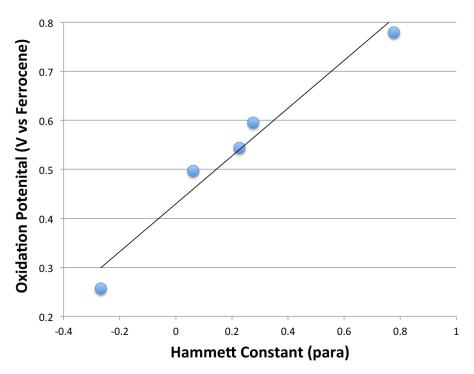
Supporting Information

Antimalarial activity of ruthenium(II) and osmium(II) arene complexes with mono- and bidentate chloroquine analogue ligands

Erik Ekengard^a, Lotta Glans^a, Irwin Cassells^b, Thibault Fogeron^a, Preshendren Govender^b, Tameryn Stringer^b, Prinessa Chellan^b, George Lisensky, William H. Hersh^a, Isa Doverbratt^e, Sven Lidin^e, Carmen de Kock^f, Peter J. Smith^f, Gregory S. Smith^{b*}, Ebbe Nordlander^{a*}

- a) Inorganic Chemistry Research Group, Chemical Physics, Department of Chemistry, Lund University, Box 124, SE-221 00 Lund, Sweden. E-mail: ebbe.nordlander@chemphys.lu.se
- b) Department of Chemistry, University of Cape Town, Private Bag, Rondebosch 7701, South Africa. E-mail: gregory.smith@uct.ac.za
- c) Department of Chemistry, Beloit College, 700 College St., Beloit, WI 53511, USA.
- d) Department of Chemistry and Biochemistry, Queens College and the Graduate Center of the City University of New York, Queens, NY 11367-1597, USA.
- e) Centre for Analysis and Synthesis, Department of Chemistry, Lund University, Getingevägen 60, Box 124, SE-22100 Lund, Sweden.
- f) Division of Pharmacology, Department of Medicine, University of Cape Town Medical School, Observatory 7925, South Africa

* To whom correspondence should be addressed.


Contents

Electrochemistry	S2
Anti-malarial activities as a function of $\sigma_{\scriptscriptstyle para}$	S4
¹ H-NMR assignments used in the characterization of Ru-HL ⁹ and Os-HL ⁹	s5
Stacking fault in Ru-1	s6

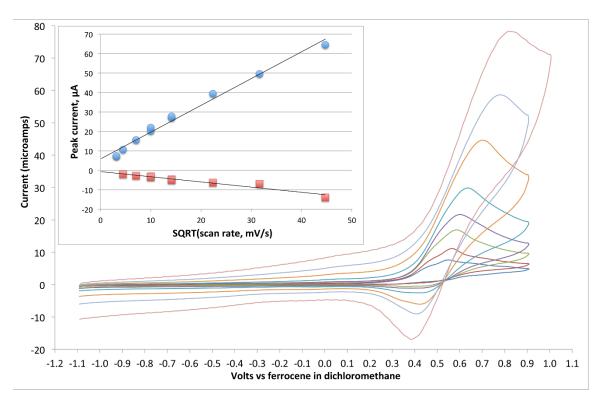

Electrochemistry

Table S-1. Oxidation potentials for Ru complexes.

Complex	Volts vs Ferrocene I	Hammet value
Ru-HL ⁷ , OMe	0.2568	-0.268
Ru- HL ² , F	0.4972	0.062
Ru- HL ³ , Cl	0.5439	0.227
Ru-HL⁵, I	0.5957	0.276
Ru-HL ⁶ , NO2	0.7795	0.778

Figure S-1. The oxidation potentials for Ru^{II} to Ru^{III} correlate with the Hammett constants, as the greater electron-withdrawing groups raise the oxidation potential. The data is also shown in Table 1.

Figure S-2. The ruthenium complexes have a quasi-reversible oxidation with the cyclic voltammetry return wave having a smaller peak current. The figure shows the data for Ru-HL² at 10, 20, 50, 100, 200, 500, 1000, and 2000 mV/s scan rates. The peak current for the return wave is only 20% of that for the forward wave.

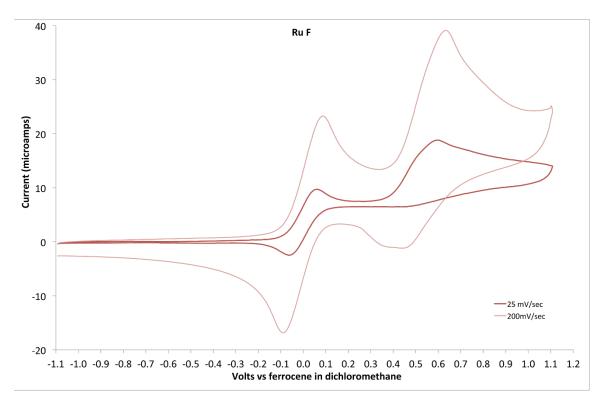
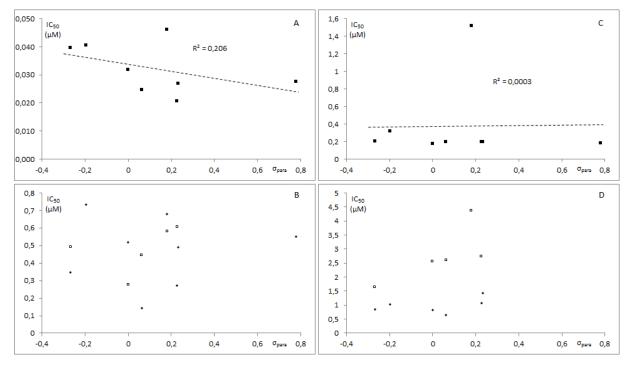
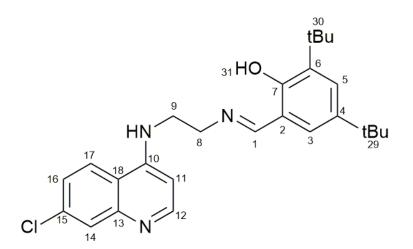



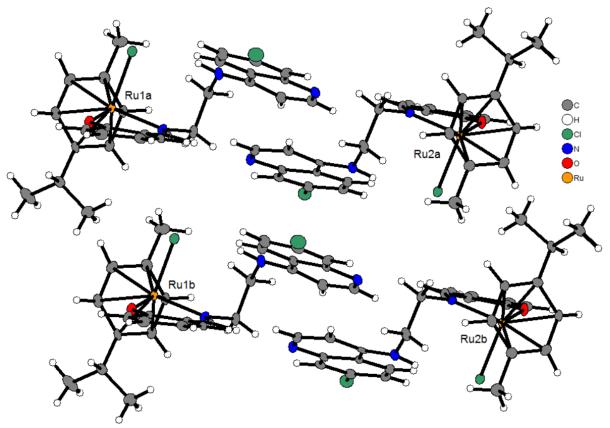
Figure S-3. Peak separations were similar to that of ferrocene. The cyclic voltammogram of $Ru-HL^2$ in dichloromethane is shown with added ferrocene at 25 and 200 mV/s scan rates.

Anti-malarial activities as a function of σ_{para}


Figure S-4. Antimalarial activities as a function of Hammett σ -para values. A) Ligands HL¹ to HL⁸ (solid squares), NF54 strain (CQS), B) Complexes Ru-1 to 8 (solid diamonds) and Os-1,2,3,5 and 7 (white squares) NF54 strain (CQS), C) Ligands HL¹ to HL⁸ (solid squares), Dd2 strain (CQR), D) Complexes Ru-1 to 8 (solid diamonds) and Os-1,2,3,5 and 7 (white squares), Dd2 strain (CQR). Notice the weak negative correlation between antimalarial activity versus the CQS strain for the ligands HL¹ to HL⁸ and the absence of the same trend in the the corresponding complexes.

¹H-NMR assignments used in the characterization of Ru-HL⁹ and Os-HL⁹

	Ru-HL ⁹	Os-HL ⁹
H1	0.03	0.04
H3	-0.04	-0.05
H5	0.00	0.00
H8	-0.03	-0.04
H9	-0.10	-0.18
H11	0.31	0.33
H12	-0.34	-0.35
H14	0.68	0.77
H16	-0.35	-0.43
H17	-0.36	-0.48
H29	0.01	-0.01
H30	-0.02	-0.02
H31	0.09	0.14


Table S-2. Selected ¹H NMR data ($\Delta\delta$, ppm) for complexes Ru-HL⁹ and Os-HL⁹ in CD₂Cl₂.^a

 $^{^{}a}\Delta\delta$ is the displacement of the signal in the coordinated ligand with respect to the corresponding signal in the free ligand. Positive values denote downfield shifts. See figure S-5 for numbering.

Figure S-5. Numbering scheme used for ¹H-NMR assignments in Table S-2. The same numbering is used for all crystal structures.

Stacking fault in Ru-1

Figure S-6. Structure of the two different domains of Ru-1. Ru1a and Ru2a is in the main polymorph, Ru1b and Ru2b in the minor polymorph. Notice the local centrosymmetry at the interface between the polymorphs.