Electronic Supplementary Information

Palladium(II) mononuclear and palladium(II)/ruthenium(II) heterodinuclear complexes containing 2-quinolyl-substituted (pyridine-2-carbonyl)hydrazone

Asami Mori,^a Takayoshi Suzuki,^{a,b,*} Yuichi Nakatani,^a Yukinari Sunatsuki,^a Masaaki Kojima^a and Kiyohiko Nakajima^{c,*}

- ^a Department of Chemistry, Faculty of Science, Okayama University, Okayama 700-8530, Japan. E-mail: suzuki@okayama-u.ac.jp; fax: +81-86-251-7900
- ^b Photosynthesis Research Center, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan.
- ^c Department of Chemistry, Aichi University of Education, Kariya, Aichi 448-8542, Japan. E-mail: knakajim@auecc.aichi-edu.ac.jp

Experimental details

General: All reagents and solvents were commercially available and used without further purification. The starting materials, $[PdCl_2(cod)]^1$ and HL^2 , were prepared according to the literature methods. A mixture of *E*- and *Z*-isomers (58:42) of HL was used for preparation of the palladium(II) complexes.

Synthesis of complexes

[PdCl{L-κN(quinoline),κN(hydrazonato),κN(pyridine)}] (1): To an acetonitrile solution (15 mL) of a mixture of *E*- and *Z*-isomers of HL (96.7 mg, 0.35 mmol) was added Et₃N (48.7 µl, 0.35 mmol) and [PdCl₂(cod)] (99.9 mg, 0.35 mmol); the mixture was stirred to dissolve [PdCl₂(cod)] completely. Then, the mixture was allowed to stand for several days at room temperature. The reddish crystalline product precipitated was collected by filtration and dried in air. Yield: 140 mg (96%). Anal. Calcd for C₁₆H₁₁ClN₄OPd: C, 46.07; H, 2.66; N, 13.43%. Found: C, 45.99; H, 2.09; N, 13.37%. ¹H NMR (CDCl₃): δ 9.38 (d, *J* = 5.6 Hz, 1H), 9.35 (d, *J* = 8.8 Hz, 1H), 8.34 (d, *J* = 8.3 Hz, 1H), 8.22 (d, *J* = 7.7 Hz, 1H), 8.09 (td, *J* = 7.6, 1.5 Hz, 1H), 7.81 (ddd, *J* = 8.0, 6.3, 1.6 Hz, 1H), 7.78 (d, *J* = 6.8 Hz, 1H), 7.64 (ddd, J = 5.3, 4.2, 3.7 Hz, 1H), 7.60 (ddd, *J* = 7.5, 5.7, 1.7 Hz, 1H), 7.57 (d, *J* = 8.3 Hz, 1H), 7.48 (s, 1H, azomethine-H). The single-crystals of **1**•0.5CH₃CN suitable for X-ray analysis were directly picked up from the reaction solution, and those of **1**•0.5CH₂Cl₂ were obtained from a dichloromethane solution of **1** by slow evaporation at ambient temperature.

[PdCl₂{HL'-κN(hydrazonato),κN(pyridine)}] (2): Solid [PdCl₂(cod)] (37.5 mg, 0.13

mmol) was added to an acetonitrile solution (8.5 mL) of a mixture of *E*- and *Z*-isomers of HL (36.2 mg, 0.13 mmol), and the mixture was stirred to dissolve $[PdCl_2(cod)]$ completely. To the reaction mixture was diffused diisopropyl ether vapor. After 1 d at ambient temperature yellow platelet crystals of **2**•0.5CH₃CN•H₂O were obtained as well as reddish crystalline solids of **1**•0.5CH₃CN. These crystals were separated under the microscope and used for X-ray analysis and spectroscopic measurements. Because of the poor solubility of **2** in common (deuterated) organic solvents, ¹H NMR spectrum of **2** could not be measured.

trans(Cl,Cl)-[PdCl(μ -L)RuCl₂(PPh₃)₂] (3): Complex 1 (41.7 mg, 0.10 mmol) was dissolved in dichloromethane (15 mL) on heating, and [RuCl₂(PPh₃)₃] (95.9 mg, 0.10 mmol) was then added to the solution. After stirring the mixture for 3 h at room temperature, the solvent was evaporated (to ca. 5 mL) under reduced pressure. Hexane (15 mL) was added to the concentrate, affording a green precipitate, which was collected by filtration and dried in air. Yield: 110 mg (99%). Anal. Calcd for C₅₂H₄₁Cl₃N₄OP₂PdRu·0.5CH₂Cl₂: C, 54.54; H, 3.66; N, 4.85%. Found: C, 54.66; H, 3.48; N, 4.69%. ¹H NMR (CDCl₃): δ 9.19 (d, *J* = 8.4 Hz, 2H), 8.00 (d, *J* = 8.1 Hz, 1H), 7.97 (td, *J* = 1.4, 7.8 Hz, 1H), 7.80 (dd, *J* = 4.9, 1.7 Hz, 1H), 7.80 (t, *J* = 5.2 Hz, 1H), 7.69 (t, *J* = 7.2 Hz, 4H), 7.59 (t, *J* = 8.1 Hz, 6H), 7.53 (t, *J* = 6.7 Hz, 1H), 7.44 (ddd, *J* = 9.8, 8.5, 1.3 Hz, 6H), 7.17 (t, *J* = 4H), 7.06 (dd, J = 11.2, 1.6 Hz, 6H), 7.06 (td, J = 13.5, 1.9 Hz, 6H), 6.86 (t, *J* = 6.8 Hz, 1H), 6.30 (d, *J* = 8.5 Hz, 1H) ppm. ³¹P NMR (CDCl₃): δ = 47.27 (d, *J*_{P,P} = 35 Hz), 37.79 (d). Green prismatic crystals suitable for X-ray analysis were deposited by slow diffusion of layered hexane into a dichloromethane solution of the crude product.

Measurements

Proton and phosphorus-31 NMR spectra were recorded on a Varian NMR System 400-MR spectrometers. The ¹H and ³¹P NMR chemical shifts were referenced to the residual solvent peak and the external 85% H₃PO₄, respectively. Cyclic voltammograms were measured using a BAS 100B/W electrochemical workstation with dichloromethane solutions containing Bu₄NClO₄ (0.1 M) as a supporting electrolyte, at scan rate of 100 mV s⁻¹. The three-electrode system consisting of a glassy carbon working, a platinum wire auxiliary, and an Ag/Ag⁺ (Ag/0.01 M AgNO₃) reference electrodes were used. UV-vis absorption spectra were recorded on a Jasco V-550 spectrophotometer.

Crystallography

Each single-crystal of complexes $1 \cdot 0.5$ CH₃CN, $1 \cdot 0.5$ CH₂Cl₂ and $3 \cdot 2$ CH₂Cl₂ was glued on a top of glass fiber. The X-ray diffraction data were obtained at 25(1) °C using a Rigaku SCXmini CCD detector with graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å). A single-crystal of complex $2 \cdot 0.5$ CH₃CN \cdot H₂O was mounted with a cryoloop and flash cooled using a cold nitrogen

stream. The X-ray diffraction data were obtained at -110(1) °C using a Rigaku VariMax diffractometer with a Saturn CCD detector. The data were processed using the Process-Auto or the CrystalClear software package,³ and the numerical absorption corrections were applied.⁴ The structures were solved using the direct method employing the SIR2004, SIR2011,⁵ or SHELXS97⁶ software package and refined on F^2 (with all independent reflections) using the SHELXL97 or SHELXL2013 software package.⁶ All non-H atoms were refined anisotopically. In the analyses for 1•0.5CH₃CN and 1•0.5CH₂Cl₂ all H-atoms were refined isotropically, while those of 3•2CH₂Cl₂ were placed at the theoretical positions and treated using riding models. For the analysis of 2•CH₃CN•H₂O, the quinolinium H-atom was located in a D-synthesis map and refined isotropically, but the other H-atoms in the complex molecule were theoretically introduced and treated using riding models. H atoms of the solvated CH₃CN and H₂O molecules were not included in the calculation. All calculations were carried out using the CrystalStructure software package.⁷

The crystal data are collected in Table S1, and selected structural parameters are listed in Table S2.

References

- 1 D. Drew, J. R. Doyle, *Inorg. Synth.* **1972**, *13*, 47–55.
- 2 A. Mori, T. Suzuki, Y. Sunatsuki, A. Kobayashi, M. Kato, M. Kojima, K. Nakajima, *Eur. J. Inorg. Chem.* **2014**, 186–197.
- 3 (a) Rigaku Co. Ltd., Process–Auto, Automatic Data Acquisition and Processing Package for Imaging Plate Diffractometer, Akishima, Tokyo, 1998. (b) Rigaku Co. Ltd., CrystalClear, Operating Software for the CCD Detector System, Akishima, Tokyo, 2008.
- 4 (a) Rigaku Co. Ltd., *SHAPE*, Akishima, Tokyo, Japan, **1999**. (b) Rigaku Co. Ltd., *NUMABS*, Akishima, Tokyo, **1999**. (c) Rigaku Co. Ltd., *REQAB*, Akishima, Tokyo, **1998**.
- (a) M. C.Burla, R. Caliandro, M. Camalli, B. Carrozzini, G. L. Cascarano, L. De Caro, C. Giacovazzo, G. Polidori, R. Spagna, *J. Appl. Crystallogr.* 2005, *38*, 381–388. (b) M. C.Burla, R. Caliandro, M. Camalli, B. Carrozzini, G. L. Cascarano, L. De Caro, C. Giacovazzo, G. Polidori, D. Siliqi, R. Spagna, *J. Appl. Crystallogr.* 2007, *40*, 609–613. (c) M. C.Burla, R. Caliandro, M. Camalli, B. Carrozzini, G. L. Cascarano, C. Giacovazzo, M. Mallamo, A. Mazzone, G. Polidori, R. Spagna, *J. Appl. Crystallogr.* 2012, *45*, 357–361.
- 6 G. M. Sheldrick, Acta Crystallogr. Sect. A 2008, 64, 112–122.
- 7 Rigaku Co. Ltd., *CrystalStructure*, Tokyo, **2000–2014**.

Table	S1 .	Crystal	lographic	: Data
		~	<u> </u>	

Abbreviation	1•0.5CH ₃ CN	1•0.5CH ₂ Cl ₂	2• 0.5CH ₃ CN•H ₂ O	3 •2CH ₂ Cl ₂
Formula	$C_{17}H_{12.5}Cl_2N_{4.5}OPd$	$C_{16.5}H_{12}Cl_2N_4OPd$	$C_{17}H_{15.5}Cl_2N_{4.5}O_2Pd$	C54H45Cl7N4OP2PdRu
FW	437.67	459.61	492.14	1283.56
T / K	298(1)	298(1)	163(1)	298(1)
Colour, shape	Orange, prism	Orange, prism	Yellow, platelet	Green, prism
Crystal size / mm	$0.20\times0.13\times0.06$	$0.30 \times 0.30 \times 0.20$	$0.20\times0.10\times0.02$	$0.30 \times 0.20 \times 0.10$
Crystal system	Monoclinic	Monoclinic	Monoclinic	Triclinic
Space group, Z	<i>C</i> 2/ <i>c</i> , 8	<i>C</i> 2/ <i>c</i> , 8	<i>C</i> 2/ <i>c</i> , 8	<i>P</i> 1, 2
<i>a</i> / Å	10.9736(2)	22.4138(4)	27.991(6)	10.7286(5)
<i>b</i> / Å	13.3638(2)	9.6592(2)	7.563(2)	15.3170(8)
<i>c</i> / Å	21.7523(4)	17.3560(3)	17.189(6)	17.1968(9)
α / deg.	90	90	90	93.998(2)
β / deg.	90.796(1)	118.589(1)	95.354(15)	101.667(1)
γ / deg.	90	90	90	91.621(2)
$V/\text{\AA}^3$	3189.65(10)	3299.42(11)	3623.0(18)	2758.2(2)
$D_{\rm x}$ / Mg m ⁻³	1.823	1.675	1.814	1.545
<i>F(000)</i>	1736	1816	1960	1288
μ (Mo K _a) / mm ⁻¹	1.345	1.461	1.346	1.039
T_{\min}, T_{\max}	0.775, 0.9248	0.697, 0.782	0.852, 0.973	0.746, 0.903
R _{int}	0.0327	0.0158	0.0314	0.0721
Refln./param. ratio	3663/276	3761/271	4140/253	12577/631
$R1 [F_o^2 > 2 \Box (F_o^2)]$	0.0255	0.0202	0.0355	0.0647
wR2 (all refln)	0.0596	0.0532	0.0966	0.1525
GoF	1.051	1.086	1.099	1.054

	1•0.5CH ₃ CN	1•0.5CH ₂ Cl ₂	2• 0.5CH ₃ CN•H ₂ O	3 •2CH ₂ Cl ₂	4
Pd1—Cl1 (Cl3 for 3)	2.3359(6)	2.3391(5)	2.2956(11)	2.3140(18)	_
Pd1—Cl2	—		2.3145(12)	—	
Pd1—N1	2.0438(18)	2.0379(16)		2.036(4)	—
Pd1—N3	1.9669(18)	1.9660(15)	2.071(2)	1.983(5)	
Pd1—N4	2.0361(18)	2.0393(16)	2.020(3)	2.034(5)	
Ru1—Cl1	_	_	_	2.4150(16)	2.430(1)
Ru1—Cl2	—			2.4113(17)	2.400(1)
Ru1—P1				2.3172(13)	2.313(1)
Ru1—P2				2.3369(15)	2.331(1)
Ru1—O1				2.133(4)	2.163(3)
Ru1—N2				2.146(5)	2.143(4)
O1—C11	1.212(3)	1.216(2)	1.238(4)	1.250(7)	1.245(6)
N3—C11	1.378(3)	1.375(2)	1.367(4)	1.336(7)	1.341(6)
N3—Pd1—Cl1 (Cl3)	168.85(6)	169.24(5)	166.26(14)	166.26(14)	
N4—Pd1—Cl2			176.65(8)	—	
N1—Pd1—N4	171.20(7)	169.28(6)		171.87(19)	
$ au_4{}^a$	0.14	0.15	0.12	0.15	
plane(CAH) ^b vs. plane(qn) ^c	27.0(1)	29.6(1)	2.3(1)	20.4(2)	16.5(2)
plane(CAH) vs. plane(py) ^d	15.9(1)	18.9(1)	2.4(1)	12.2(3)	3.2(2)
plane(qn) vs. plane(py)	41.22(7)	45.6(1)	3.9(1)	31.1(2)	18.5(2)

Table S2. Selected structural parameters of complexes 1, 2, 3 and the related Ru complex, 4.^{*a*}

^aRef. 1. ^bDefined by N2, N3, C11 and O1. ^cDefined by N1, C1, C2, C3, C4, C5, C6, C7, C8, and C9. ^dDefined by N4, C12, C13, C14, C15 and C16.

Figure S1 Absorption spectra of (*a*) complexes **1** (red) and **2** (orange) and (*b*) complex **3** (green) in acetonitrile at room temperature (~25 °C).

Figure S2 Cyclic voltammogram of complex **3** in dichloromethane at room temperature (~25 °C). $\Delta E_p = 75 \text{ mV} (\Delta E_p = E_{pa} - E_{pc}).$

Figure S3. ³¹P NMR spectra of complex **3** in CDCl₃. Lower (black) spectrum was measured after ca. 1 h when a crude reaction product from complex **1** and [RuCl₂(PPh₃)₃] in dichloromethane for 3 h (see: Experimental section) was dissolved in CDCl₃. Upper (purple) was a spectrum of a prolonged (~10 h) reaction product from the same precursors in dichloromethane.