Electronic Supplementary Information

Palladium(II) mononuclear and palladium(II)/ruthenium(II) heterodinuclear complexes containing 2-quinolyl-substituted (pyridine-2-carbonyl)hydrazone

 Kiyohiko Nakajima ${ }^{\text {c,* }}$
${ }^{\text {a }}$ Department of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan.
E-mail: suzuki@okayama-u.ac.jp; fax: +81-86-251-7900
${ }^{\mathrm{b}}$ Photosynthesis Research Center, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
${ }^{\text {c }}$ Department of Chemistry, Aichi University of Education, Kariya, Aichi 448-8542, Japan.
E-mail: knakajim@auecc.aichi-edu.ac.jp

Experimental details

General: All reagents and solvents were commercially available and used without further purification. The starting materials, $\left[\mathrm{PdCl}_{2}(\mathrm{cod})\right]^{1}$ and HL^{2}, were prepared according to the literature methods. A mixture of E - and Z-isomers (58:42) of HL was used for preparation of the palladium(II) complexes.

Synthesis of complexes

[$\mathbf{P d C l}\{\mathrm{L}-\kappa N($ quinoline $), \kappa N($ hydrazonato $), \kappa N($ pyridine $)\}]$ (1): To an acetonitrile solution $(15 \mathrm{~mL})$ of a mixture of E - and Z-isomers of $\mathrm{HL}(96.7 \mathrm{mg}, 0.35 \mathrm{mmol})$ was added $\mathrm{Et}_{3} \mathrm{~N}(48.7 \mu \mathrm{l}$, $0.35 \mathrm{mmol})$ and $\left[\mathrm{PdCl}_{2}(\operatorname{cod})\right](99.9 \mathrm{mg}, 0.35 \mathrm{mmol})$; the mixture was stirred to dissolve $\left[\mathrm{PdCl}_{2}(\mathrm{cod})\right]$ completely. Then, the mixture was allowed to stand for several days at room temperature. The reddish crystalline product precipitated was collected by filtration and dried in air. Yield: $140 \mathrm{mg}(96 \%)$. Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{ClN}_{4} \mathrm{OPd}$: C, $46.07 ; \mathrm{H}, 2.66 ; \mathrm{N}, 13.43 \%$. Found: C, 45.99; H, 2.09; N, 13.37\%. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): ~ \delta 9.38(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 9.35(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.34(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{td}, J=7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.81$ (ddd, $J=8.0,6.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{ddd}, \mathrm{J}=5.3,4.2,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.60$ (ddd, $J=7.5,5.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~s}, 1 \mathrm{H}$, azomethine-H). The singlecrystals of $1 \cdot 0.5 \mathrm{CH}_{3} \mathrm{CN}$ suitable for X-ray analysis were directly picked up from the reaction solution, and those of $1 \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ were obtained from a dichloromethane solution of $\mathbf{1}$ by slow evaporation at ambient temperature.
$\left[\mathbf{P d C l}_{\mathbf{2}}\left\{\mathbf{H L}{ }^{\prime}-\kappa N(\right.\right.$ hydrazonato $), \kappa N($ pyridine $\left.\left.)\right\}\right](\mathbf{2}): \quad$ Solid $\left[\mathrm{PdCl}_{2}(\operatorname{cod})\right](37.5 \mathrm{mg}, 0.13$
mmol) was added to an acetonitrile solution $(8.5 \mathrm{~mL})$ of a mixture of E - and Z-isomers of HL (36.2 $\mathrm{mg}, 0.13 \mathrm{mmol})$, and the mixture was stirred to dissolve $\left[\mathrm{PdCl}_{2}(\mathrm{cod})\right]$ completely. To the reaction mixture was diffused diisopropyl ether vapor. After 1 d at ambient temperature yellow platelet crystals of $\mathbf{2} \cdot 0.5 \mathrm{CH}_{3} \mathrm{CN} \cdot \mathrm{H}_{2} \mathrm{O}$ were obtained as well as reddish crystalline solids of $\mathbf{1} \cdot 0.5 \mathrm{CH}_{3} \mathrm{CN}$. These crystals were separated under the microscope and used for X-ray analysis and spectroscopic measurements. Because of the poor solubility of $\mathbf{2}$ in common (deuterated) organic solvents, ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2}$ could not be measured.
$\operatorname{trans}(\mathbf{C l}, \mathbf{C l})-\left[\mathbf{P d C l}(\boldsymbol{\mu}-\mathrm{L}) \mathbf{R u C l}_{\mathbf{2}}\left(\mathbf{P P h}_{\mathbf{3}}\right)_{\mathbf{2}}\right] \mathbf{(3) : ~ C o m p l e x} \mathbf{1}(41.7 \mathrm{mg}, 0.10 \mathrm{mmol})$ was dissolved in dichloromethane (15 mL) on heating, and $\left[\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}\right](95.9 \mathrm{mg}, 0.10 \mathrm{mmol})$ was then added to the solution. After stirring the mixture for 3 h at room temperature, the solvent was evaporated (to ca. 5 mL) under reduced pressure. Hexane (15 mL) was added to the concentrate, affording a green precipitate, which was collected by filtration and dried in air. Yield: 110 mg (99\%). Anal. Calcd for $\mathrm{C}_{52} \mathrm{H}_{41} \mathrm{Cl}_{3} \mathrm{~N}_{4} \mathrm{OP}_{2} \mathrm{PdRu} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$: C, $54.54 ; \mathrm{H}, 3.66 ; \mathrm{N}, 4.85 \%$. Found: C, 54.66; H, 3.48; N, 4.69\%. ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta 9.19$ (d, $\left.J=8.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 8.00(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, 7.97 (td, $J=1.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{dd}, J=4.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{t}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.69$ (t, $J=7.2$ $\mathrm{Hz}, 4 \mathrm{H}$), 7.59 (t, $J=8.1 \mathrm{~Hz}, 6 \mathrm{H}$), 7.53 (t, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.44 (ddd, $J=9.8,8.5,1.3 \mathrm{~Hz}, 6 \mathrm{H}$), 7.17 (t, $J=4 \mathrm{H}$), 7.06 (dd, J = 11.2, 1.6 Hz, 6H), 7.06 (td, J = 13.5, $1.9 \mathrm{~Hz}, 6 \mathrm{H}$), $6.86(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.30(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} . \quad{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=47.27\left(\mathrm{~d}, J_{\mathrm{P}, \mathrm{P}}=35 \mathrm{~Hz}\right), 37.79$ (d). Green prismatic crystals suitable for X-ray analysis were deposited by slow diffusion of layered hexane into a dichloromethane solution of the crude product.

Measurements

Proton and phosphorus-31 NMR spectra were recorded on a Varian NMR System 400-MR spectrometers. The ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR chemical shifts were referenced to the residual solvent peak and the external $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$, respectively. Cyclic voltammograms were measured using a BAS $100 \mathrm{~B} / \mathrm{W}$ electrochemical workstation with dichloromethane solutions containing $\mathrm{Bu}_{4} \mathrm{NClO}_{4}(0.1 \mathrm{M})$ as a supporting electrolyte, at scan rate of $100 \mathrm{mV} \mathrm{s}^{-1}$. The three-electrode system consisting of a glassy carbon working, a platinum wire auxiliary, and an $\mathrm{Ag} / \mathrm{Ag}^{+}(\mathrm{Ag} / 0.01 \mathrm{M} \mathrm{AgNO} 3)$ reference electrodes were used. UV-vis absorption spectra were recorded on a Jasco V-550 spectrophotometer.

Crystallography

Each single-crystal of complexes $\mathbf{1} \cdot 0.5 \mathrm{CH}_{3} \mathrm{CN}, \mathbf{1} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathbf{3} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was glued on a top of glass fiber. The X-ray diffraction data were obtained at $25(1)^{\circ} \mathrm{C}$ using a Rigaku SCXmini CCD detector with graphite-monochromated Mo K α radiation ($\lambda=0.71073 \AA$). A single-crystal of complex $2 \cdot 0.5 \mathrm{CH}_{3} \mathrm{CN} \cdot \mathrm{H}_{2} \mathrm{O}$ was mounted with a cryoloop and flash cooled using a cold nitrogen
stream. The X-ray diffraction data were obtained at $-110(1)^{\circ} \mathrm{C}$ using a Rigaku VariMax diffractometer with a Saturn CCD detector. The data were processed using the Process-Auto or the CrystalClear software package, ${ }^{3}$ and the numerical absorption corrections were applied. ${ }^{4}$ The structures were solved using the direct method employing the SIR2004, SIR2011,5 ${ }^{5}$ or SHELXS976 ${ }^{6}$ software package and refined on F^{2} (with all independent reflections) using the SHELXL97 or SHELXL2013 software package. ${ }^{6}$ All non-H atoms were refined anisotopically. In the analyses for $\mathbf{1} \cdot 0.5 \mathrm{CH}_{3} \mathrm{CN}$ and $\mathbf{1} \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ all H -atoms were refined isotropically, while those of $\mathbf{3} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ were placed at the theoretical positions and treated using riding models. For the analysis of $2 \cdot \mathrm{CH}_{3} \mathrm{CN} \cdot \mathrm{H}_{2} \mathrm{O}$, the quinolinium H -atom was located in a D-synthesis map and refined isotropically, but the other H -atoms in the complex molecule were theoretically introduced and treated using riding models. H atoms of the solvated $\mathrm{CH}_{3} \mathrm{CN}$ and $\mathrm{H}_{2} \mathrm{O}$ molecules were not included in the calculation. All calculations were carried out using the CrystalStructure software package. ${ }^{7}$ The crystal data are collected in Table S1, and selected structural parameters are listed in Table S2.

References

1 D. Drew, J. R. Doyle, Inorg. Synth. 1972, 13, 47-55.
2 A. Mori, T. Suzuki, Y. Sunatsuki, A. Kobayashi, M. Kato, M. Kojima, K. Nakajima, Eur. J. Inorg. Chem. 2014, 186-197.
(a) M. C.Burla, R. Caliandro, M. Camalli, B. Carrozzini, G. L. Cascarano, L. De Caro, C. Giacovazzo, G. Polidori, R. Spagna, J. Appl. Crystallogr. 2005, 38, 381-388. (b) M. C.Burla, R. Caliandro, M. Camalli, B. Carrozzini, G. L. Cascarano, L. De Caro, C. Giacovazzo, G. Polidori, D. Siliqi, R. Spagna, J. Appl. Crystallogr. 2007, 40, 609-613. (c) M. C.Burla, R. Caliandro, M. Camalli, B. Carrozzini, G. L. Cascarano, C. Giacovazzo, M. Mallamo, A. Mazzone, G. Polidori, R. Spagna, J. Appl. Crystallogr. 2012, 45, 357-361.
6 G. M. Sheldrick, Acta Crystallogr. Sect. A 2008, 64, 112-122.
7 Rigaku Co. Ltd., CrystalStructure, Tokyo, 2000-2014.

Table S1. Crystallographic Data

Abbreviation	$1 \cdot 0.5 \mathrm{CH}_{3} \mathrm{CN}$	$1 \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$	$2 \cdot 0.5 \mathrm{CH}_{3} \mathrm{CN} \cdot \mathrm{H}_{2} \mathrm{O}$	3.2 $2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$
Formula	$\mathrm{C}_{17} \mathrm{H}_{12.5} \mathrm{Cl}_{2} \mathrm{~N}_{4.5} \mathrm{OPd}$	$\mathrm{C}_{16.5} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{OPd}$	$\mathrm{C}_{17} \mathrm{H}_{15.5} \mathrm{Cl}_{2} \mathrm{~N}_{4.5} \mathrm{O}_{2} \mathrm{Pd}$	$\mathrm{C}_{54} \mathrm{H}_{45} \mathrm{Cl}_{7} \mathrm{~N}_{4} \mathrm{OP}_{2} \mathrm{PdRu}$
FW	437.67	459.61	492.14	1283.56
T / K	298(1)	298(1)	163(1)	298(1)
Colour, shape	Orange, prism	Orange, prism	Yellow, platelet	Green, prism
Crystal size / mm	$0.20 \times 0.13 \times 0.06$	$0.30 \times 0.30 \times 0.20$	$0.20 \times 0.10 \times 0.02$	$0.30 \times 0.20 \times 0.10$
Crystal system	Monoclinic	Monoclinic	Monoclinic	Triclinic
Space group, Z	C2/c, 8	C2/c, 8	C2/c, 8	P1, 2
a / \AA	10.9736(2)	22.4138(4)	27.991(6)	10.7286(5)
b / \AA	13.3638(2)	9.6592(2)	7.563(2)	15.3170 (8)
c / \AA	21.7523(4)	17.3560(3)	17.189(6)	17.1968(9)
$\alpha /$ deg .	90	90	90	93.998(2)
$\beta /$ deg.	90.796(1)	118.589(1)	95.354(15)	101.667(1)
$\gamma /$ deg .	90	90	90	91.621(2)
V / \AA^{3}	3189.65(10)	3299.42(11)	3623.0(18)	2758.2(2)
$D_{\mathrm{x}} / \mathrm{Mg} \mathrm{m}^{-3}$	1.823	1.675	1.814	1.545
$F(000)$	1736	1816	1960	1288
$\mu\left(\mathrm{Mo} \mathrm{K}_{a}\right) / \mathrm{mm}^{-1}$	1.345	1.461	1.346	1.039
$T_{\text {min }}, T_{\text {max }}$	0.775, 0.9248	0.697, 0.782	0.852, 0.973	0.746, 0.903
$R_{\text {int }}$	0.0327	0.0158	0.0314	0.0721
Refln./param. ratio	3663/276	3761/271	4140/253	12577/631
$R 1\left[F_{0}{ }^{2}>2 \square\left(F_{0}{ }^{2}\right)\right]$	0.0255	0.0202	0.0355	0.0647
$w R 2$ (all refln)	0.0596	0.0532	0.0966	0.1525
GoF	1.051	1.086	1.099	1.054

Table S2. Selected structural parameters of complexes 1, 2, $\mathbf{3}$ and the related Ru complex, 4. ${ }^{a}$

	$1 \cdot 0.5 \mathrm{CH}_{3} \mathrm{CN}$	$1 \cdot 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}$	$2 \cdot 0.5 \mathrm{CH}_{3} \mathrm{CN} \cdot \mathrm{H}_{2} \mathrm{O}$	3-2 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$	4
$\mathrm{Pd} 1-\mathrm{Cl1}(\mathrm{Cl3}$ for 3)	2.3359(6)	2.3391 (5)	2.2956 (11)	2.3140 (18)	-
Pd1-Cl2	-	-	2.3145 (12)	-	-
$\mathrm{Pd} 1-\mathrm{N} 1$	2.0438(18)	2.0379(16)	-	2.036(4)	-
Pd1-N3	$1.9669(18)$	1.9660 (15)	2.071(2)	$1.983(5)$	-
Pd1-N4	2.0361(18)	2.0393 (16)	2.020(3)	$2.034(5)$	-
Ru1-Cl1	-	-	-	$2.4150(16)$	2.430(1)
$\mathrm{Ru} 1-\mathrm{Cl} 2$	-	-	-	$2.4113(17)$	2.400(1)
Ru1-P1	-	-	-	2.3172 (13)	2.313(1)
Ru1-P2	-	-	-	2.3369 (15)	2.331(1)
Ru1-O1	-	-	-	2.133(4)	2.163(3)
Ru1-N2	-	-	-	$2.146(5)$	2.143(4)
O1-C11	1.212(3)	1.216(2)	1.238(4)	1.250(7)	1.245(6)
N3-C11	1.378(3)	1.375(2)	1.367(4)	1.336(7)	1.341(6)
N3-Pd1-Cl1 (Cl3)	168.85(6)	169.24(5)	166.26(14)	166.26(14)	-
N4-Pd1-Cl2	-	-	176.65(8)	-	-
N1-Pd1-N4	171.20(7)	169.28(6)	-	171.87(19)	-
$\tau_{4}{ }^{\text {a }}$	0.14	0.15	0.12	0.15	-
plane(CAH) ${ }^{\text {b }}$ vs. plane(qn) ${ }^{\text {c }}$	27.0(1)	29.6(1)	2.3(1)	20.4(2)	16.5(2)
plane(CAH) vs. plane(py) ${ }^{d}$	15.9(1)	18.9(1)	2.4(1)	12.2(3)	3.2(2)
plane(qn) vs. plane(py)	41.22(7)	45.6(1)	3.9(1)	31.1(2)	18.5(2)

${ }^{a}$ Ref. 1. ${ }^{b}$ Defined by N2, N3, C11 and O1. ${ }^{c}$ Defined by N1, C1, C2, C3, C4, C5, C6, C7, C8, and C9. ${ }^{d}$ Defined by N4, C12, C13, C14, C15 and C16.

Figure S1 Absorption spectra of (a) complexes $\mathbf{1}$ (red) and $\mathbf{2}$ (orange) and (b) complex $\mathbf{3}$ (green) in acetonitrile at room temperature $\left(\sim 25^{\circ} \mathrm{C}\right)$.

Figure S2 Cyclic voltammogram of complex $\mathbf{3}$ in dichloromethane at room temperature (~ 25

$$
\left.{ }^{\circ} \mathrm{C}\right) . \Delta E_{\mathrm{p}}=75 \mathrm{mV}\left(\Delta E_{\mathrm{p}}=E_{\mathrm{pa}}-E_{\mathrm{pc}}\right) .
$$

Figure S3. ${ }^{31} \mathrm{P}$ NMR spectra of complex $\mathbf{3}$ in CDCl_{3}. Lower (black) spectrum was measured after ca. 1 h when a crude reaction product from complex $\mathbf{1}$ and $\left[\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}\right]$ in dichloromethane for 3 h (see: Experimental section) was dissolved in CDCl_{3}. Upper (purple) was a spectrum of a prolonged ($\sim 10 \mathrm{~h}$) reaction product from the same precursors in dichloromethane.

