Tuning of excitation wavelength in Eu³⁺-aminophenyl based polyfluorinated β-diketonate complexes: Red-emitting Eu³⁺-complex encapsulated in silica/polymer hybrid material excited by blue light

T. V. Usha Gangan^{a,b} and M. L. P. Reddy^{a,b*}

^aAcSIR – Academy of Scientific & Innovative Research, CSIR-NIIST Campus, Thiruvananthapuram, India

^bMaterials Science and Technology Division, National Institute for Interdisciplinary Science and Technology (NIIST), CSIR, Thiruvananthapuram-695 019, Kerala, India E-mail: mlpreddy55@gmail.com

Contents

Fig. S1 ¹H NMR spectrum of the ligand HAPFP.

Fig. S2 ¹³C NMR spectrum of the ligand HAPFP.

Fig. S3 ¹H NMR spectrum of the ligand HDMAPFP.

Fig. S4 ¹³C NMR spectrum of the ligand HDMAPFP.

Fig. S5 ¹H NMR spectrum of the ligand HDPAPFP.

Fig. S6 ¹³C NMR spectrum of the ligand HDPAPFP.

Fig. S7 Thermogravimetric curves for Ln^{3+} complexes 1-9.

Fig. S8 ${}^{5}D_{0}$ decay profiles for complexes 1 and 4 (solid-state) where emission monitored

around 612 nm. The straight lines are the best fits ($r^2 = 0.999$) considering single-exponential behavior.

Fig. S9 ${}^{5}D_{0}$ decay profiles for complexes 2 and 5 (solid-state) where emission monitored around 612 nm. The straight lines are the best fits (r² = 0.999) considering single-exponential behavior.

Fig. S10 Photoluminescence intensity of the complex Eu(DPAPFP)₃DDXPO in solid state as a function of irradiation time.

Fig. S11 FT-IR spectra of the EuC-Gel and EuC-PMMA-Gel.

Fig. S12 XRD patterns of the EuC-Gel and EuC-PMMA-Gel.

Fig. S13 TG/DTA curves for (a) Eu(DPAPFP)₃DDXPO, (b) EuC-Gel and (c) EuC-PMMA-Gel.

Fig. S14 UV-visible absorption spectra of the gels (solid).

Fig. S1 ¹H NMR spectrum of the ligand HAPFP.

Fig. S3¹H NMR spectrum of the ligand HDMAPFP.

Fig. S4¹³C NMR spectrum of the ligand HDMAPFP.

Fig. S5 ¹H NMR spectrum of the ligand HDPAPFP.

Fig. S6¹³C NMR spectrum of the ligand HDPAPFP.

Fig. S7 Thermogravimetric curves for Ln^{3+} complexes 1 - 9.

Fig. S8 ${}^{5}D_{0}$ decay profiles for complexes 1 and 4 (solid-state) where emission monitored around 612 nm. The straight lines are the best fits (r² = 0.999) considering single-exponential behavior.

Fig. S9 ${}^{5}D_{0}$ decay profiles for complexes 2 and 5 (solid-state) where emission monitored around 612 nm. The straight lines are the best fits (r² = 0.999) considering single-exponential behavior.

Fig. S10 Photoluminescence intensity of the complex Eu(DPAPFP)₃DDXPO in solid state as a function of irradiation time.

Fig. S11 FT-IR spectra of the EuC-Gel and EuC-PMMA-Gel.

Fig. S12 XRD patterns of the EuC-Gel and EuC-PMMA-Gel.

Fig. S13 TG/DTA curves for (a) Eu(DPAPFP)₃DDXPO, (b) EuC-Gel and (c) EuC-PMMA-Gel.

Fig. S14 UV-visible absorption spectra of the gels (solid).