7209(36)                                              | 2.7637(67)                                              |
|        | F1 3x    | 2.7790(17)       | 2.7834(20)                                              | 2.7719(33)                                              | 2.7662(68)                                              |
| F2     | F1 3x    | 2.8678(20)       | 2.9189(29)                                              | 2.9983(38)                                              | 3.0730(58)                                              |
|        | F1 3x    | 3.9473 (23)      | 3.9105 (31)                                             | 3.8667 (40)                                             | 3.8422(59)                                              |
|        | F2 2x    | 3.6755 (32)      | 3.6813 (52)                                             | 3.6919 (63)                                             | 3.6979(84)                                              |
| F3     | La,Ba 3x | 2.4443(6)        | 2.4367(22)                                              | 2.4351(36)                                              | 2.4269(44)                                              |
|        | F1 6x    | 2.7541(15)       | 2.7485(21)                                              | 2.7278(46)                                              | 2.6801(84)                                              |
| F3     | F1 6x    | 3.4610(15)       | 3.4568(19)                                              | 3.4450(37)                                              | 3.4119(67)                                              |
|        | F3 2x    | 3.6755(5)        | 3.6813(0)                                               | 3.6919(0)                                               | 3.6979(0)                                               |

**Table S3.** Relevant distances (Å) between the fluorine atoms and their nearest neighbors (up to 4 Å), obtained by refinement on powder neutron diffraction.  $LaF_3$  data taken from Zalkin and Templeton.<sup>2</sup>

**Table S4.** Relevant distances (Å) between the (La,Ba) atoms and their nearest neighbors (up to 3 Å), obtained by refinement on powder neutron diffraction.  $LaF_3$  data taken from Zalkin and Templeton.<sup>2</sup>

| Atom 1 | Atom 2 | LaF <sub>3</sub> | La <sub>0,97</sub> Ba <sub>0,03</sub> F <sub>2,97</sub> | La <sub>0,93</sub> Ba <sub>0,07</sub> F <sub>2,93</sub> | La <sub>0,90</sub> Ba <sub>0,10</sub> F <sub>2,90</sub> |
|--------|--------|------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|
|        | F1 2x  | 2.4581(15)       | 2.4576(14)                                              | 2.4598(13)                                              | 2.4620(15)                                              |
| L - D- | F1 2x  | 2.4885(12)       | 2.4995(15)                                              | 2.5267(32)                                              | 2.5359(51)                                              |
| La,Ba  | F1 2x  | 2.6379(17)       | 2.6604(29)                                              | 2.6908(56)                                              | 2.7460(103)                                             |
|        | F1 2x  | 3.0028(17)       | 2.9814(17)                                              | 2.9342(33)                                              | 2.8716(59)                                              |
| La,Ba  | F2 2x  | 2.4171(6)        | 2.4192(12)                                              | 2.4219(19)                                              | 2.4269(33)                                              |
| La,Ba  | F3 1x  | 2.4443(8)        | 2.4367(22)                                              | 2.4351(36)                                              | 2.4269(65)                                              |



**Fig. S5.** Evolution with x of the cell parameters in the  $La_{1-x}Ba_xF_{3-x}$  ( $0 \le x \le 0.15$ ) solid solutions. Blue symbols stands for XRD data and red symbols for neutron ones. The straight lines show the linear regressions (equations are given).



**Fig. S6.** Experimental and fitted <sup>19</sup>F MAS (64 kHz) NMR spectra of LaF<sub>3</sub>. The individual resonances used for the fit are shown below.

**Table S5.** Isotropic chemical shifts ( $\delta_{iso}$ , ppm), linewidths (LW, ppm) and relative intensities (I, %) of the NMR resonances used for the fit of the <sup>19</sup>F MAS (64 kHz) NMR spectrum of LaF<sub>3</sub> and assignment of these resonances.

| $\delta_{iso}$ | LW  | Ι    | Assignment |
|----------------|-----|------|------------|
| -23.1          | 5.6 | 66.7 | F1         |
| 17.9           | 9.1 | 11.9 | F3         |
| 26.0           | 8.8 | 21.5 | F2         |



**Fig. S7.** Experimental and fitted <sup>19</sup>F MAS (64 kHz) NMR spectra of La<sub>0.97</sub>Ba<sub>0.03</sub>F<sub>2.97</sub>. The individual resonances used for the fit are shown below.

**Table S6.** Isotropic chemical shifts ( $\delta_{iso}$ , ppm), linewidths (LW, ppm) and relative intensities (I, %) of the NMR resonances used for the fit of the <sup>19</sup>F MAS (64 kHz) NMR spectrum of La<sub>0.97</sub>Ba<sub>0.03</sub>F<sub>2.97</sub> and assignment of these resonances.

| $\delta_{iso}$ | LW   | Ι    | Assignment              |
|----------------|------|------|-------------------------|
| -21.0          | 5.8  | 54.4 | F1                      |
| -20.1          | 14.5 | 12.0 | F1                      |
| 17.7           | 7.8  | 10.2 | F3                      |
| 25.6           | 9.0  | 22.4 | F2                      |
| 41.6           | 8.8  | 0.9  | F2,3-La <sub>2</sub> Ba |



**Fig. S8.** Experimental and fitted <sup>19</sup>F MAS (64 kHz) NMR spectra of La<sub>0.95</sub>Ba<sub>0.05</sub>F<sub>2.95</sub>. The individual resonances used for the fit are shown below.

**Table S7.** Isotropic chemical shifts ( $\delta_{iso}$ , ppm), linewidths (LW, ppm) and relative intensities (I, %) of the NMR resonances used for the fit of the <sup>19</sup>F MAS (64 kHz) NMR spectrum of La<sub>0.95</sub>Ba<sub>0.05</sub>F<sub>2.95</sub> and assignment of these resonances.

| $\delta_{iso}$ | LW   | Ι    | Assignment              |
|----------------|------|------|-------------------------|
| -19.7          | 7.9  | 54.7 | F1                      |
| -18.8          | 3.3  | 1.5  | F1                      |
| -17.3          | 18.6 | 11.6 | F1                      |
| 17.8           | 9.1  | 10.7 | F3                      |
| 25.3           | 10.7 | 19.7 | F2                      |
| 40.1           | 10.6 | 1.8  | F2,3-La <sub>2</sub> Ba |



**Fig. S9.** Experimental and fitted <sup>19</sup>F MAS (64 kHz) NMR spectra of La<sub>0.93</sub>Ba<sub>0.07</sub>F<sub>2.93</sub>. The individual resonances used for the fit are shown below.

**Table S8.** Isotropic chemical shifts ( $\delta_{iso}$ , ppm), linewidths (LW, ppm) and relative intensities (I, %) of the NMR resonances used for the fit of the <sup>19</sup>F MAS (64 kHz) NMR spectrum of La<sub>0.93</sub>Ba<sub>0.07</sub>F<sub>2.93</sub> and assignment of these resonances.

| $\delta_{iso}$ | LW   | Ι    | Assignment |
|----------------|------|------|------------|
| -18.3          | 5.9  | 16.5 | F1         |
| -18.2          | 11.1 | 35.6 | F1         |
| -17.3          | 25.5 | 16.2 | F1         |
| 18.6           | 10.3 | 11.4 | F2,3       |
| 25.3           | 13.4 | 18.0 | F2,3       |
| 39.6           | 11.7 | 2.3  | F2,3       |



**Fig. S10.** Experimental and fitted <sup>19</sup>F MAS (64 kHz) NMR spectra of La<sub>0.90</sub>Ba<sub>0.10</sub>F<sub>2.90</sub>. The individual resonances used for the fit are shown below.

**Table S9.** Isotropic chemical shifts ( $\delta_{iso}$ , ppm), linewidths (LW, ppm) and relative intensities (I, %) of the NMR resonances used for the fit of the <sup>19</sup>F MAS (64 kHz) NMR spectrum of La<sub>0.90</sub>Ba<sub>0.10</sub>F<sub>2.90</sub> and assignment of these resonances.

| $\delta_{iso}$ | LW   | Ι    | Assignment |
|----------------|------|------|------------|
| -16.0          | 16.2 | 26.9 | F1         |
| -15.8          | 9.0  | 16.1 | F1         |
| -15.5          | 30.4 | 26.4 | F1         |
| 16.8           | 6.8  | 0.5  | F2,3       |
| 22.3           | 18.8 | 25.4 | F2,3       |
| 37.4           | 15.7 | 4.8  | F2,3       |



**Fig. S11.** Room temperature conductivity versus x in the  $La_{1-x}Ba_xF_{3-x}$  solid solutions.



**Fig. S12.** Impedance Nyquist diagram obtained at 25°C for La<sub>0.95</sub>Ba<sub>0.05</sub>F<sub>2.95</sub> pellet using uniaxially and isostatically pressing (experimental data: black squares ; fitted curve: red line).



**Fig. S13. (up)** Equivalent capacity and **(down)** frequency diagrams for sintered pellets of  $La_{0.95}Ba_{0.05}F_{2.95}$ , estimated from impedance measurements fitting with equivalent circuits.

## References

1 W. C. Hamilton, *Acta Cryst.*, 1965, **18**, 502-510. 2 A. Zalkin and D. H. Templeton, *Acta Crystallogr. B*, 1985, **41**, 91–93.