Supporting information

Tandem Hydrogenation and Condensation of Fluorinated α,β-Unsaturated Ketones With Primary Amines, Catalyzed by Nickel

Nahury Castellanos-Blanco, Marcos Flores-Alamo and Juventino J. García*

Facultad de Química, Universidad Nacional Autónoma de México, Circuito Interior,

Ciudad Universitaria, Mexico City 04510, Mexico.

juvent@unam.mx

INDEX

Figure S1.	¹ H spectrum of $C_{19}H_{12}F_6O$: 1,5-bis(2-(trifluoromethyl)phenyl)penta-1,4-dien-3-one, 1a , in CDCl ₃ .
Figure S2.	¹³ C{ ¹ H} spectrum of $C_{19}H_{12}F_6O$ 1a, in CDCl ₃ .
Figure S3.	¹⁹ F spectrum of $C_{19}H_{12}F_6O$ 1a , in CDCl ₃ .
Figure S4.	¹ H spectrum of [{(dippe)Ni} ₂ (η^2 -C α ,C β -C ₁₉ H ₁₂ F ₆ O)], (C ₁₉ H ₁₂ F ₆ O: 1,5-bis(2-(trifluoromethyl)phenyl)penta-1,4-dien-3-one), 2a , in THF-d ₈ .
Figure S5.	³¹ P{ ¹ H} spectrum of [{(dippe)Ni} ₂ (η^2 -C α ,C β -C ₁₉ H ₁₂ F ₆ O)] 2a , in THF-d ₈ .
Figure S6.	¹³ C{ ¹ H} spectrum of [{(dippe)Ni} ₂ (η^2 -C α ,C β -C ₁₉ H ₁₂ F ₆ O)] 2a , in THF-d ₈ .
Figure S7.	¹⁹ F spectrum of [{(dippe)Ni} ₂ (η^2 -C α ,C β -C ₁₉ H ₁₂ F ₆ O)] 2a , in THF-d ₈ .

- Figure S8. ¹H spectrum of $C_{17}H_{12}F_2O$: 1,5-bis(4-fluorophenyl)penta-1,4-dien-3-one, 1b, in CDCl₃.
- Figure S9. ${}^{13}C{}^{1}H$ spectrum of $C_{17}H_{12}F_2O$ 1b, in CDCl₃.
- **Figure S10.** ¹⁹F spectrum of $C_{17}H_{12}F_2O$ **1b**, in CDCl₃.
- **Figure S11.** ¹H spectrum of [{(dippe)Ni}₂(η^2 -C α ,C β -C₁₇H₁₂F₂O)], (C₁₇H₁₂F₂O: 1,5-bis(4-fluorophenyl)penta-1,4-dien-3-one), **2b**, in THF-d₈.
- **Figure S12.** ${}^{3}P{}^{1}H$ spectrum of [{(dippe)Ni}₂(η^{2} -C α ,C β -C₁₇H₁₂F₂O)], **2b**, in THF-d₈.
- Figure S13. ${}^{13}C{}^{1}H$ spectrum of [{(dippe)Ni}_2(\eta^2-C\alpha, C\beta C_{17}H_{12}F_2O)], 2b, in THF-d_8.
- Figure S14. ¹⁹F spectrum of [{(dippe)Ni}₂(η^2 -C α ,C β -C₁₇H₁₂F₂O)], **2b**, in THF-d₈.
- **Figure S15.** ¹H spectrum of $[(dippe)Ni(\eta^2-C\alpha, C\beta C_{19}H_{12}F_6O)]$ **3a**, in THF-d₈.
- Figure S16. ${}^{31}P{}^{1}H$ spectrum of [(dippe)Ni(η^2 -C α ,C β -C $_{19}H_{12}F_6O$)] **3a**, in THF-d₈.
- **Figure S17.** ¹H spectrum of $[(dippe)Ni(\eta^2-C\alpha,C\beta C_{17}H_{12}F_2O)]$ **3b**, in THF-d₈.
- **Figure S18.** ³¹P{¹H} spectrum of [(dippe)Ni(η^2 -C α ,C β C₁₇H₁₂F₂O)] **3b**, in THF-d₈.
- **Figure S19.** ORTEP drawing of [$\{(dippe)Ni\}_2(\eta^2-C\alpha, C\beta C_{17}H_{12}F_2O)\}$] **2b**.
- Figure S20. ${}^{31}P{}^{1}H$ spectrum equimolar mixture of $[(dippe)Ni(\mu-H)]_2$ 2 with $C_{19}H_{12}F_6O$ 1a at 100 °C in THF-d₈.
- Figure S21. ${}^{31}P{}^{1}H$ spectrum of reaction between [(dippe)Ni(μ -H)]₂ 2 (1 equiv.) and C₁₉H₁₂F₆O 1a (2 equiv.) at 130 °C in Tol-d₈.
- Figure S22. Chromatogram of $C_{19}H_{12}F_6O$: 1,5-bis(2-(trifluoromethyl)phenyl)penta-1,4-dien-3one 1a.
- Figure S23. Chromatogram reduction and condensation products from 1a, table 1, entry 4.
- Figure S24. Mass spectrum product 4, table 1, entry 4.

- Figure S25. Mass spectrum product 6, table 1, entry 4.
- Figure S26. Mass spectrum product 7, table 1, entry 4.
- Figure S27. Chromatogram reduction and condensation products from 1a, table 2, entry 5.
- **Figure S28.** Chromatogram reduction product $C_{19}H_{16}F_6O$ 4, table 2, entry 5.
- **Figure S29.** ¹H spectrum of reduction product $C_{19}H_{16}F_6O$ **4** in CDCl₃ (300 MHz).
- **Figure S30.** ${}^{13}C{}^{1}H$ spectrum of reduction product $C_{19}H_{16}F_6O$ 4 in CDCl₃ (300 MHz).
- **Figure S31.** ¹⁹F spectrum of reduction product $C_{19}H_{16}F_6O$ 4 in CDCl₃ (300 MHz).
- **Table S1.**Synthesis of Dibenzalacetone Derivatives 1(a-g).
- **Table S2.** Crystal data and structure refinement for $[{(dippe)Ni}_2(\eta^2-C\alpha,C\beta-C_{19}H_{12}F_6O)]$, **2a**.
- **Table S3.**Atomic coordinates for $[{(dippe)Ni}_2(\eta^2 C\alpha, C\beta C_{19}H_{12}F_6O)]$, **2a** (x 10⁴) and U(eq) $(Å^2 x 10^3)$.
- **Table S4.** Bond lengths [Å] and angles [°] for $[{(dippe)Ni}_2(\eta^2-C\alpha,C\beta-C_{19}H_{12}F_6O)]$, **2a**.
- **Table S5.**Anisotropic displacement parameters ($Å^2 x 10^3$) for [{(dippe)Ni}_2(η^2 -C α ,C β -
C $_{19}H_{12}F_6O$)], **2a**.
- **Table S6.** Crystallographic data for $[(dippe)Ni(\eta^2-C\alpha, C\beta C_{19}H_{12}F_6O)]$, **3a**.
- **Table S7.**Atomic coordinates for [(dippe)Ni(η^2 -C α ,C β -C $_{19}H_{12}F_6O$)], **3a** (x 10⁴) and U(eq) (Å²
x 10³).
- **Table S8.**Bond lengths [Å] and angles [°] for $[(dippe)Ni(\eta^2-C\alpha, C\beta C_{19}H_{12}F_6O)]$, **3a**.
- **Table S9.**Anisotropic displacement parameters ($Å^2 \ge 10^3$) for [(dippe)Ni(η^2 -C α ,C β -
C $_{19}H_{12}F_6O$)], **3a**.
- **Table S10.** Crystallographic data for [{(dippe)Ni}₂(η^2 -C α ,C β -C₁₇H₁₂F₂O)], **2b**.

- **Table S11.**Atomic coordinates for $[{(dippe)Ni}_2(\eta^2 C\alpha, C\beta C_{17}H_{12}F_2O)]$, **2b** (x 10⁴) and U(eq) $(Å^2 x 10^3)$.
- **Table S12.**Bond lengths [Å] and angles [°] for [{(dippe)Ni}_2(η^2 -C α ,C β -C₁₇H₁₂F₂O)], **2b**.
- **Table S13.**Anisotropic displacement parameters ($Å^2 x 10^3$) for [{(dippe)Ni}_2(η^2 -C α ,C β -
C $_{17}H_{12}F_2O$)], **2b**.

Figure S1. ¹H spectrum of $C_{19}H_{12}F_6O$: 1,5-bis(2-(trifluoromethyl)phenyl)penta-1,4-dien-3-one, 1a, in CDCl₃.

Figure S2. ¹³C $\{^{1}H\}$ spectrum of C₁₉H₁₂F₆O 1a, in CDCl₃.

Figure S3. ¹⁹F spectrum of $C_{19}H_{12}F_6O$ 1a, in CDCl₃.

Figure S4. ¹H spectrum of [$\{(dippe)Ni\}_2(\eta^2-C_{\alpha},C_{\beta}-C_{19}H_{12}F_6O)$], (C₁₉H₁₂F₆O: 1,5-bis(2-(trifluoromethyl)phenyl)penta-1,4-dien-3-one), 2a, in THF-d₈.

Figure S6. ¹³C{¹H} spectrum of [{(dippe)Ni}₂(η^2 -C α ,C β -C₁₉H₁₂F₆O)] **2a**, in THF-d₈.

Figure S7. ¹⁹F spectrum of [{(dippe)Ni}₂(η^2 -C α ,C β -C₁₉H₁₂F₆O)] **2a**, in THF-d₈.

Figure S8. ¹H spectrum of C₁₇H₁₂F₂O: 1,5-bis(4-fluorophenyl)penta-1,4-dien-3-one, 1b, in CDCl₃.

-85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 f1 (ppm)

75

-80

Figure S10. 19 F spectrum of $C_{17}H_{12}F_2O$ 1b, in CDCl₃.

-140

Figure S11. ¹H spectrum of [{(dippe)Ni}₂(η^2 -C α ,C β -C₁₇H₁₂F₂O)], (C₁₇H₁₂F₂O: 1,5-bis(4-fluorophenyl)penta-1,4-dien-3-one), **2b**, in THF-d₈.

Figure S12. ${}^{3}P{}^{1}H$ spectrum of [{(dippe)Ni}₂(η^{2} -C α ,C β -C₁₇H₁₂F₂O)], **2b**, in THF-d₈.

Figure S13. ¹³C{¹H} spectrum of [{(dippe)Ni}₂(η^2 -C α ,C β -C₁₇H₁₂F₂O)], **2b**, in THF-d₈.

19F-[{(dippe)Ni}2(η2-Cα,Cβ -C17H12F2O)]-THF-d8

Figure S14. ¹⁹F spectrum of [{(dippe)Ni}₂(η^2 -C α ,C β -C₁₇H₁₂F₂O)], **2b**, in THF-d₈.

Figure S15. ¹H spectrum of [{(dippe)Ni}(η^2 -C α ,C β -C₁₉H₁₂F₆O)] 3a, in THF-d₈.

Figure S16. ³¹P{¹H} spectrum of [{(dippe)Ni}(η^2 -C α ,C β -C₁₉H₁₂F₆O)] **3a**, in THF-d₈.

Figure S17. ¹H spectrum of [(dippe)Ni(η^2 -C α ,C β - C₁₇H₁₂F₂O)] **3b**, in THF-d₈.

31P{1H}-[(dippe)Ni(η2-Cα,Cβ - C17H12F2O)]-THF-d8

Figure S18. ³¹P{¹H} spectrum of [(dippe)Ni(η^2 -C α ,C β - C₁₇H₁₂F₂O)] **3b**, in THF-d₈.

Figure S19. ORTEP drawing of [{(dippe)Ni}₂(η^2 -C α ,C β -C₁₇H₁₂F₂O)] **2b**.

Figure S20. ³¹P{¹H} spectrum equimolar mixture of $[(dippe)Ni(\mu-H)]_2$ 2 with $C_{19}H_{12}F_6O$ 1a at 100 °C for 7 days in THF-d₈.

Figure S21. ³¹P{¹H} spectrum of reaction between $[(dippe)Ni(\mu-H)]_2$ 2 (1 equiv.) and $C_{19}H_{12}F_6O$ 1a (2 equiv.) at 130 °C for 15 hours in Tol-d₈.

Figure S22. Chromatogram of C₁₉H₁₂F₆O: 1,5-bis(2-(trifluoromethyl)phenyl)penta-1,4-dien-3-one 1a.

Abundance

Figure S23. Chromatogram reduction and condensation products from 1a, table 1, entry 4.

Figure S25. Mass spectrum product 6, table 1, entry 4.

Abundance

Figure S26. Mass spectrum product 7, table 1, entry 4.

Abundance

Figure S27. Chromatogram reduction and condensation products from 1a, table 2, entry 5.

Abundance

Figure S28. Chromatogram reduction product $C_{19}H_{16}F_6O$ **4**, table 2, entry 5.

Figure S29. ¹H spectrum of reduction product $C_{19}H_{16}F_6O$ 4 in CDCl₃. (300 MHz).

Figure S30. ${}^{13}C{}^{1}H$ spectrum of reduction product $C_{19}H_{16}F_6O$ 4 in CDCl₃. (300 MHz).

---59.76

19F-C19H16F6O-CDCl3

Figure S31. ¹⁹F spectrum of reduction product $C_{19}H_{16}F_6O$ 4 in CDCl₃. (300 MHz)

0 + 2 R ₁ H	$\xrightarrow{\text{NaOH, H}_2\text{O}} \mathbf{R}_1$ EtOH, rt	$ \begin{array}{c} 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$
Entry	R ₁	Yield (%) ^b 1(a-g)
1	o-CF ₃	1a 84
2	<i>p-</i> F	1b 93
3	<i>o-</i> F	1c 42
4	<i>p</i> -CF ₃	1d 85
5	o-CH ₃	1e 80
6	o-OCH ₃	1f 82
7	o-Br	1g 91

Table S1. Synthesis of Dibenzalacetone Derivatives 1(a-g)^{*a*}

^{*a*} All reactions were carried out in 95 % EtOH, (1.25 M) NaOH, Acetone (3.5 mmol) and Benzaldehydes (7 mmol) at room temperature. ^{*b*} Yields refer to isolated pure products. All products were characterized by ¹H, ¹³C{¹H} NMR spectra and GC-MS.

Identification code	shelx	
Empirical formula	C47 H76 F6 Ni2 O P4	
Formula weight	1012.38	
Temperature	130(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P 21 /c	
Unit cell dimensions	a = 14.9031(5) Å	α= 90°.
	b = 22.0459(6) Å	β= 98.964(3)°.
	c = 15.6218(7) Å	$\gamma = 90^{\circ}$.
Volume	5069.9(3) Å ³	
Z	4	
Density (calculated)	1.326 Mg/m ³	
Absorption coefficient	0.924 mm ⁻¹	
F(000)	2144	
Theta range for data collection	3.38 to 26.37°.	
Index ranges	-18<=h<=18, -21<=k<=27, -	-18<=1<=19
Reflections collected	41452	
Independent reflections	10339 [R(int) = 0.0513]	
Completeness to theta = 26.37°	99.8 %	
Refinement method	Full-matrix least-squares on	F ²
Data / restraints / parameters	10339 / 0 / 557	
Goodness-of-fit on F ²	1.047	
Final R indices [I>2sigma(I)]	R1 = 0.0345, wR2 = 0.0707	
R indices (all data)	R1 = 0.0494, wR2 = 0.0794	
Largest diff. peak and hole	0.489 and -0.510 e.Å ⁻³	

	X	у	Z	U(eq)
C(1)	4989(1)	7083(1)	1340(2)	21(1)
C(2)	4918(2)	6811(1)	521(2)	28(1)
2(3)	4228(2)	6959(1)	-150(2)	39(1)
(4)	3578(2)	7382(1)	-17(2)	47(1)
(5)	3621(2)	7656(1)	771(2)	39(1)
6)	4317(1)	7515(1)	1450(2)	27(1)
7)	9766(1)	6024(1)	2419(2)	20(1)
3)	9795(1)	5917(1)	1540(2)	25(1)
))	10407(2)	5520(1)	1256(2)	32(1)
10)	11033(2)	5217(1)	1850(2)	34(1)
11)	11031(2)	5314(1)	2721(2)	31(1)
2)	10414(1)	5708(1)	3014(2)	24(1)
3)	4328(2)	7838(1)	2283(2)	34(1)
4)	10456(2)	5784(1)	3962(2)	34(1)
5)	5726(1)	6907(1)	2041(2)	17(1)
6)	6558(1)	6648(1)	1852(2)	16(1)
7)	7400(1)	6689(1)	2488(2)	15(1)
8)	8240(1)	6557(1)	2133(2)	16(1)
))	9087(1)	6438(1)	2696(2)	17(1)
))	7216(1)	8265(1)	1881(2)	23(1)
)	7329(2)	8334(1)	2863(2)	29(1)
2)	6801(2)	8834(1)	1420(2)	35(1)
3)	8018(1)	7961(1)	347(2)	23(1)
4)	7285(2)	7488(1)	63(2)	30(1)
5)	8879(2)	7816(1)	-28(2)	37(1)
6)	11321(2)	7596(1)	2261(2)	32(1)
7)	11205(2)	7370(1)	1327(2)	42(1)
3)	11754(2)	7103(1)	2879(2)	39(1)
))	10532(2)	8110(1)	3692(2)	32(1)
0)	9749(2)	8471(1)	3966(2)	40(1)
1)	11410(2)	8482(1)	3884(2)	45(1)
32)	10016(2)	8554(1)	1923(2)	28(1)
3)	9006(1)	8709(1)	1710(2)	26(1)

Table S3. Atomic coordinates for $[{(dippe)Ni}_2(\eta^2-C\alpha,C\beta-C_{19}H_{12}F_6O)]$, **2a** (x 10⁴) and U(eq) (Å² x 10³).

C(34)	3586(1)	5491(1)	2202(2)	25(1)
C(35)	3205(2)	6037(1)	1665(2)	36(1)
C(36)	3691(2)	4958(1)	1608(2)	35(1)
C(37)	4305(1)	6153(1)	3771(2)	23(1)
C(38)	3662(2)	5827(1)	4295(2)	38(1)
C(39)	5139(2)	6393(1)	4370(2)	32(1)
C(40)	6775(2)	4732(1)	1548(2)	24(1)
C(41)	5952(2)	4675(1)	841(2)	36(1)
C(42)	7551(2)	5040(1)	1179(2)	31(1)
C(43)	7555(1)	5160(1)	3278(2)	20(1)
C(44)	7390(2)	5427(1)	4141(2)	24(1)
C(45)	8024(2)	4540(1)	3412(2)	33(1)
C(46)	5731(2)	4639(1)	2972(2)	24(1)
C(47)	5078(2)	4991(1)	3457(2)	23(1)
O(7)	7397(1)	6822(1)	3254(1)	20(1)
Ni(1)	9022(1)	7282(1)	2233(1)	16(1)
Ni(2)	5801(1)	6025(1)	2301(1)	15(1)
P(1)	8288(1)	8019(1)	1535(1)	18(1)
P(2)	10221(1)	7841(1)	2558(1)	22(1)
P(3)	4675(1)	5700(1)	2888(1)	19(1)
P(4)	6487(1)	5162(1)	2488(1)	18(1)
F(1)	4318(1)	7464(1)	2963(1)	41(1)
F(2)	5062(1)	8195(1)	2500(1)	39(1)
F(3)	3606(1)	8207(1)	2291(1)	49(1)
F(4)	11133(1)	5461(1)	4422(1)	57(1)
F(5)	10600(1)	6361(1)	4236(1)	40(1)
F(6)	9696(1)	5609(1)	4259(1)	45(1)

C(1)-C(2)	1.401(3)	C(16)-H(16)	1.0000
C(1)-C(6)	1.412(3)	C(17)-O(7)	1.234(3)
C(1)-C(15)	1.477(3)	C(17)-C(18)	1.475(3)
C(2)-C(3)	1.386(3)	C(18)-C(19)	1.445(3)
C(2)-H(2)	0.9500	C(18)-Ni(1)	1.9703(18)
C(3)-C(4)	1.383(4)	C(18)-H(18)	1.0000
C(3)-H(3)	0.9500	C(19)-Ni(1)	1.9933(19)
C(4)-C(5)	1.364(4)	C(19)-H(19)	1.0000
C(4)-H(4)	0.9500	C(20)-C(21)	1.525(4)
C(5)-C(6)	1.398(3)	C(20)-C(22)	1.529(3)
C(5)-H(5)	0.9500	C(20)-P(1)	1.846(2)
C(6)-C(13)	1.482(4)	C(20)-H(20)	1.0000
C(7)-C(8)	1.400(3)	C(21)-H(21A)	0.9800
C(7)-C(12)	1.415(3)	C(21)-H(21B)	0.9800
C(7)-C(19)	1.477(3)	C(21)-H(21C)	0.9800
C(8)-C(9)	1.386(3)	C(22)-H(22A)	0.9800
C(8)-H(8)	0.9500	C(22)-H(22B)	0.9800
C(9)-C(10)	1.381(4)	C(22)-H(22C)	0.9800
C(9)-H(9)	0.9500	C(23)-C(24)	1.525(3)
C(10)-C(11)	1.378(4)	C(23)-C(25)	1.525(3)
C(10)-H(10)	0.9500	C(23)-P(1)	1.841(2)
C(11)-C(12)	1.393(3)	C(23)-H(23)	1.0000
C(11)-H(11)	0.9500	C(24)-H(24A)	0.9800
C(12)-C(14)	1.483(4)	C(24)-H(24B)	0.9800
C(13)-F(1)	1.346(3)	C(24)-H(24C)	0.9800
C(13)-F(2)	1.348(3)	C(25)-H(25A)	0.9800
C(13)-F(3)	1.351(3)	C(25)-H(25B)	0.9800
C(14)-F(6)	1.345(3)	C(25)-H(25C)	0.9800
C(14)-F(4)	1.347(3)	C(26)-C(27)	1.526(4)
C(14)-F(5)	1.350(3)	C(26)-C(28)	1.529(3)
C(15)-C(16)	1.437(3)	C(26)-P(2)	1.852(2)
C(15)-Ni(2)	1.9860(19)	C(26)-H(26)	1.0000
C(15)-H(15)	1.0000	C(27)-H(27A)	0.9800
C(16)-C(17)	1.477(3)	C(27)-H(27B)	0.9800
C(16)-Ni(2)	1.9760(19)	C(27)-H(27C)	0.9800

Table S4. Bond	lengths [Å] and a	angles [°] for [{	$(dippe)Ni_2(\eta^2 - \eta^2)$	$C\alpha, C\beta - C_{19}H_{12}H_{12}$	⁶ ₆ O)], 2a .

C(28)-H(28A)	0.9800	C(38)-H(38B)	0.9800
C(28)-H(28B)	0.9800	C(38)-H(38C)	0.9800
C(28)-H(28C)	0.9800	C(39)-H(39A)	0.9800
C(29)-C(30)	1.527(4)	C(39)-H(39B)	0.9800
C(29)-C(31)	1.533(3)	C(39)-H(39C)	0.9800
C(29)-P(2)	1.858(3)	C(40)-C(41)	1.523(3)
C(29)-H(29)	1.0000	C(40)-C(42)	1.529(3)
C(30)-H(30A)	0.9800	C(40)-P(4)	1.853(2)
C(30)-H(30B)	0.9800	C(40)-H(40)	1.0000
C(30)-H(30C)	0.9800	C(41)-H(41A)	0.9800
C(31)-H(31A)	0.9800	C(41)-H(41B)	0.9800
C(31)-H(31B)	0.9800	C(41)-H(41C)	0.9800
C(31)-H(31C)	0.9800	C(42)-H(42A)	0.9800
C(32)-C(33)	1.528(3)	C(42)-H(42B)	0.9800
C(32)-P(2)	1.858(2)	C(42)-H(42C)	0.9800
C(32)-H(32A)	0.9900	C(43)-C(44)	1.526(3)
C(32)-H(32B)	0.9900	C(43)-C(45)	1.534(3)
C(33)-P(1)	1.854(2)	C(43)-P(4)	1.856(2)
C(33)-H(33A)	0.9900	C(43)-H(43)	1.0000
C(33)-H(33B)	0.9900	C(44)-H(44A)	0.9800
C(34)-C(36)	1.521(3)	C(44)-H(44B)	0.9800
C(34)-C(35)	1.525(3)	C(44)-H(44C)	0.9800
C(34)-P(3)	1.858(2)	C(45)-H(45A)	0.9800
C(34)-H(34)	1.0000	C(45)-H(45B)	0.9800
C(35)-H(35A)	0.9800	C(45)-H(45C)	0.9800
C(35)-H(35B)	0.9800	C(46)-C(47)	1.535(3)
C(35)-H(35C)	0.9800	C(46)-P(4)	1.854(2)
C(36)-H(36A)	0.9800	C(46)-H(46A)	0.9900
C(36)-H(36B)	0.9800	C(46)-H(46B)	0.9900
C(36)-H(36C)	0.9800	C(47)-P(3)	1.851(2)
C(37)-C(39)	1.529(3)	C(47)-H(47A)	0.9900
C(37)-C(38)	1.533(3)	C(47)-H(47B)	0.9900
C(37)-P(3)	1.855(2)	Ni(1)-P(1)	2.1572(6)
C(37)-H(37)	1.0000	Ni(1)-P(2)	2.1644(6)
C(38)-H(38A)	0.9800	Ni(2)-P(3)	2.1554(6)

Ni(2)-P(4)	2.1572(6)	F(1)-C(13)-F(2)	105.6(2)
C(2)-C(1)-C(6)	116.4(2)	F(1)-C(13)-F(3)	104.8(2)
C(2)-C(1)-C(15)	120.5(2)	F(2)-C(13)-F(3)	105.21(17)
C(6)-C(1)-C(15)	123.1(2)	F(1)-C(13)-C(6)	113.54(19)
C(3)-C(2)-C(1)	122.1(2)	F(2)-C(13)-C(6)	113.5(2)
C(3)-C(2)-H(2)	118.9	F(3)-C(13)-C(6)	113.4(2)
C(1)-C(2)-H(2)	118.9	F(6)-C(14)-F(4)	105.5(2)
C(4)-C(3)-C(2)	119.9(3)	F(6)-C(14)-F(5)	105.1(2)
C(4)-C(3)-H(3)	120.0	F(4)-C(14)-F(5)	105.0(2)
C(2)-C(3)-H(3)	120.0	F(6)-C(14)-C(12)	113.9(2)
C(5)-C(4)-C(3)	119.9(2)	F(4)-C(14)-C(12)	112.7(2)
C(5)-C(4)-H(4)	120.1	F(5)-C(14)-C(12)	113.8(2)
C(3)-C(4)-H(4)	120.1	C(16)-C(15)-C(1)	121.2(2)
C(4)-C(5)-C(6)	120.7(3)	C(16)-C(15)-Ni(2)	68.36(10)
C(4)-C(5)-H(5)	119.6	C(1)-C(15)-Ni(2)	114.85(14)
C(6)-C(5)-H(5)	119.6	C(16)-C(15)-H(15)	114.8
C(5)-C(6)-C(1)	120.9(3)	C(1)-C(15)-H(15)	114.8
C(5)-C(6)-C(13)	117.7(2)	Ni(2)-C(15)-H(15)	114.8
C(1)-C(6)-C(13)	121.4(2)	C(15)-C(16)-C(17)	120.5(2)
C(8)-C(7)-C(12)	116.0(2)	C(15)-C(16)-Ni(2)	69.10(11)
C(8)-C(7)-C(19)	121.24(19)	C(17)-C(16)-Ni(2)	106.00(14)
C(12)-C(7)-C(19)	122.7(2)	C(15)-C(16)-H(16)	116.9
C(9)-C(8)-C(7)	122.9(2)	C(17)-C(16)-H(16)	116.9
C(9)-C(8)-H(8)	118.6	Ni(2)-C(16)-H(16)	116.9
C(7)-C(8)-H(8)	118.6	O(7)-C(17)-C(18)	122.92(18)
C(10)-C(9)-C(8)	119.9(3)	O(7)-C(17)-C(16)	122.41(19)
C(10)-C(9)-H(9)	120.0	C(18)-C(17)-C(16)	114.67(19)
C(8)-C(9)-H(9)	120.0	C(19)-C(18)-C(17)	121.3(2)
C(11)-C(10)-C(9)	119.0(2)	C(19)-C(18)-Ni(1)	69.47(11)
С(11)-С(10)-Н(10)	120.5	C(17)-C(18)-Ni(1)	109.65(13)
C(9)-C(10)-H(10)	120.5	C(19)-C(18)-H(18)	115.8
C(10)-C(11)-C(12)	121.6(2)	C(17)-C(18)-H(18)	115.8
C(10)-C(11)-H(11)	119.2	Ni(1)-C(18)-H(18)	115.8
С(12)-С(11)-Н(11)	119.2	C(18)-C(19)-C(7)	120.5(2)
C(11)-C(12)-C(7)	120.6(2)	C(18)-C(19)-Ni(1)	67.78(10)
C(11)-C(12)-C(14)	118.1(2)	C(7)-C(19)-Ni(1)	117.87(15)
C(7)-C(12)-C(14)	121.3(2)		

C(23)-C(25)-H(25C)	109.5	C(29)-C(31)-H(31C)	109.5
H(25A)-C(25)-H(25C)	109.5	H(31A)-C(31)-H(31C)	109.5
H(25B)-C(25)-H(25C)	109.5	H(31B)-C(31)-H(31C)	109.5
C(27)-C(26)-C(28)	110.2(2)	C(33)-C(32)-P(2)	112.34(15)
C(27)-C(26)-P(2)	111.24(16)	C(33)-C(32)-H(32A)	109.1
C(28)-C(26)-P(2)	110.58(18)	P(2)-C(32)-H(32A)	109.1
C(27)-C(26)-H(26)	108.2	C(33)-C(32)-H(32B)	109.1
C(28)-C(26)-H(26)	108.2	P(2)-C(32)-H(32B)	109.1
P(2)-C(26)-H(26)	108.2	H(32A)-C(32)-H(32B)	107.9
C(26)-C(27)-H(27A)	109.5	C(32)-C(33)-P(1)	111.99(14)
C(26)-C(27)-H(27B)	109.5	C(32)-C(33)-H(33A)	109.2
H(27A)-C(27)-H(27B)	109.5	P(1)-C(33)-H(33A)	109.2
C(26)-C(27)-H(27C)	109.5	C(32)-C(33)-H(33B)	109.2
H(27A)-C(27)-H(27C)	109.5	P(1)-C(33)-H(33B)	109.2
H(27B)-C(27)-H(27C)	109.5	H(33A)-C(33)-H(33B)	107.9
C(26)-C(28)-H(28A)	109.5	C(36)-C(34)-C(35)	109.8(2)
C(26)-C(28)-H(28B)	109.5	C(36)-C(34)-P(3)	112.33(16)
H(28A)-C(28)-H(28B)	109.5	C(35)-C(34)-P(3)	109.85(15)
C(26)-C(28)-H(28C)	109.5	C(36)-C(34)-H(34)	108.2
H(28A)-C(28)-H(28C)	109.5	C(35)-C(34)-H(34)	108.2
H(28B)-C(28)-H(28C)	109.5	P(3)-C(34)-H(34)	108.2
C(30)-C(29)-C(31)	109.4(2)	C(34)-C(35)-H(35A)	109.5
C(30)-C(29)-P(2)	110.30(17)	C(34)-C(35)-H(35B)	109.5
C(31)-C(29)-P(2)	115.8(2)	H(35A)-C(35)-H(35B)	109.5
C(30)-C(29)-H(29)	107.0	C(34)-C(35)-H(35C)	109.5
C(31)-C(29)-H(29)	107.0	H(35A)-C(35)-H(35C)	109.5
P(2)-C(29)-H(29)	107.0	H(35B)-C(35)-H(35C)	109.5
C(29)-C(30)-H(30A)	109.5	C(34)-C(36)-H(36A)	109.5
C(29)-C(30)-H(30B)	109.5	C(34)-C(36)-H(36B)	109.5
H(30A)-C(30)-H(30B)	109.5	H(36A)-C(36)-H(36B)	109.5
С(29)-С(30)-Н(30С)	109.5	C(34)-C(36)-H(36C)	109.5
H(30A)-C(30)-H(30C)	109.5	H(36A)-C(36)-H(36C)	109.5
H(30B)-C(30)-H(30C)	109.5	H(36B)-C(36)-H(36C)	109.5
C(29)-C(31)-H(31A)	109.5	C(39)-C(37)-C(38)	110.7(2)
C(29)-C(31)-H(31B)	109.5	C(39)-C(37)-P(3)	109.44(15)
H(31A)-C(31)-H(31B)	109.5	C(38)-C(37)-P(3)	115.31(16)

С(39)-С(37)-Н(37)	107.0	C(44)-C(43)-H(43)	106.8
C(38)-C(37)-H(37)	107.0	C(45)-C(43)-H(43)	106.8
P(3)-C(37)-H(37)	107.0	P(4)-C(43)-H(43)	106.8
C(37)-C(38)-H(38A)	109.5	C(43)-C(44)-H(44A)	109.5
C(37)-C(38)-H(38B)	109.5	C(43)-C(44)-H(44B)	109.5
H(38A)-C(38)-H(38B)	109.5	H(44A)-C(44)-H(44B)	109.5
C(37)-C(38)-H(38C)	109.5	C(43)-C(44)-H(44C)	109.5
H(38A)-C(38)-H(38C)	109.5	H(44A)-C(44)-H(44C)	109.5
H(38B)-C(38)-H(38C)	109.5	H(44B)-C(44)-H(44C)	109.5
C(37)-C(39)-H(39A)	109.5	C(43)-C(45)-H(45A)	109.5
C(37)-C(39)-H(39B)	109.5	C(43)-C(45)-H(45B)	109.5
H(39A)-C(39)-H(39B)	109.5	H(45A)-C(45)-H(45B)	109.5
С(37)-С(39)-Н(39С)	109.5	C(43)-C(45)-H(45C)	109.5
H(39A)-C(39)-H(39C)	109.5	H(45A)-C(45)-H(45C)	109.5
H(39B)-C(39)-H(39C)	109.5	H(45B)-C(45)-H(45C)	109.5
C(41)-C(40)-C(42)	109.6(2)	C(47)-C(46)-P(4)	111.06(14)
C(41)-C(40)-P(4)	110.91(16)	C(47)-C(46)-H(46A)	109.4
C(42)-C(40)-P(4)	110.69(15)	P(4)-C(46)-H(46A)	109.4
C(41)-C(40)-H(40)	108.5	C(47)-C(46)-H(46B)	109.4
C(42)-C(40)-H(40)	108.5	P(4)-C(46)-H(46B)	109.4
P(4)-C(40)-H(40)	108.5	H(46A)-C(46)-H(46B)	108.0
C(40)-C(41)-H(41A)	109.5	C(46)-C(47)-P(3)	111.92(16)
C(40)-C(41)-H(41B)	109.5	C(46)-C(47)-H(47A)	109.2
H(41A)-C(41)-H(41B)	109.5	P(3)-C(47)-H(47A)	109.2
C(40)-C(41)-H(41C)	109.5	C(46)-C(47)-H(47B)	109.2
H(41A)-C(41)-H(41C)	109.5	P(3)-C(47)-H(47B)	109.2
H(41B)-C(41)-H(41C)	109.5	H(47A)-C(47)-H(47B)	107.9
C(40)-C(42)-H(42A)	109.5	C(18)-Ni(1)-C(19)	42.75(8)
C(40)-C(42)-H(42B)	109.5	C(18)-Ni(1)-P(1)	108.93(6)
H(42A)-C(42)-H(42B)	109.5	C(19)-Ni(1)-P(1)	151.48(6)
C(40)-C(42)-H(42C)	109.5	C(18)-Ni(1)-P(2)	159.50(6)
H(42A)-C(42)-H(42C)	109.5	C(19)-Ni(1)-P(2)	117.02(6)
H(42B)-C(42)-H(42C)	109.5	P(1)-Ni(1)-P(2)	91.44(2)
C(44)-C(43)-C(45)	110.90(19)	C(16)-Ni(2)-C(15)	42.54(8)
C(44)-C(43)-P(4)	110.26(14)	C(16)-Ni(2)-P(3)	155.18(6)
C(45)-C(43)-P(4)	114.73(15)		

C(15)-Ni(2)-P(3)	112.91(6)
C(16)-Ni(2)-P(4)	112.08(6)
C(15)-Ni(2)-P(4)	154.27(6)
P(3)-Ni(2)-P(4)	91.96(2)
C(23)-P(1)-C(20)	104.63(11)
C(23)-P(1)-C(33)	103.68(11)
C(20)-P(1)-C(33)	102.85(10)
C(23)-P(1)-Ni(1)	118.08(7)
C(20)-P(1)-Ni(1)	117.79(8)
C(33)-P(1)-Ni(1)	107.91(7)
C(26)-P(2)-C(29)	103.52(12)
C(26)-P(2)-C(32)	100.99(11)
C(29)-P(2)-C(32)	103.56(11)
C(26)-P(2)-Ni(1)	120.40(8)
C(29)-P(2)-Ni(1)	118.68(8)
C(32)-P(2)-Ni(1)	107.12(7)
C(47)-P(3)-C(37)	102.09(11)
C(47)-P(3)-C(34)	104.87(10)
C(37)-P(3)-C(34)	103.16(10)
C(47)-P(3)-Ni(2)	105.61(7)
C(37)-P(3)-Ni(2)	118.65(7)
C(34)-P(3)-Ni(2)	120.27(8)
C(40)-P(4)-C(46)	103.58(10)
C(40)-P(4)-C(43)	104.18(10)
C(46)-P(4)-C(43)	103.83(10)
C(40)-P(4)-Ni(2)	120.52(8)
C(46)-P(4)-Ni(2)	107.32(7)
C(43)-P(4)-Ni(2)	115.61(7)

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	13(1)	17(1)	32(2)	10(1)	1(1)	-4(1)
C(2)	21(1)	28(1)	32(2)	7(1)	-1(1)	-3(1)
C(3)	35(2)	42(2)	37(2)	13(1)	-9(1)	-14(1)
C(4)	25(1)	44(2)	65(2)	29(2)	-19(1)	-7(1)
C(5)	16(1)	32(1)	67(2)	21(1)	-2(1)	0(1)
C(6)	13(1)	19(1)	49(2)	13(1)	3(1)	-3(1)
C(7)	15(1)	14(1)	30(1)	3(1)	3(1)	-2(1)
C(8)	17(1)	23(1)	35(2)	1(1)	3(1)	2(1)
C(9)	22(1)	30(1)	47(2)	-9(1)	12(1)	-2(1)
C(10)	20(1)	20(1)	65(2)	-3(1)	15(1)	4(1)
C(11)	18(1)	18(1)	57(2)	7(1)	3(1)	3(1)
C(12)	15(1)	18(1)	37(2)	7(1)	1(1)	-1(1)
C(13)	19(1)	18(1)	68(2)	9(1)	16(1)	4(1)
C(14)	20(1)	37(1)	43(2)	16(1)	-4(1)	7(1)
C(15)	15(1)	12(1)	25(1)	2(1)	2(1)	-1(1)
C(16)	16(1)	14(1)	18(1)	2(1)	2(1)	-2(1)
C(17)	17(1)	7(1)	20(1)	3(1)	1(1)	-2(1)
C(18)	14(1)	12(1)	22(1)	3(1)	2(1)	-2(1)
C(19)	14(1)	15(1)	23(1)	5(1)	4(1)	0(1)
C(20)	18(1)	16(1)	35(2)	2(1)	3(1)	2(1)
C(21)	27(1)	25(1)	37(2)	-2(1)	9(1)	4(1)
C(22)	28(1)	27(1)	50(2)	6(1)	2(1)	11(1)
C(23)	22(1)	23(1)	25(1)	10(1)	1(1)	0(1)
C(24)	33(1)	35(1)	22(2)	5(1)	1(1)	-6(1)
C(25)	30(1)	52(2)	29(2)	5(1)	6(1)	2(1)
C(26)	12(1)	31(1)	53(2)	5(1)	5(1)	-4(1)
C(27)	26(1)	44(2)	58(2)	2(1)	16(1)	2(1)
C(28)	16(1)	35(1)	64(2)	2(1)	-1(1)	0(1)
C(29)	30(1)	27(1)	35(2)	2(1)	-4(1)	-6(1)
C(30)	44(2)	39(2)	37(2)	-5(1)	2(1)	-2(1)
C(31)	38(2)	38(2)	53(2)	-4(1)	-13(1)	-13(1)
C(32)	22(1)	21(1)	39(2)	6(1)	3(1)	-7(1)
C(33)	24(1)	15(1)	36(2)	7(1)	1(1)	-2(1)
C(34)	15(1)	29(1)	30(2)	4(1)	2(1)	-5(1)

Table S5. Anisotropic displacement parameters (Å² x 10³) for [{(dippe)Ni}₂(η^2 -C α ,C β -C₁₉H₁₂F₆O)], **2a**.

C(35)	21(1)	35(1)	47(2)	8(1)	-6(1)	-2(1)
C(36)	26(1)	34(1)	42(2)	-3(1)	-6(1)	-6(1)
C(37)	18(1)	24(1)	29(2)	2(1)	6(1)	1(1)
C(38)	36(1)	40(1)	41(2)	4(1)	21(1)	-1(1)
C(39)	30(1)	34(1)	32(2)	-6(1)	4(1)	3(1)
C(40)	27(1)	16(1)	28(2)	-3(1)	2(1)	2(1)
C(41)	38(2)	36(1)	32(2)	-14(1)	1(1)	1(1)
C(42)	36(1)	28(1)	31(2)	-5(1)	11(1)	2(1)
C(43)	20(1)	15(1)	24(1)	1(1)	0(1)	2(1)
C(44)	23(1)	24(1)	25(1)	-1(1)	0(1)	1(1)
C(45)	31(1)	27(1)	38(2)	-1(1)	-4(1)	12(1)
C(46)	25(1)	13(1)	32(2)	4(1)	0(1)	-1(1)
C(47)	22(1)	19(1)	29(2)	9(1)	5(1)	-3(1)
O(7)	19(1)	21(1)	20(1)	-2(1)	1(1)	1(1)
Ni(1)	12(1)	14(1)	22(1)	2(1)	1(1)	0(1)
Ni(2)	13(1)	12(1)	19(1)	2(1)	2(1)	0(1)
P(1)	15(1)	14(1)	24(1)	4(1)	2(1)	0(1)
P(2)	14(1)	20(1)	32(1)	3(1)	0(1)	-3(1)
P(3)	14(1)	17(1)	24(1)	4(1)	3(1)	-2(1)
P(4)	18(1)	12(1)	22(1)	0(1)	1(1)	1(1)
F(1)	48(1)	24(1)	55(1)	4(1)	26(1)	7(1)
F(2)	22(1)	26(1)	71(1)	-6(1)	12(1)	-2(1)
F(3)	24(1)	27(1)	99(2)	5(1)	20(1)	12(1)
F(4)	41(1)	75(1)	51(1)	23(1)	-7(1)	30(1)
F(5)	30(1)	49(1)	38(1)	-3(1)	-1(1)	-2(1)
F(6)	31(1)	57(1)	46(1)	25(1)	9(1)	1(1)

Identification code	shelx			
Empirical formula	C33 H44 F6 Ni O P2	33 H44 F6 Ni O P2		
Formula weight	691.33			
Temperature	130(2) K			
Wavelength	0.71073 Å			
Crystal system	orthorhombic			
Space group	P b c a			
Unit cell dimensions	a = 14.9903(5) Å	α= 90°.		
	b = 17.0446(8) Å	β= 90°.		
	c = 26.6128(15) Å	$\gamma = 90^{\circ}$.		
Volume	6799.6(5) Å ³			
Z	8			
Density (calculated)	1.351 Mg/m ³			
Absorption coefficient	0.722 mm ⁻¹			
F(000)	2896			
Crystal size	0.3707 0.2217 0.0944 r	_{mm} 3		
Theta range for data collection	3.35 to 25.68°.			
Index ranges	-15<=h<=18, -20<=k<=	=20, -32<=1<=18		
Reflections collected	30385			
Independent reflections	6446 [R(int) = 0.0711]			
Completeness to theta = 25.68°	99.7 %			
Refinement method	Full-matrix least-square	Full-matrix least-squares on F ²		
Data / restraints / parameters	6446 / 60 / 396			
Goodness-of-fit on F ²	1.030			
Final R indices [I>2sigma(I)]	R1 = 0.0595, wR2 = 0.	1374		
R indices (all data)	R1 = 0.0993, $wR2 = 0$.	R1 = 0.0993, $wR2 = 0.1651$		
Largest diff. peak and hole	1.045 and -0.697 e.Å ⁻³			

	Х	У	Z	U(eq)
C(1)	7760(4)	6681(3)	985(3)	76(2)
C(2)	6773(3)	6676(3)	1153(3)	72(2)
C(3)	6544(11)	6493(10)	2155(6)	78(2)
C(4)	6123(8)	6099(8)	2553(5)	78(2)
C(5)	7470(8)	6839(9)	2269(5)	78(2)
C(3A)	6724(13)	6252(12)	2294(7)	78(2)
C(4A)	6534(10)	5764(10)	2711(6)	78(2)
C(5A)	7734(10)	6415(11)	2366(7)	78(2)
C(6)	5334(3)	5689(3)	1524(2)	59(2)
C(7)	5164(3)	5244(4)	1040(3)	86(2)
C(8)	4731(4)	6417(3)	1552(3)	101(3)
C(9)	8047(3)	5499(3)	208(2)	50(1)
C(10)	7056(3)	5418(3)	63(2)	71(2)
C(11)	8514(4)	6097(3)	-130(2)	71(2)
C(12)	9382(3)	5798(4)	979(2)	64(2)
C(13)	9594(4)	5955(6)	1532(3)	119(3)
C(14)	9899(3)	5083(4)	798(3)	82(2)
C(15)	6584(3)	3827(3)	2743(2)	46(1)
C(16)	6765(3)	3852(4)	3254(2)	73(2)
C(17)	7588(3)	4082(5)	3426(2)	101(3)
C(18)	8243(3)	4270(5)	3082(2)	99(3)
C(19)	8072(3)	4243(4)	2580(2)	68(2)
C(20)	7236(2)	4019(3)	2388(2)	44(1)
C(21)	7087(2)	4001(3)	1839(2)	39(1)
C(22)	7781(2)	3823(3)	1494(2)	38(1)
C(23)	7554(2)	3701(3)	974(2)	36(1)
C(24)	8287(3)	3459(3)	626(2)	42(1)
C(25)	8108(3)	3220(3)	162(2)	41(1)
C(26)	8724(3)	2849(3)	-192(2)	45(1)
C(27)	9515(3)	2501(3)	-27(2)	51(1)
C(28)	10079(3)	2114(3)	-356(2)	60(1)
C(29)	9869(3)	2059(4)	-859(2)	71(2)
C(30)	9100(3)	2403(3)	-1034(2)	66(2)
C(31)	8524(3)	2791(3)	-707(2)	53(1)

 $\textbf{Table S7.} Atomic \ coordinates \ for \ [(dippe)Ni(\eta^2-C\alpha,C\beta-C_{19}H_{12}F_6O)], \textbf{3a} \ (\ x \ 10^4) \ and \ U(eq) \ (\AA^2 \ x \ 10^3).$

C(32)	7701(3)	3154(4)	-915(2)	59(1)
C(33)	5673(3)	3572(3)	2582(2)	49(1)
O(1)	6771(2)	3740(2)	811(1)	48(1)
Ni(1)	7432(1)	4938(1)	1411(1)	39(1)
P(1)	8168(1)	5675(1)	889(1)	48(1)
P(2)	6544(1)	5886(1)	1602(1)	55(1)
F(1)	7636(2)	3923(2)	-815(1)	75(1)
F(2)	6946(2)	2835(2)	-739(1)	66(1)
F(3)	7637(2)	3092(3)	-1417(1)	99(1)
F(4)	5249(1)	4119(2)	2307(1)	55(1)
F(5)	5664(2)	2920(2)	2296(1)	70(1)
F(6)	5126(2)	3417(2)	2972(1)	67(1)

C(1)-C(2)	1.544(7)	C(8)-H(8B)	0.9800
C(1)-P(1)	1.838(6)	C(8)-H(8C)	0.9800
C(1)-H(1A)	0.9900	C(9)-C(11)	1.529(7)
C(1)-H(1B)	0.9900	C(9)-C(10)	1.541(7)
C(2)-P(2)	1.832(6)	C(9)-P(1)	1.847(5)
C(2)-H(2A)	0.9900	C(9)-H(9)	1.0000
C(2)-H(2B)	0.9900	C(10)-H(10A)	0.9800
C(3)-C(4)	1.403(17)	C(10)-H(10B)	0.9800
C(3)-C(5)	1.539(17)	C(10)-H(10C)	0.9800
C(3)-P(2)	1.799(17)	C(11)-H(11A)	0.9800
C(3)-H(3)	1.0000	C(11)-H(11B)	0.9800
C(4)-H(4A)	0.9800	C(11)-H(11C)	0.9800
C(4)-H(4B)	0.9800	C(12)-C(14)	1.522(8)
C(4)-H(4C)	0.9800	C(12)-C(13)	1.530(8)
C(5)-H(5A)	0.9800	C(12)-P(1)	1.847(4)
C(5)-H(5B)	0.9800	C(12)-H(12)	1.0000
C(5)-H(5C)	0.9800	C(13)-H(13A)	0.9800
C(3A)-C(4A)	1.42(2)	C(13)-H(13B)	0.9800
C(3A)-C(5A)	1.55(2)	C(13)-H(13C)	0.9800
C(3A)-P(2)	1.96(2)	C(14)-H(14A)	0.9800
C(3A)-H(3A)	1.0000	C(14)-H(14B)	0.9800
C(4A)-H(4A1)	0.9800	C(14)-H(14C)	0.9800
C(4A)-H(4A2)	0.9800	C(15)-C(16)	1.388(7)
C(4A)-H(4A3)	0.9800	C(15)-C(20)	1.397(6)
C(5A)-H(5A1)	0.9800	C(15)-C(33)	1.495(6)
C(5A)-H(5A2)	0.9800	C(16)-C(17)	1.374(8)
C(5A)-H(5A3)	0.9800	C(16)-H(16)	0.9500
C(6)-C(7)	1.517(8)	C(17)-C(18)	1.382(8)
C(6)-C(8)	1.537(7)	C(17)-H(17)	0.9500
C(6)-P(2)	1.857(5)	C(18)-C(19)	1.360(7)
C(6)-H(6)	1.0000	C(18)-H(18)	0.9500
C(7)-H(7A)	0.9800	C(19)-C(20)	1.406(6)
C(7)-H(7B)	0.9800	C(19)-H(19)	0.9500
C(7)-H(7C)	0.9800	C(20)-C(21)	1.480(6)
C(8)-H(8A)	0.9800	C(21)-C(22)	1.421(5)

Table S8. Bond lengths [Å] and angles [°] for $[(dippe)Ni(\eta^2-C\alpha,C\beta - C_{19}H_{12}F_6O)]$, **3a**.

C(21)-Ni(1)	2.027(4)	P(1)-C(1)-H(1B)	109.5
C(21)-H(21)	0.9500	H(1A)-C(1)-H(1B)	108.1
C(22)-C(23)	1.439(6)	C(1)-C(2)-P(2)	111.9(4)
C(22)-Ni(1)	1.984(4)	C(1)-C(2)-H(2A)	109.2
C(22)-H(22)	0.9500	P(2)-C(2)-H(2A)	109.2
C(23)-O(1)	1.253(4)	C(1)-C(2)-H(2B)	109.2
C(23)-C(24)	1.495(5)	P(2)-C(2)-H(2B)	109.2
C(23)-Ni(1)	2.414(4)	H(2A)-C(2)-H(2B)	107.9
C(24)-C(25)	1.330(6)	C(4)-C(3)-C(5)	116.1(12)
C(24)-H(24)	0.9500	C(4)-C(3)-P(2)	110.0(10)
C(25)-C(26)	1.463(6)	C(5)-C(3)-P(2)	112.4(10)
C(25)-H(25)	0.9500	C(4)-C(3)-H(3)	105.8
C(26)-C(27)	1.396(6)	C(5)-C(3)-H(3)	105.8
C(26)-C(31)	1.406(6)	P(2)-C(3)-H(3)	105.8
C(27)-C(28)	1.384(6)	C(4A)-C(3A)-C(5A)	101.8(13)
C(27)-H(27)	0.9500	C(4A)-C(3A)-P(2)	121.4(13)
C(28)-C(29)	1.378(8)	C(5A)-C(3A)-P(2)	107.9(11)
C(28)-H(28)	0.9500	C(4A)-C(3A)-H(3A)	108.4
C(29)-C(30)	1.374(8)	C(5A)-C(3A)-H(3A)	108.4
C(29)-H(29)	0.9500	P(2)-C(3A)-H(3A)	108.4
C(30)-C(31)	1.393(6)	C(3A)-C(4A)-H(4A1)	109.5
C(30)-H(30)	0.9500	C(3A)-C(4A)-H(4A2)	109.5
C(31)-C(32)	1.487(7)	H(4A1)-C(4A)-H(4A2)	109.5
C(32)-F(1)	1.341(6)	C(3A)-C(4A)-H(4A3)	109.5
C(32)-F(2)	1.341(6)	H(4A1)-C(4A)-H(4A3)	109.5
C(32)-F(3)	1.342(6)	H(4A2)-C(4A)-H(4A3)	109.5
C(33)-F(4)	1.343(5)	C(3A)-C(5A)-H(5A1)	109.5
C(33)-F(5)	1.348(5)	C(3A)-C(5A)-H(5A2)	109.5
C(33)-F(6)	1.350(5)	H(5A1)-C(5A)-H(5A2)	109.5
Ni(1)-P(2)	2.1548(13)	C(3A)-C(5A)-H(5A3)	109.5
Ni(1)-P(1)	2.1743(14)	H(5A1)-C(5A)-H(5A3)	109.5
C(2)-C(1)-P(1)	110.7(3)	H(5A2)-C(5A)-H(5A3)	109.5
C(2)-C(1)-H(1A)	109.5	C(7)-C(6)-C(8)	110.3(5)
P(1)-C(1)-H(1A)	109.5	C(7)-C(6)-P(2)	110.4(3)
C(2)-C(1)-H(1B)	109.5	C(8)-C(6)-P(2)	115.0(4)
		C(7)-C(6)-H(6)	106.9

C(8)-C(6)-H(6)	106.9	C(13)-C(12)-H(12)	108.3
P(2)-C(6)-H(6)	106.9	P(1)-C(12)-H(12)	108.3
C(6)-C(7)-H(7A)	109.5	C(12)-C(13)-H(13A)	109.5
C(6)-C(7)-H(7B)	109.5	C(12)-C(13)-H(13B)	109.5
H(7A)-C(7)-H(7B)	109.5	H(13A)-C(13)-H(13B)	109.5
C(6)-C(7)-H(7C)	109.5	C(12)-C(13)-H(13C)	109.5
H(7A)-C(7)-H(7C)	109.5	H(13A)-C(13)-H(13C)	109.5
H(7B)-C(7)-H(7C)	109.5	H(13B)-C(13)-H(13C)	109.5
C(6)-C(8)-H(8A)	109.5	C(12)-C(14)-H(14A)	109.5
C(6)-C(8)-H(8B)	109.5	C(12)-C(14)-H(14B)	109.5
H(8A)-C(8)-H(8B)	109.5	H(14A)-C(14)-H(14B)	109.5
C(6)-C(8)-H(8C)	109.5	C(12)-C(14)-H(14C)	109.5
H(8A)-C(8)-H(8C)	109.5	H(14A)-C(14)-H(14C)	109.5
H(8B)-C(8)-H(8C)	109.5	H(14B)-C(14)-H(14C)	109.5
C(11)-C(9)-C(10)	110.7(4)	C(16)-C(15)-C(20)	121.1(4)
C(11)-C(9)-P(1)	115.1(4)	C(16)-C(15)-C(33)	117.9(4)
C(10)-C(9)-P(1)	110.8(3)	C(20)-C(15)-C(33)	121.0(4)
C(11)-C(9)-H(9)	106.6	C(17)-C(16)-C(15)	120.9(5)
C(10)-C(9)-H(9)	106.6	C(17)-C(16)-H(16)	119.6
P(1)-C(9)-H(9)	106.6	C(15)-C(16)-H(16)	119.6
C(9)-C(10)-H(10A)	109.5	C(16)-C(17)-C(18)	118.8(5)
C(9)-C(10)-H(10B)	109.5	C(16)-C(17)-H(17)	120.6
H(10A)-C(10)-H(10B)	109.5	C(18)-C(17)-H(17)	120.6
C(9)-C(10)-H(10C)	109.5	C(19)-C(18)-C(17)	120.7(5)
H(10A)-C(10)-H(10C)	109.5	C(19)-C(18)-H(18)	119.6
H(10B)-C(10)-H(10C)	109.5	C(17)-C(18)-H(18)	119.6
C(9)-C(11)-H(11A)	109.5	C(18)-C(19)-C(20)	122.2(4)
C(9)-C(11)-H(11B)	109.5	C(18)-C(19)-H(19)	118.9
H(11A)-C(11)-H(11B)	109.5	C(20)-C(19)-H(19)	118.9
C(9)-C(11)-H(11C)	109.5	C(15)-C(20)-C(19)	116.3(4)
H(11A)-C(11)-H(11C)	109.5	C(15)-C(20)-C(21)	123.8(4)
H(11B)-C(11)-H(11C)	109.5	C(19)-C(20)-C(21)	119.9(4)
C(14)-C(12)-C(13)	109.8(5)	C(22)-C(21)-C(20)	122.2(3)
C(14)-C(12)-P(1)	111.8(4)	C(22)-C(21)-Ni(1)	67.6(2)
C(13)-C(12)-P(1)	110.4(3)	C(20)-C(21)-Ni(1)	120.1(3)
C(14)-C(12)-H(12)	108.3	C(22)-C(21)-H(21)	118.9

C(20)-C(21)-H(21)	118.9	C(30)-C(31)-C(32)	118.6(5)
Ni(1)-C(21)-H(21)	82.8	C(26)-C(31)-C(32)	120.8(4)
C(21)-C(22)-C(23)	118.6(3)	F(1)-C(32)-F(2)	105.3(4)
C(21)-C(22)-Ni(1)	70.9(2)	F(1)-C(32)-F(3)	105.6(5)
C(23)-C(22)-Ni(1)	88.2(3)	F(2)-C(32)-F(3)	104.9(4)
C(21)-C(22)-H(22)	120.7	F(1)-C(32)-C(31)	113.1(4)
C(23)-C(22)-H(22)	120.7	F(2)-C(32)-C(31)	113.7(5)
Ni(1)-C(22)-H(22)	110.6	F(3)-C(32)-C(31)	113.5(4)
O(1)-C(23)-C(22)	123.1(4)	F(4)-C(33)-F(5)	105.1(4)
O(1)-C(23)-C(24)	119.3(4)	F(4)-C(33)-F(6)	105.5(3)
C(22)-C(23)-C(24)	117.4(3)	F(5)-C(33)-F(6)	105.4(4)
O(1)-C(23)-Ni(1)	92.8(3)	F(4)-C(33)-C(15)	112.7(4)
C(22)-C(23)-Ni(1)	55.2(2)	F(5)-C(33)-C(15)	114.3(4)
C(24)-C(23)-Ni(1)	126.5(3)	F(6)-C(33)-C(15)	113.0(4)
C(25)-C(24)-C(23)	120.8(4)	C(22)-Ni(1)-C(21)	41.48(16)
C(25)-C(24)-H(24)	119.6	C(22)-Ni(1)-P(2)	148.87(12)
C(23)-C(24)-H(24)	119.6	C(21)-Ni(1)-P(2)	107.52(12)
C(24)-C(25)-C(26)	127.1(4)	C(22)-Ni(1)-P(1)	119.39(12)
C(24)-C(25)-H(25)	116.5	C(21)-Ni(1)-P(1)	160.60(12)
C(26)-C(25)-H(25)	116.5	P(2)-Ni(1)-P(1)	91.72(5)
C(27)-C(26)-C(31)	117.3(4)	C(22)-Ni(1)-C(23)	36.57(15)
C(27)-C(26)-C(25)	121.2(4)	C(21)-Ni(1)-C(23)	66.57(16)
C(31)-C(26)-C(25)	121.5(4)	P(2)-Ni(1)-C(23)	144.66(10)
C(28)-C(27)-C(26)	121.4(5)	P(1)-Ni(1)-C(23)	99.14(11)
C(28)-C(27)-H(27)	119.3	C(1)-P(1)-C(9)	104.8(3)
C(26)-C(27)-H(27)	119.3	C(1)-P(1)-C(12)	101.8(3)
C(29)-C(28)-C(27)	120.5(5)	C(9)-P(1)-C(12)	104.0(2)
C(29)-C(28)-H(28)	119.8	C(1)-P(1)-Ni(1)	106.36(18)
C(27)-C(28)-H(28)	119.8	C(9)-P(1)-Ni(1)	118.91(16)
C(30)-C(29)-C(28)	119.5(5)	C(12)-P(1)-Ni(1)	118.89(19)
C(30)-C(29)-H(29)	120.3	C(3)-P(2)-C(2)	96.4(6)
C(28)-C(29)-H(29)	120.3	C(3)-P(2)-C(6)	101.2(5)
C(29)-C(30)-C(31)	120.7(5)	C(2)-P(2)-C(6)	104.1(3)
C(29)-C(30)-H(30)	119.7	C(3)-P(2)-C(3A)	18.1(8)
C(31)-C(30)-H(30)	119.7	C(2)-P(2)-C(3A)	110.7(6)
C(30)-C(31)-C(26)	120.7(4)	C(6)-P(2)-C(3A)	107.2(6)
		C(3)-P(2)-Ni(1)	128.6(6)

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U^{12}
C(1)	64(3)	59(3)	103(5)	-10(3)	43(3)	-11(3)
C(2)	60(3)	46(3)	109(5)	-2(3)	40(3)	2(3)
C(3)	66(4)	97(6)	72(5)	-19(4)	22(3)	-20(4)
C(4)	66(4)	97(6)	72(5)	-19(4)	22(3)	-20(4)
C(5)	66(4)	97(6)	72(5)	-19(4)	22(3)	-20(4)
C(3A)	66(4)	97(6)	72(5)	-19(4)	22(3)	-20(4)
C(4A)	66(4)	97(6)	72(5)	-19(4)	22(3)	-20(4)
C(5A)	66(4)	97(6)	72(5)	-19(4)	22(3)	-20(4)
C(6)	32(2)	49(3)	95(4)	12(3)	19(2)	9(2)
C(7)	35(3)	116(5)	106(6)	-11(4)	-4(3)	11(3)
C(8)	55(3)	73(4)	174(8)	31(4)	28(4)	27(3)
C(9)	49(3)	57(3)	43(3)	15(2)	3(2)	18(2)
C(10)	56(3)	85(4)	72(4)	9(3)	-14(3)	15(3)
C(11)	77(4)	75(4)	60(4)	24(3)	8(3)	14(3)
C(12)	31(2)	109(4)	52(3)	11(3)	8(2)	-11(3)
C(13)	65(4)	227(9)	65(5)	6(5)	-2(3)	-74(5)
C(14)	28(2)	121(5)	98(5)	39(4)	8(3)	8(3)
C(15)	26(2)	68(3)	43(3)	2(2)	4(2)	12(2)
C(16)	39(2)	147(6)	35(3)	9(3)	11(2)	17(3)
C(17)	42(3)	234(9)	26(3)	6(4)	0(2)	15(4)
C(18)	31(2)	232(9)	33(3)	-16(4)	-2(2)	-9(4)
C(19)	25(2)	146(5)	32(3)	-8(3)	1(2)	-1(3)
C(20)	24(2)	73(3)	36(3)	1(2)	3(2)	6(2)
C(21)	22(2)	57(3)	37(2)	-4(2)	0(2)	2(2)
C(22)	24(2)	60(3)	31(2)	-11(2)	-3(2)	1(2)
C(23)	27(2)	46(2)	37(2)	-10(2)	3(2)	-1(2)
C(24)	26(2)	59(3)	41(3)	-5(2)	1(2)	1(2)
C(25)	26(2)	61(3)	34(3)	-9(2)	1(2)	-2(2)
C(26)	29(2)	63(3)	44(3)	-13(2)	6(2)	-6(2)
C(27)	30(2)	73(3)	49(3)	-17(2)	3(2)	-3(2)
C(28)	30(2)	81(4)	69(4)	-25(3)	6(2)	-1(2)
C(29)	42(3)	100(4)	72(4)	-41(3)	15(3)	3(3)
C(30)	48(3)	106(4)	43(3)	-28(3)	7(2)	-6(3)
C(31)	37(2)	79(3)	42(3)	-15(2)	7(2)	-3(2)

Table S9. Anisotropic displacement parameters (Å² x 10³) for [(dippe)Ni(η^2 -C α ,C β -C₁₉H₁₂F₆O)], **3a**.

C(32)	47(3)	94(4)	37(3)	-14(3)	5(2)	2(3)	
C(33)	32(2)	54(3)	60(3)	6(2)	16(2)	6(2)	
O(1)	25(1)	77(2)	41(2)	-19(2)	-3(1)	4(1)	
Ni(1)	22(1)	58(1)	37(1)	-4(1)	3(1)	4(1)	
P(1)	29(1)	65(1)	51(1)	-1(1)	9(1)	2(1)	
P(2)	36(1)	56(1)	73(1)	-14(1)	21(1)	-2(1)	
F(1)	68(2)	86(2)	69(2)	10(2)	-1(2)	6(2)	
F(2)	37(1)	103(2)	59(2)	-7(2)	-6(1)	-2(2)	
F(3)	72(2)	187(4)	37(2)	-19(2)	-3(2)	30(2)	
F(4)	24(1)	68(2)	72(2)	16(2)	-1(1)	2(1)	
F(5)	54(2)	67(2)	90(2)	-10(2)	13(2)	-4(2)	
F(6)	42(1)	84(2)	75(2)	18(2)	24(1)	-4(1)	

Table S10. Crystal data and structure refinement for [{(dippe)Ni}₂(η^2 -C α ,C β -C₁₇H₁₂F₂O)], **2b**.

Identification code	shelx		
Empirical formula	C45 H76 F2 Ni2 O P4		
Formula weight	912.36		
Temperature	130(2) K		
Wavelength	0.71073 Å		
Crystal system	Orthorombic		
Space group	P 21 21 21		
Unit cell dimensions	a = 14.4964(8) Å	α= 90°.	
	b = 15.4616(9) Å	β= 90°.	
	c = 21.4898(11) Å	$\gamma = 90^{\circ}$.	
Volume	4816.7(5) Å ³		
Z	4		
Density (calculated)	1.258 Mg/m ³		
Absorption coefficient	0.953 mm ⁻¹		
F(000)	1952		
Crystal size	0.333 x 0.0371 x 0.0303 mm	m ³	
Theta range for data collection	3.39 to 25.29°.		
Index ranges	-17<=h<=16, -15<=k<=18, -	=18, -25<=l<=25	
Reflections collected	37408		
Independent reflections	8745 [R(int) = 0.1483]		
Completeness to theta = 25.29°	99.6 %		
Refinement method	Full-matrix least-squares on	F ²	
Data / restraints / parameters	8745 / 0 / 504		
Goodness-of-fit on F ²	1.001		
Final R indices [I>2sigma(I)]	R1 = 0.0660, wR2 = 0.0879		
R indices (all data)	R1 = 0.1203, wR2 = 0.1011		
Absolute structure parameter	0.518(17)		
Largest diff. peak and hole	0.669 and -0.402 e.Å ⁻³		

	Х	у	Z	U(eq)
C(1)	8659(4)	-273(4)	9234(3)	33(2)
C(2)	9477(4)	-377(4)	8913(3)	39(2)
C(3)	10062(5)	-1061(5)	9029(4)	50(2)
C(4)	9848(6)	-1645(5)	9469(4)	52(2)
C(5)	9058(6)	-1561(5)	9812(3)	57(2)
C(6)	8453(5)	-885(4)	9698(3)	47(2)
C(7)	7579(5)	4152(4)	7964(3)	34(2)
C(8)	8478(5)	4342(5)	7765(3)	46(2)
C(9)	8646(6)	5018(5)	7350(3)	57(2)
C(10)	7929(6)	5477(4)	7129(3)	50(2)
C(11)	7058(5)	5312(4)	7294(3)	46(2)
C(12)	6884(5)	4653(4)	7712(3)	41(2)
C(13)	7975(4)	418(4)	9085(3)	29(1)
C(14)	8202(4)	1224(4)	8803(3)	28(2)
C(15)	7595(4)	1955(4)	8818(2)	28(1)
C(16)	7943(4)	2770(4)	8548(3)	29(2)
C(17)	7363(4)	3490(3)	8429(2)	30(2)
C(18)	6594(5)	168(5)	6871(3)	57(2)
C(19)	6690(4)	-766(4)	7124(3)	52(2)
C(20)	5856(4)	-1058(4)	8334(4)	52(2)
C(21)	5211(4)	-285(5)	8276(3)	57(2)
C(22)	5978(4)	-1312(4)	9016(3)	52(2)
C(23)	7644(5)	-1791(4)	8053(3)	47(2)
C(24)	8562(5)	-1740(5)	7709(4)	62(2)
C(25)	7127(5)	-2618(4)	7885(4)	67(2)
C(26)	8312(5)	1122(4)	6767(3)	54(2)
C(27)	8871(5)	280(5)	6747(4)	76(3)
C(28)	8925(5)	1862(5)	6970(4)	72(2)
C(29)	6646(5)	1988(5)	7202(3)	55(2)
C(30)	5782(5)	1975(5)	7600(3)	60(2)
C(31)	6432(6)	2243(5)	6537(4)	87(3)
C(32)	8720(4)	3998(4)	10615(3)	29(2)
C(33)	8355(4)	4885(4)	10399(3)	35(2)

Table S11. Atomic coordinates for $[{(dippe)Ni}_2(\eta^2-C\alpha,C\beta-C_{17}H_{12}F_2O)]$, **2b** (x 10⁴) and U(eq) (Å² x 10³).

C(34)	10228(4)	3435(4)	9768(3)	32(2)
C(35)	10419(4)	3071(4)	9122(3)	35(2)
C(36)	10540(4)	4373(4)	9817(3)	45(2)
C(37)	8970(4)	2207(4)	10331(3)	26(2)
C(38)	7980(4)	1911(4)	10462(3)	33(2)
C(39)	9540(4)	2145(4)	10926(3)	34(2)
C(40)	6443(4)	4809(4)	9969(3)	37(2)
C(41)	6208(4)	3937(4)	10261(3)	45(2)
C(42)	5757(4)	5009(4)	9440(3)	48(2)
C(43)	7773(4)	5867(4)	9313(3)	40(2)
C(44)	8747(4)	5998(4)	9050(3)	51(2)
C(45)	7494(5)	6623(4)	9733(3)	60(2)
O(1)	6798(3)	1910(3)	9043(2)	34(1)
Ni(1)	7569(1)	445(1)	8201(1)	28(1)
Ni(2)	8038(1)	3621(1)	9221(1)	23(1)
P(1)	8987(1)	3283(1)	9956(1)	24(1)
P(2)	7642(1)	4792(1)	9680(1)	27(1)
P(3)	6971(1)	-782(1)	7965(1)	37(1)
P(4)	7317(1)	965(1)	7286(1)	39(1)
F(1)	10416(3)	-2327(3)	9581(2)	86(2)
F(2)	8127(3)	6159(2)	6736(2)	71(1)

C(1)-C(2)	1 381(8)	C(17)-Ni(2)	1 974(5)
C(1) - C(6)	1.406(8)	C(17) - H(17)	1.0000
C(1)-C(13)	1.400(8)	C(17) - H(17)	1.550(9)
C(2)-C(3)	1 379(8)	C(18) - P(4)	1.330(7) 1.847(7)
C(2) - C(3)	0.0500	C(18) + I(18A)	0.0000
C(2) - H(2)	0.9300	$C(18) - \Pi(18A)$	0.9900
C(3)-C(4)	1.343(10)	С(18)-Н(18В)	0.9900
C(3)-H(3)	0.9500	C(19)-P(3)	1.853(7)
C(4)-F(1)	1.360(8)	C(19)-H(19A)	0.9900
C(4)-C(5)	1.368(10)	C(19)-H(19B)	0.9900
C(5)-C(6)	1.387(9)	C(20)-C(21)	1.523(9)
C(5)-H(5)	0.9500	C(20)-C(22)	1.528(9)
C(6)-H(6)	0.9500	C(20)-P(3)	1.850(7)
C(7)-C(12)	1.382(8)	C(20)-H(20)	1.0000
C(7)-C(8)	1.403(8)	C(21)-H(21A)	0.9800
C(7)-C(17)	1.464(7)	C(21)-H(21B)	0.9800
C(8)-C(9)	1.396(9)	C(21)-H(21C)	0.9800
C(8)-H(8)	0.9500	C(22)-H(22A)	0.9800
C(9)-C(10)	1.344(9)	C(22)-H(22B)	0.9800
C(9)-H(9)	0.9500	C(22)-H(22C)	0.9800
C(10)-C(11)	1.336(9)	C(23)-C(24)	1.524(9)
C(10)-F(2)	1.382(7)	C(23)-C(25)	1.526(8)
C(11)-C(12)	1.381(8)	C(23)-P(3)	1.850(6)
C(11)-H(11)	0.9500	С(23)-Н(23)	1.0000
C(12)-H(12)	0.9500	C(24)-H(24A)	0.9800
C(13)-C(14)	1.424(7)	C(24)-H(24B)	0.9800
C(13)-Ni(1)	1.988(5)	C(24)-H(24C)	0.9800
C(13)-H(13)	1.0000	C(25)-H(25A)	0.9800
C(14)-C(15)	1.434(7)	C(25)-H(25B)	0.9800
C(14)-Ni(1)	1.990(6)	C(25)-H(25C)	0.9800
C(14)-H(14)	1.0000	C(26)-C(28)	1.512(9)
C(15)-O(1)	1.255(6)	C(26)-C(27)	1.535(9)
C(15)-C(16)	1.475(7)	C(26)-P(4)	1.840(7)
C(16)-C(17)	1.419(7)	C(26)-H(26)	1.0000
C(16)-Ni(2)	1.958(6)	C(27)-H(27A)	0.9800
С(16)-Н(16)	1 0000	C(27)-H(27R)	0 9800
~(10) 11(10)	1.0000	(2,) $(1,2,0)$	0.9000

Table S12. Bond lengths [Å] and angles [°] for $[{(dippe)Ni}_2(\eta^2-C\alpha,C\beta-C_{17}H_{12}F_2O)]$, **2b**.

C(27)-H(27C)	0.9800	C(38)-H(38B)	0.9800
C(28)-H(28A)	0.9800	C(38)-H(38C)	0.9800
C(28)-H(28B)	0.9800	C(39)-H(39A)	0.9800
C(28)-H(28C)	0.9800	C(39)-H(39B)	0.9800
C(29)-C(30)	1.516(9)	C(39)-H(39C)	0.9800
C(29)-C(31)	1.517(9)	C(40)-C(41)	1.526(8)
C(29)-P(4)	1.866(7)	C(40)-C(42)	1.543(8)
C(29)-H(29)	1.0000	C(40)-P(2)	1.846(6)
C(30)-H(30A)	0.9800	C(40)-H(40)	1.0000
C(30)-H(30B)	0.9800	C(41)-H(41A)	0.9800
C(30)-H(30C)	0.9800	C(41)-H(41B)	0.9800
C(31)-H(31A)	0.9800	C(41)-H(41C)	0.9800
C(31)-H(31B)	0.9800	C(42)-H(42A)	0.9800
C(31)-H(31C)	0.9800	C(42)-H(42B)	0.9800
C(32)-C(33)	1.542(7)	C(42)-H(42C)	0.9800
C(32)-P(1)	1.838(6)	C(43)-C(45)	1.532(8)
C(32)-H(32A)	0.9900	C(43)-C(44)	1.535(8)
C(32)-H(32B)	0.9900	C(43)-P(2)	1.849(6)
C(33)-P(2)	1.865(6)	C(43)-H(43)	1.0000
C(33)-H(33A)	0.9900	C(44)-H(44A)	0.9800
C(33)-H(33B)	0.9900	C(44)-H(44B)	0.9800
C(34)-C(36)	1.523(8)	C(44)-H(44C)	0.9800
C(34)-C(35)	1.525(8)	C(45)-H(45A)	0.9800
C(34)-P(1)	1.860(6)	C(45)-H(45B)	0.9800
C(34)-H(34)	1.0000	C(45)-H(45C)	0.9800
C(35)-H(35A)	0.9800	Ni(1)-P(3)	2.1461(17)
C(35)-H(35B)	0.9800	Ni(1)-P(4)	2.1558(18)
C(35)-H(35C)	0.9800	Ni(2)-P(2)	2.1417(16)
C(36)-H(36A)	0.9800	Ni(2)-P(1)	2.1582(17)
C(36)-H(36B)	0.9800	C(2)-C(1)-C(6)	117.2(6)
C(36)-H(36C)	0.9800	C(2)-C(1)-C(13)	123.1(6)
C(37)-C(39)	1.526(7)	C(6)-C(1)-C(13)	119.6(6)
C(37)-C(38)	1.532(8)	C(3)-C(2)-C(1)	121.8(7)
C(37)-P(1)	1.849(5)	C(3)-C(2)-H(2)	119.1
C(37)-H(37)	1.0000	C(1)-C(2)-H(2)	119.1
C(38)-H(38A)	0.9800	C(4)-C(3)-C(2)	120.0(7)

C(4)-C(3)-H(3)	120.0	C(13)-C(14)-Ni(1)	68.9(3)
C(2)-C(3)-H(3)	120.0	C(15)-C(14)-Ni(1)	102.1(4)
C(3)-C(4)-F(1)	120.4(8)	C(13)-C(14)-H(14)	117.0
C(3)-C(4)-C(5)	120.6(7)	C(15)-C(14)-H(14)	117.0
F(1)-C(4)-C(5)	119.0(8)	Ni(1)-C(14)-H(14)	117.0
C(4)-C(5)-C(6)	120.3(7)	O(1)-C(15)-C(14)	122.0(5)
C(4)-C(5)-H(5)	119.8	O(1)-C(15)-C(16)	121.0(6)
C(6)-C(5)-H(5)	119.8	C(14)-C(15)-C(16)	117.1(5)
C(5)-C(6)-C(1)	119.9(7)	C(17)-C(16)-C(15)	122.6(5)
C(5)-C(6)-H(6)	120.0	C(17)-C(16)-Ni(2)	69.4(3)
C(1)-C(6)-H(6)	120.0	C(15)-C(16)-Ni(2)	107.9(4)
C(12)-C(7)-C(8)	116.1(6)	С(17)-С(16)-Н(16)	115.8
C(12)-C(7)-C(17)	120.2(6)	С(15)-С(16)-Н(16)	115.8
C(8)-C(7)-C(17)	123.6(6)	Ni(2)-C(16)-H(16)	115.8
C(9)-C(8)-C(7)	120.9(6)	C(16)-C(17)-C(7)	123.1(5)
C(9)-C(8)-H(8)	119.5	C(16)-C(17)-Ni(2)	68.3(3)
C(7)-C(8)-H(8)	119.5	C(7)-C(17)-Ni(2)	114.2(4)
C(10)-C(9)-C(8)	119.0(7)	С(16)-С(17)-Н(17)	114.4
C(10)-C(9)-H(9)	120.5	C(7)-C(17)-H(17)	114.4
C(8)-C(9)-H(9)	120.5	Ni(2)-C(17)-H(17)	114.4
C(11)-C(10)-C(9)	122.5(7)	C(19)-C(18)-P(4)	113.7(5)
C(11)-C(10)-F(2)	120.2(7)	C(19)-C(18)-H(18A)	108.8
C(9)-C(10)-F(2)	117.2(7)	P(4)-C(18)-H(18A)	108.8
C(10)-C(11)-C(12)	119.0(7)	C(19)-C(18)-H(18B)	108.8
C(10)-C(11)-H(11)	120.5	P(4)-C(18)-H(18B)	108.8
C(12)-C(11)-H(11)	120.5	H(18A)-C(18)-H(18B)	107.7
C(11)-C(12)-C(7)	122.4(6)	C(18)-C(19)-P(3)	112.0(4)
С(11)-С(12)-Н(12)	118.8	C(18)-C(19)-H(19A)	109.2
C(7)-C(12)-H(12)	118.8	P(3)-C(19)-H(19A)	109.2
C(14)-C(13)-C(1)	124.4(5)	C(18)-C(19)-H(19B)	109.2
C(14)-C(13)-Ni(1)	69.1(3)	P(3)-C(19)-H(19B)	109.2
C(1)-C(13)-Ni(1)	114.7(4)	H(19A)-C(19)-H(19B)	107.9
C(14)-C(13)-H(13)	113.6	C(21)-C(20)-C(22)	110.6(6)
С(1)-С(13)-Н(13)	113.6	C(21)-C(20)-P(3)	108.7(5)
Ni(1)-C(13)-H(13)	113.6	C(22)-C(20)-P(3)	111.6(5)
C(13)-C(14)-C(15)	122.6(5)	C(21)-C(20)-H(20)	108.6

C(22)-C(20)-H(20)	108.6	C(27)-C(26)-H(26)	108.5
P(3)-C(20)-H(20)	108.6	P(4)-C(26)-H(26)	108.5
C(20)-C(21)-H(21A)	109.5	C(26)-C(27)-H(27A)	109.5
C(20)-C(21)-H(21B)	109.5	C(26)-C(27)-H(27B)	109.5
H(21A)-C(21)-H(21B)	109.5	H(27A)-C(27)-H(27B)	109.5
C(20)-C(21)-H(21C)	109.5	C(26)-C(27)-H(27C)	109.5
H(21A)-C(21)-H(21C)	109.5	H(27A)-C(27)-H(27C)	109.5
H(21B)-C(21)-H(21C)	109.5	H(27B)-C(27)-H(27C)	109.5
C(20)-C(22)-H(22A)	109.5	C(26)-C(28)-H(28A)	109.5
C(20)-C(22)-H(22B)	109.5	C(26)-C(28)-H(28B)	109.5
H(22A)-C(22)-H(22B)	109.5	H(28A)-C(28)-H(28B)	109.5
C(20)-C(22)-H(22C)	109.5	C(26)-C(28)-H(28C)	109.5
H(22A)-C(22)-H(22C)	109.5	H(28A)-C(28)-H(28C)	109.5
H(22B)-C(22)-H(22C)	109.5	H(28B)-C(28)-H(28C)	109.5
C(24)-C(23)-C(25)	110.9(6)	C(30)-C(29)-C(31)	111.5(6)
C(24)-C(23)-P(3)	111.5(5)	C(30)-C(29)-P(4)	111.4(5)
C(25)-C(23)-P(3)	115.0(5)	C(31)-C(29)-P(4)	114.7(5)
C(24)-C(23)-H(23)	106.3	C(30)-C(29)-H(29)	106.2
C(25)-C(23)-H(23)	106.3	C(31)-C(29)-H(29)	106.2
P(3)-C(23)-H(23)	106.3	P(4)-C(29)-H(29)	106.2
C(23)-C(24)-H(24A)	109.5	C(29)-C(30)-H(30A)	109.5
C(23)-C(24)-H(24B)	109.5	C(29)-C(30)-H(30B)	109.5
H(24A)-C(24)-H(24B)	109.5	H(30A)-C(30)-H(30B)	109.5
C(23)-C(24)-H(24C)	109.5	C(29)-C(30)-H(30C)	109.5
H(24A)-C(24)-H(24C)	109.5	H(30A)-C(30)-H(30C)	109.5
H(24B)-C(24)-H(24C)	109.5	H(30B)-C(30)-H(30C)	109.5
C(23)-C(25)-H(25A)	109.5	C(29)-C(31)-H(31A)	109.5
C(23)-C(25)-H(25B)	109.5	C(29)-C(31)-H(31B)	109.5
H(25A)-C(25)-H(25B)	109.5	H(31A)-C(31)-H(31B)	109.5
C(23)-C(25)-H(25C)	109.5	C(29)-C(31)-H(31C)	109.5
H(25A)-C(25)-H(25C)	109.5	H(31A)-C(31)-H(31C)	109.5
H(25B)-C(25)-H(25C)	109.5	H(31B)-C(31)-H(31C)	109.5
C(28)-C(26)-C(27)	109.9(6)	C(33)-C(32)-P(1)	112.0(4)
C(28)-C(26)-P(4)	112.7(5)	C(33)-C(32)-H(32A)	109.2
C(27)-C(26)-P(4)	108.6(5)	P(1)-C(32)-H(32A)	109.2
C(28)-C(26)-H(26)	108.5	C(33)-C(32)-H(32B)	109.2

P(1)-C(32)-H(32B)	109.2	H(38A)-C(38)-H(38C)	109.5
H(32A)-C(32)-H(32B)	107.9	H(38B)-C(38)-H(38C)	109.5
C(32)-C(33)-P(2)	111.8(4)	C(37)-C(39)-H(39A)	109.5
C(32)-C(33)-H(33A)	109.3	C(37)-C(39)-H(39B)	109.5
P(2)-C(33)-H(33A)	109.3	H(39A)-C(39)-H(39B)	109.5
C(32)-C(33)-H(33B)	109.3	C(37)-C(39)-H(39C)	109.5
P(2)-C(33)-H(33B)	109.3	H(39A)-C(39)-H(39C)	109.5
H(33A)-C(33)-H(33B)	107.9	H(39B)-C(39)-H(39C)	109.5
C(36)-C(34)-C(35)	111.1(5)	C(41)-C(40)-C(42)	109.6(5)
C(36)-C(34)-P(1)	113.1(4)	C(41)-C(40)-P(2)	109.6(4)
C(35)-C(34)-P(1)	109.0(4)	C(42)-C(40)-P(2)	111.2(4)
C(36)-C(34)-H(34)	107.8	C(41)-C(40)-H(40)	108.8
C(35)-C(34)-H(34)	107.8	C(42)-C(40)-H(40)	108.8
P(1)-C(34)-H(34)	107.8	P(2)-C(40)-H(40)	108.8
C(34)-C(35)-H(35A)	109.5	C(40)-C(41)-H(41A)	109.5
C(34)-C(35)-H(35B)	109.5	C(40)-C(41)-H(41B)	109.5
H(35A)-C(35)-H(35B)	109.5	H(41A)-C(41)-H(41B)	109.5
C(34)-C(35)-H(35C)	109.5	C(40)-C(41)-H(41C)	109.5
H(35A)-C(35)-H(35C)	109.5	H(41A)-C(41)-H(41C)	109.5
H(35B)-C(35)-H(35C)	109.5	H(41B)-C(41)-H(41C)	109.5
C(34)-C(36)-H(36A)	109.5	C(40)-C(42)-H(42A)	109.5
C(34)-C(36)-H(36B)	109.5	C(40)-C(42)-H(42B)	109.5
H(36A)-C(36)-H(36B)	109.5	H(42A)-C(42)-H(42B)	109.5
С(34)-С(36)-Н(36С)	109.5	C(40)-C(42)-H(42C)	109.5
H(36A)-C(36)-H(36C)	109.5	H(42A)-C(42)-H(42C)	109.5
H(36B)-C(36)-H(36C)	109.5	H(42B)-C(42)-H(42C)	109.5
C(39)-C(37)-C(38)	109.6(5)	C(45)-C(43)-C(44)	111.0(5)
C(39)-C(37)-P(1)	114.5(4)	C(45)-C(43)-P(2)	114.1(4)
C(38)-C(37)-P(1)	111.2(4)	C(44)-C(43)-P(2)	111.7(4)
С(39)-С(37)-Н(37)	107.1	C(45)-C(43)-H(43)	106.5
С(38)-С(37)-Н(37)	107.1	C(44)-C(43)-H(43)	106.5
P(1)-C(37)-H(37)	107.1	P(2)-C(43)-H(43)	106.5
C(37)-C(38)-H(38A)	109.5	C(43)-C(44)-H(44A)	109.5
C(37)-C(38)-H(38B)	109.5	C(43)-C(44)-H(44B)	109.5
H(38A)-C(38)-H(38B)	109.5	H(44A)-C(44)-H(44B)	109.5
C(37)-C(38)-H(38C)	109.5	C(43)-C(44)-H(44C)	109.5

H(44A)-C(44)-H(44C)	109.5	C(20)-P(3)-Ni(1)	117.1(2)
H(44B)-C(44)-H(44C)	109.5	C(19)-P(3)-Ni(1)	107.9(2)
C(43)-C(45)-H(45A)	109.5	C(26)-P(4)-C(18)	103.9(3)
C(43)-C(45)-H(45B)	109.5	C(26)-P(4)-C(29)	103.8(3)
H(45A)-C(45)-H(45B)	109.5	C(18)-P(4)-C(29)	102.9(3)
C(43)-C(45)-H(45C)	109.5	C(26)-P(4)-Ni(1)	118.0(2)
H(45A)-C(45)-H(45C)	109.5	C(18)-P(4)-Ni(1)	106.7(2)
H(45B)-C(45)-H(45C)	109.5	C(29)-P(4)-Ni(1)	119.5(2)
C(13)-Ni(1)-C(14)	41.9(2)		
C(13)-Ni(1)-P(3)	109.08(17)		
C(14)-Ni(1)-P(3)	150.96(17)		
C(13)-Ni(1)-P(4)	158.29(17)		
C(14)-Ni(1)-P(4)	116.40(17)		
P(3)-Ni(1)-P(4)	92.61(7)		
C(16)-Ni(2)-C(17)	42.3(2)		
C(16)-Ni(2)-P(2)	152.78(18)		
C(17)-Ni(2)-P(2)	110.53(17)		
C(16)-Ni(2)-P(1)	114.99(18)		
C(17)-Ni(2)-P(1)	157.30(17)		
P(2)-Ni(2)-P(1)	92.17(6)		
C(32)-P(1)-C(37)	101.6(3)		
C(32)-P(1)-C(34)	107.1(3)		
C(37)-P(1)-C(34)	102.8(3)		
C(32)-P(1)-Ni(2)	106.58(19)		
C(37)-P(1)-Ni(2)	121.90(19)		
C(34)-P(1)-Ni(2)	115.3(2)		
C(40)-P(2)-C(43)	103.2(3)		
C(40)-P(2)-C(33)	104.0(3)		
C(43)-P(2)-C(33)	103.1(3)		
C(40)-P(2)-Ni(2)	114.8(2)		
C(43)-P(2)-Ni(2)	122.4(2)		
C(33)-P(2)-Ni(2)	107.36(19)		
C(23)-P(3)-C(20)	102.9(3)		
C(23)-P(3)-C(19)	103.1(3)		
C(20)-P(3)-C(19)	103.2(3)		
C(23)-P(3)-Ni(1)	120.6(2)		

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U^{12}
C(1)	43(4)	25(4)	30(4)	-5(3)	-8(4)	-10(3)
C(2)	41(4)	34(4)	40(4)	-1(3)	-8(4)	3(4)
C(3)	45(5)	41(5)	63(6)	-6(4)	-26(4)	6(4)
C(4)	68(6)	29(5)	59(6)	-6(4)	-34(5)	4(4)
C(5)	81(6)	41(5)	49(5)	18(4)	-25(5)	-25(5)
C(6)	55(5)	42(5)	43(5)	5(4)	-8(4)	-20(4)
C(7)	41(4)	36(4)	26(3)	-7(3)	-8(4)	-1(4)
C(8)	45(4)	58(5)	34(4)	16(4)	3(4)	7(4)
C(9)	68(6)	67(6)	36(5)	7(4)	13(4)	-11(5)
C(10)	87(6)	41(4)	23(4)	18(3)	-5(4)	-9(5)
C(11)	60(5)	42(4)	37(4)	9(4)	-18(4)	-8(4)
C(12)	45(4)	40(4)	39(4)	9(4)	-10(4)	-7(4)
C(13)	32(3)	31(4)	24(3)	-11(3)	5(3)	-9(3)
C(14)	28(4)	28(4)	27(4)	-7(3)	8(3)	1(3)
C(15)	27(4)	42(4)	14(3)	-10(3)	1(3)	-5(4)
C(16)	28(3)	35(4)	26(4)	-1(3)	1(3)	-1(3)
C(17)	25(3)	34(4)	29(3)	7(3)	-8(3)	2(3)
C(18)	57(5)	74(5)	39(5)	-16(4)	-21(4)	7(4)
C(19)	44(4)	56(5)	56(5)	-23(4)	-10(4)	0(4)
C(20)	34(4)	41(4)	80(6)	-23(4)	-4(4)	-12(3)
C(21)	36(4)	80(6)	55(5)	-14(5)	-4(4)	6(4)
C(22)	38(4)	48(5)	70(6)	6(5)	10(4)	-6(4)
C(23)	56(5)	34(4)	50(5)	-15(3)	-6(4)	12(4)
C(24)	47(5)	74(6)	65(6)	-13(5)	4(4)	19(4)
C(25)	74(6)	37(4)	90(6)	-21(4)	-4(5)	-1(4)
C(26)	78(5)	60(5)	25(4)	-4(4)	10(4)	-5(4)
C(27)	67(5)	85(6)	74(6)	-30(5)	40(5)	2(5)
C(28)	80(6)	79(6)	57(6)	-2(5)	24(5)	-20(5)
C(29)	72(6)	67(5)	26(4)	-4(4)	-8(4)	5(4)
C(30)	55(5)	78(6)	48(5)	-12(5)	-19(4)	29(4)
C(31)	126(8)	93(7)	42(5)	11(5)	-23(5)	37(6)
C(32)	30(4)	30(4)	27(4)	-2(3)	-6(3)	-5(3)
C(33)	30(4)	32(4)	44(4)	-12(3)	2(3)	-1(3)

Table S13. Anisotropic displacement parameters (Å² x 10³) for[{(dippe)Ni}₂(η^2 -C α ,C β -C₁₇H₁₂F₂O)], **2b**.

C(34)	18(3)	42(4)	35(4)	16(3)	-9(3)	0(3)
C(35)	23(3)	53(4)	30(4)	5(4)	5(3)	-4(3)
C(36)	28(4)	54(5)	55(5)	4(4)	0(3)	-13(3)
C(37)	20(3)	31(4)	27(4)	10(3)	-2(3)	-3(3)
C(38)	34(4)	33(4)	31(4)	6(3)	-2(3)	-5(3)
C(39)	27(3)	46(4)	30(4)	17(3)	6(3)	1(3)
C(40)	34(4)	36(4)	42(4)	-10(4)	7(4)	7(3)
C(41)	30(4)	58(5)	46(5)	7(4)	10(4)	-8(4)
C(42)	32(4)	47(5)	64(5)	8(4)	7(4)	8(3)
C(43)	42(4)	28(4)	48(4)	3(3)	1(4)	-7(3)
C(44)	49(5)	40(4)	64(6)	12(4)	4(4)	-8(4)
C(45)	63(5)	23(4)	95(6)	-1(4)	5(5)	6(4)
O(1)	25(2)	48(3)	29(3)	-4(2)	1(2)	-8(2)
Ni(1)	25(1)	33(1)	26(1)	-8(1)	-1(1)	-1(1)
Ni(2)	21(1)	26(1)	21(1)	1(1)	-1(1)	1(1)
P(1)	19(1)	31(1)	23(1)	4(1)	-1(1)	-2(1)
P(2)	26(1)	24(1)	31(1)	-3(1)	3(1)	0(1)
P(3)	31(1)	40(1)	39(1)	-15(1)	-2(1)	0(1)
P(4)	44(1)	48(1)	26(1)	-7(1)	-5(1)	7(1)
F(1)	100(3)	42(3)	114(4)	7(3)	-52(3)	13(3)
F(2)	102(3)	71(3)	41(2)	20(2)	-6(3)	-11(3)