SUPPORTING INFORMATION for DT-ART-06-2015-002403

Dinuclear Iridium and Rhodium Complexes with Bridging Arylimidazolide-*N*³,*C*² Ligands: Synthetic, Structural, Reactivity, Electrochemical and Spectroscopic Studies

Fan He,^a Laurent Ruhlmann,^b Jean-Paul Gisselbrecht,^b Sylvie Choua,^c Maylis Orio,^e Marcel Wesolek,^a Andreas A. Danopoulos,^{*a,d} Pierre Braunstein^{*a}

^a Laboratoire de Chimie de Coordination, Institut de Chimie (UMR 7177 CNRS), Université de Strasbourg, 4 rue Blaise Pascal, 67081 Strasbourg Cedex (France)

^b Laboratoire d'Electrochimie et de Chimie Physique du Corps Solide, Institut de Chimie (UMR 7177 CNRS), Université de Strasbourg, 4 rue Blaise Pascal, 67081 Strasbourg Cedex (France)

^c Institut de Chimie, Université de Strasbourg, 1 rue Blaise Pascal, BP 296 R8, 67008
Strasbourg, Cedex (France)

^d Université de Strasbourg, Institute for Advanced Study (USIAS), Strasbourg (France)

^e Institut des Sciences Moléculaires de Marseille, Aix Marseille Université, CNRS,
Centrale Marseille, ISM2 UMR 7313, 13397, Marseille, France

E-mails: danopoulos@unistra.fr, braunstein@unistra.fr

Contents

Table S1. Crystal data and structure refinement for 3_{H-H}, 3_{H-T}, 8 and 9.

Fig. S1 UV-visible-NIR absorption spectrum of $\mathbf{3}_{H-T}$ in CH₂Cl₂ (c = 4.408 10⁻⁵ mol L⁻¹).

Fig. S2 ¹H NMR signals (600 MHz, C_6D_6) of the ethylene ligands in complex 7.

Fig. S3 UV-visible-NIR absorption spectrum of 8 in CH_2Cl_2 (c = 8.074 10⁻⁵ mol L⁻¹).

Fig. S4 ¹H NMR signals (400 MHz, C_6D_6) of the ethylene ligands in complex 9.

Fig. S5 Cyclic voltammograms of 3_{H-T} with added ferrocene (CH₂Cl₂ + 0.1 M [*n*-Bu₄N]PF₆, glassy carbon electrode, scan rate 0.1 Vs⁻¹, *vs*. Fc⁺/Fc).

Fig. S6 Cyclic voltammograms of **8** with added ferrocene ($CH_2Cl_2 + 0.1 \text{ M} [n-Bu_4N]PF_6$, glassy carbon electrode, scan rate 0.1 Vs⁻¹, *vs.* Fc⁺/Fc).

Fig. S7 Cyclic voltammograms of $\mathbf{3}_{\text{H-H}}$ (top) and $\mathbf{3}_{\text{H-H}}$ with added ferrocene (bottom) (CH₂Cl₂ + 0.1 M [*n*-Bu₄N]PF₆, glassy carbon electrode, scan rate 0.1 Vs⁻¹, *vs.* Fc⁺/Fc).

Fig. S8 A) Time-resolved UV-visible-NIR spectra of $\mathbf{3}_{H-T}$ for the first oxidation step (transition Ir(I)/Ir(I) to Ir(I)/Ir(II)) in CH₂Cl₂ + 0.1 M [*n*-Bu₄N]PF₆ (spectra recorded every 5 s). B) UV-visible spectral evolution for the first oxidation step.

Fig S9 A) Time-resolved UV-visible-NIR spectra of 8 for the first oxidation step (transition Rh(I)/Rh(I) to Rh(I)/Rh(II)) in $CH_2Cl_2 + 0.1$ M [*n*-Bu₄N]PF₆ (spectra recorded every 5 s). B) Time-resolved UV-visible-NIR differential spectra for the first oxidation step.

Fig. S10 EPR spectra of the Rh(I)/Rh(II) system 8 electrochemically generated in CH₂Cl₂

at 100 K: a) Experimental spectrum b) Simulated spectrum with one ¹⁰³Rh nucleus (left) and two equivalent ¹⁰³Rh nuclei (right).

Fig. S11 Optimized structure of the Rh(I)/Rh(II) system with relevant interatomic distances.

Fig. S12 Spin population distribution (left) and Singly Occupied Molecular Orbital (SOMO) of the Rh(I)/Rh(II) system (right).

Fig. S13 Optimized structure of the Ir(I)/Ir(II) system with relevant interatomic distances.

Fig. S14 Spin population distribution (left) and Single Occupied Molecular Orbital (SOMO) of the Ir(I)/Ir(II) system (right).

	3 _{н-н}	3 _{H-T}	8	9
Empirical formula	$C_{40}H_{50}Ir_2N_4$	$C_{40}H_{50}Ir_2N_4$	$C_{40}H_{50}Rh_2N_4$	$C_{38}H_{54}N_4Rh_2$
Fw	971.24	971.24	792.66	772.67
T/K	173(2)	173(2)	173(2)	173(2)
Crystal system	Triclinic	Monoclinic	Monoclinic	Triclinic
Space group	<i>P</i> -1	$P 2_1/c$	$P 2_1/c$	<i>P</i> -1
a/Å	10.533(3)	12.3621(4)	12.4452(7)	8.5688(17)
b/Å	12.162(3)	18.9590(6)	18.7469(10)	14.354(3)
c/Å	14.504(4)	17.3685(5)	17.5877(7)	16.312(3)
$lpha/^{\circ}$	86.570(6)	90	90	93.13(3)
$eta\!\!/^{\circ}$	85.210(6)	119.356(2)	119.594(3)	91.35(3)
$\gamma^{\prime \circ}$	69.345(6)	90	90	95.87(3)
$V/Å^3$	1731.5(7)	3547.99(19)	3568.1(3)	1991.9(7)
Ζ	2	4	4	2
μ/mm^{-1}	7.712	7.528	0.958	0.856
No. of rflns collected	35403	37595	32340	20590
No. unique rflns	10116	12351	10482	9057
R(int)	0.0643	0.0273	0.0358	0.0519
Goodness of fit on F^2	1.137	1.111	1.025	1.012
Final R indices $[l > 2\sigma(l)]$	R1 = 0.0855 w $R2 = 0.2408$	R1 = 0.0332 wR2 = 0.0580	R1 = 0.0347 w $R2 = 0.0695$	R1 = 0.0363 w $R2 = 0.1021$
<i>R</i> indices (all data)	R1 = 0.1050	R1 = 0.0561	R1 = 0.0671	R1 = 0.0413
	wR2 = 0.2547	wR2 = 0.0674	wR2 = 0.0815	wR2 = 0.1062

Table S1. Crystal data and structure refinement for $\mathbf{3}_{H-H}$, $\mathbf{3}_{H-T}$, $\mathbf{8}$ and $\mathbf{9}$.

Fig S1 UV-visible-NIR absorption spectrum of 3_{H-T} in CH₂Cl₂ (c = 4.408 10⁻⁵ mol L⁻¹).

Fig. S2 ¹H NMR signals (600 MHz, C_6D_6) of the ethylene ligands in complex 7.

Fig. S3 UV-visible-NIR absorption spectrum of **8** in CH_2Cl_2 (c = 8.074 10⁻⁵ mol L⁻¹).

Fig. S4 ¹H NMR signals (400 MHz, C_6D_6) of the ethylene ligands in complex 9. (* for $CH(CH_3)_2$ of Dipp)

Fig. S5 Cyclic voltammograms of 3_{H-T} with added ferrocene (CH₂Cl₂ + 0.1 M [*n*-Bu₄N]PF₆, glassy carbon electrode, scan rate 0.1 Vs⁻¹, *vs*. Fc⁺/Fc).

Fig. S6 Cyclic voltammograms of **8** with added ferrocene ($CH_2Cl_2 + 0.1 \text{ M} [n-Bu_4N]PF_6$, glassy carbon electrode, scan rate 0.1 Vs⁻¹, *vs.* Fc⁺/Fc).

Fig. S7 Cyclic voltammograms of $\mathbf{3}_{H-H}$ (top) and $\mathbf{3}_{H-H}$ with added ferrocene (bottom) (CH₂Cl₂ + 0.1 M [*n*-Bu₄N]PF₆, glassy carbon electrode, scan rate 0.1 Vs⁻¹, *vs.* Fc⁺/Fc).

Fig. S8 A) Time-resolved UV-visible-NIR spectra of $\mathbf{3}_{H-T}$ for the first oxidation step (transition Ir(I)/Ir(I) to Ir(I)/Ir(II)) in CH₂Cl₂ + 0.1 M [*n*-Bu₄N]PF₆ (spectra recorded every 5 s). B) UV-visible spectral evolution for the first oxidation step.

Fig. S9 A) Time-resolved UV-visible-NIR spectra of **8** for the first oxidation step (transition Rh(I)/Rh(I) to Rh(I)/Rh(II)) in $CH_2Cl_2 + 0.1$ M [*n*-Bu₄N]PF₆ (spectra recorded every 5 s). B) Time-resolved UV-visible-NIR differential spectra for the first oxidation step.

Fig. S10 EPR spectra of the Rh(I)/Rh(II) system **8** electrochemically generated in CH_2Cl_2 at 100 K: a) Experimental spectrum b) Simulated spectrum with one ¹⁰³Rh nucleus (left) and two equivalent ¹⁰³Rh nuclei (right).

Fig. S11 Optimized structure of the Rh(I)/Rh(II) system with relevant interatomic distances.

Fig. S12 Spin population distribution (left) and Singly Occupied Molecular Orbital (SOMO) of the Rh(I)/Rh(II) system (right).

Fig. S13 Optimized structure of the Ir(I)/Ir(II) system with relevant interatomic distances.

Fig. S14 Spin population distribution (left) and Singly Occupied Molecular Orbital (SOMO) of the Ir(I)/Ir(II) system (right).