Electronic Supplementary Information

to the paper "Theoretical Insights into the Separation of Am(III) over Eu(III) with PhenBHPPA" by Han Wu, Qun-Yan Wu, Cong-Zhi Wang, Jian-Hui Lan, Zhi-Rong Liu, Zhi-Fang Chai and Wei-Qun Shi

Contents:

Table S1 The average ρ and $\nabla^2 \rho$ values of the M-N_L and M-O_L BCPs in the Eu and Am complexes with PhenBHPPA.

Table S2 Contribution (%) of metal atom and the nitrogen (N_L) and oxygen atoms of ligand (O_L), and the oxygen atoms of nitrate anion (O_N) to the delocalized canonical MOs for complexes $[EuL(NO_3)_2]^+$ and $[AmL(NO_3)_2]^+$.

Table S3 Changes of Gibbs free energies (kcal/mol) for complexation reactions of Am³⁺ and Eu³⁺ complexes with PhenBHPPA ligand in the gas phase, aqueous, n-octanol and cyclohexanone phases at the B3LYP/6-31G*/RECP Level of Theory.^{*a*}

Table S4 Differences in the Gibbs free energies ($\Delta\Delta G$, kcal/mol) between the PhenBHPPA complexes with of Am³⁺ and Eu³⁺ in gas, aqueous, n-octanol, and cyclohexanone phases at the B3LYP/6-31G*/RECP Level.

Fig. S1 Changes of Gibbs free energy (ΔG , kcal/mol) for 25 complexing reactions from five different Eu(III) starting reactants to five different products in the gas phase.

Complete Gaussian 09 reference (Reference 37)

Table S1 The average ρ and $\nabla^2 \rho$ values of the M-N_L and M-O_L BCPs in the Eu and Am complexes with PhenBHPPA.

Species	[ML] ³⁺	$[ML(NO_3)]^{2+}$	$[ML(H_2O)_3]^{3+}$	$[ML(NO_3)(H_2O)_2]^{2+}$	$[ML(NO_3)_2]^+$	$ML(NO_3)_3$
$\rho_{\text{M-N}_L}$	0.047/0.051	0.039/0.043	0.027/0.033	0.030/0.035	0.027/0.031	0.026/0.029
$\nabla^2 \rho_{\text{M-N}_L}$	0.158/0.167	0.134/0.143	0.090/0.097	0.101/0.116	0.084/0.098	0.089/0.098
$\rho_{\text{M-O}_L}$	0.069/0.073	0.052/0.054	0.036/0.045	0.044/0.047	0.036/0.039	0.034/0.036
$\nabla^2 \rho_{\text{M-O}_L}$	0.299/0.315	0.223/0.229	0.142/0.179	0.185/0.196	0.151/0.155	0.137/0.142

^{*a*}.../... represent the results of Eu and Am complexes, respectively.

Table S2 Contribution (%) of metal atom and the nitrogen (N_L) and oxygen atoms of ligand (O_L), and the oxygen atoms of nitrate anion (O_N) to the delocalized canonical MOs for complexes $[EuL(NO_3)_2]^+$ and $[AmL(NO_3)_2]^+$.

	261	254	253	243	240	225
Eu	4f: 78.69	4f: 10.74	4f:31.55	4f:1.45	4f:1.01	5d:1.32
$N_{\rm L}$	-	-	-	2p:33.67	2p:15.35	2p:28.59
O _{(NO3} -)	2p:9.22	2p:21.27	2p:31.02	2p:26.73	2p:38.41	2p:11.74
$O_{\rm L}$	2p:1.05	2p:10.00	-	-	2p:9.22	-
	279	272	271	249	244	240
Am	5f: 72.01 6d:1.45	5f: 15.93 6d:1.15	5f: 17.43 6d:1.06	5f:3.12	5f:6.71	6d:2.80
N_L	-	-	-	2p:26.74	2p:37.52	2p:29.26
O _{(NO3} -)	2p:12.57	2p: 52.68	2p:40.57	2p: 15.63	2p:12.74	2p:3.94
$O_{\rm L}$	-	2p:1.10	-	-	2p:1.08	-

Table S3 Changes of Gibbs free energies (kcal/mol) for complexation reactions of Am^{3+} and Eu^{3+} complexes with PhenBHPPA ligand in the gas phase, aqueous, n-octanol and cyclohexanone phases at the B3LYP/6-31G*/RECP Level of Theory.^{*a*}

Reactions	$\Delta \mathbf{G}_{\mathbf{gas}}$	ΔG_{aq}	$\Delta G_{n\text{-oct}}$	ΔG_{cyc}
$[M(NO_3)(H_2O_6)]^{2+} + L \rightarrow [ML(NO_3)]^{2+} + 6H_2O$	<mark>-66.39/-71.48</mark>	<mark>-13.32/-18.52</mark>	<mark>-4.20/-8.40</mark>	<mark>-11.58/-16.04</mark>
$[M(NO_3)(H_2O)_6]^{2+} + L \rightarrow [ML(H_2O)_3]^{3+} + 3H_2O + NO_3^{-}$	133.55/128.07	<mark>4.43/-2.44</mark>	26.82/20.05	<mark>14.33/-7.31</mark>
$[M(NO_3)(H_2O)_6]^{2+} + L \rightarrow [ML(NO_3)(H_2O)_2]^{2+} + 4H_2O$	<mark>-74.79/-79.32</mark>	<mark>-14.21/-19.89</mark>	<mark>-3.91/-8.07</mark>	<mark>-12.47-17.29</mark>
$\left[\mathrm{M(NO_3)(H_2O)_6}\right]^{2+} + \mathrm{L} + \mathrm{NO_3} \longrightarrow \left[\mathrm{ML(NO_3)_2}\right]^{+} + 6\mathrm{H_2O}$	<mark>-210.74/-217.17</mark>	<mark>-21.47-28.33</mark>	<mark>-18.39/-24.09</mark>	<mark>-23.68/-29.83</mark>
$\left[\mathrm{M(NO_3)(H_2O)_6}\right]^{2+} + 2\mathrm{NO_3} + \mathrm{L} \rightarrow \mathrm{ML(NO_3)_3} + 6\mathrm{H_2O}$	-277.62/-286.85	<mark>-17.25/-27.13</mark>	<mark>-14.12/-14.42</mark>	<mark>-18.80/-21.48</mark>
$\left[\mathrm{M}(\mathrm{NO}_3)_2(\mathrm{H}_2\mathrm{O})_3\right]^+ + \mathrm{L} \rightarrow \left[\mathrm{ML}(\mathrm{NO}_3)\right]^{2+} + \mathrm{NO}_3^- + 3\mathrm{H}_2\mathrm{O}$	106.23/105.25	-4.38/-5. 21	4.73/4.92	-2.65/-2.72
$\left[\mathrm{M}(\mathrm{NO}_3)_2(\mathrm{H}_2\mathrm{O})_3\right]^+ + \mathrm{L} \rightarrow \left[\mathrm{ML}(\mathrm{H}_2\mathrm{O})_3\right]^{3+} + 2\mathrm{NO}_3^-$	306.17/304.81	13.37/10.88	35.76/33.37	23.26/20.63
$[M(NO_3)_2(H_2O)_3]^+ + L \rightarrow [ML(NO_3)(H_2O)_2]^{2+} + H_2O + NO_3^-$	97.83/56.00	-5.28/-6.57	5.03/5.25	-3.54/-3.97
$\left[\mathrm{M(NO_3)_2(H_2O)_3}\right]^+ + \mathrm{L} \rightarrow \left[\mathrm{ML(NO_3)_2}\right]^+ + 3\mathrm{H_2O}$	-38.12/-40.43	-12.53/-15.01	-9.45/-10.77	-14.75/-16.51
$[M(NO_3)_2(H_2O)_3]^+ + NO_3^- + L \rightarrow ML(NO_3)_3 + 3H_2O$	-105.00/-110.11	-8.31/-13.81	-5.19/-1.11	-9.86/-8.17
$M(NO_3)_3(H_2O)_4+L \rightarrow [ML(NO_3)]^{2+}+2NO_3+4H_2O$	234.86/225.18	7.25/-0.73	16.37/17.60	8.99/9.96
$M(NO_3)_3(H_2O)_4 + L \rightarrow [ML(H_2O)_3]^{3+} + H_2O + 3NO_3^{-}$	434.80/435.83	25.00/23.55	47.39/46.04	34. 90/33.31
$M(NO_3)_3(H_2O)_4 + L \rightarrow [ML(NO_3)(H_2O)_2]^{2+} + 2H_2O + 2NO_3^{-1}$	226.46/228.44	6.35/6.11	16.66/17.92	8.09/8.71
$M(NO_3)_3(H_2O)_4 + L \rightarrow [ML(NO_3)_2]^+ + NO_3^- + 4H_2O$	90.52/90.59	-0.90/-2.33	2.18/1.91	-3.11/-3.83
$M(NO_3)_3(H_2O)_4 + L \rightarrow ML(NO_3)_3 + 4H_2O$	23.63/20.91	3.32/-1.14	6.44/11.57	1.77/4.51
$\left[\mathrm{M}(\mathrm{NO}_3)_2(\mathrm{H}_2\mathrm{O})_4\right]^+ + \mathrm{L} \rightarrow \left[\mathrm{ML}(\mathrm{NO}_3)\right]^{2+} + \mathrm{NO}_3^- + 4\mathrm{H}_2\mathrm{O}$	121.09/120.21	2.26/2.04	11.37/12.71	4.00 /4.53
$[M(NO_3)_2(H_2O)_4]^+ + L \rightarrow [ML(H_2O)_3]^{3+} + 2NO_3^- + H_2O$	321.02/319.77	20.01/18.12	42.40/40.61	29.90/27.87
$[M(NO_3)_2(H_2O)_4]^+ + L \rightarrow [ML(NO_3)(H_2O)_2]^{2+} + 2H_2O + NO_3^-$	112.68/112.37	1.36/0.68	11.67/12.49	3.10/3.28

$\left[\mathrm{M(NO_3)_2(H_2O)_4}\right]^+ + \mathrm{L} \rightarrow \left[\mathrm{ML(NO_3)_2}\right]^+ + 4\mathrm{H_2O}$	-23.26/-25.48	-5.89/-7.77	-2.81/-3.53	-8.11/-9.27
$\left[M(NO_3)_2(H_2O)_4\right]^+ + NO_3^- + L \longrightarrow ML(NO_3)_3 + 4H_2O$	-90.15/-95.16	-1.67/-6.57	-1.45/6.14	-3.22/-0.92
$M(NO_3)_3(H_2O)_3 + L \rightarrow [ML(NO_3)]^{2+} + 2NO_3^{-} + 3H_2O$	232.16/232.81	8.16/9.30	17.28/19.43	9.90/11.79
$M(NO_3)_3(H_2O)_3 + L \rightarrow [ML(H_2O)_3]^{3+} + 3NO_3^{-1}$	432.10/432.37	25.91/25.38	48.30/17.33	35.81/35.14
$M(NO_3)_3(H_2O)_3 + L \rightarrow [ML(NO_3)(H_2O)_2]^{2^+} + H_2O + 2NO_3^-$	223.76/224.98	7.26/7.94	17.57/19.75	9.00/10.54
$M(NO_3)_3(H_2O)_3 + L \rightarrow [ML(NO_3)_2]^+ + NO_3^- + 3H_2O$	87.81/87.13	0.01/-0.51	3.09/3.73	-2.20/-2.00
$M(NO_3)_3(H_2O)_3 + L \rightarrow ML(NO_3)_3 + 3H_2O$	20.93/17.45	4.23/0.69	7.35/13.40	2.68/6.34
$[M(H_2O)_9]^{3+} + NO_3 + L \rightarrow [ML(NO_3)]^{2+} + 9H_2O$	-314.36/-308.93	-32.05/-28.86	-22.94/-18.73	-30.31/-26.37
$[M(H_2O)_9]^{3+} + L \rightarrow [ML(H_2O)_3]^{3+} + 6H_2O$	-114.42/-109.37	-14.30/-12.78	8.09/9.71	-4.41/-3.03
$[M(H_2O)_9]^{3+} + L + NO_3 \rightarrow [ML(NO_3)(H_2O)_2]^{2+} + 7H_2O$	-322.76/-316.76	-32.95/-30.22	-22.64/-18.41	-31.21/-27.62
$[M(H_2O)_9]^{3+} + L + 2NO_3 \rightarrow [ML(NO_3)_2]^+ + 9H_2O$	-458.71/-454.61	-40.20/-38.67	-37.12/-34.43	-42.42/-40.17
$[M(H_2O)_9]^{3+} + L + 3NO_3 \rightarrow ML(NO_3)_3 + 9H_2O$	-525.59/-524.29	-35.98/-37.47	-32.86/-24.76	-61.72/-31.82

^{*a*}.../... denotes Gibbs free energies for Eu and Am complexes.

Table S4 Differences in the Gibbs free energies (kcal/mol) of formation and extraction of the PhenBHPPA complexes with of Am³⁺ and Eu³⁺ in gas, aqueous, n-octanol, and cyclohexanone phases at the B3LYP/6-31G*/RECP Level.

Reactions	$\Delta\Delta G_{gas}$	$\Delta\Delta G_{aq}$	$\Delta\Delta G_{n-oct}$	$\Delta\Delta G_{cyc}$	
$\left[\mathrm{M(NO_3)_2(H_2O)_3}\right]^+ + \mathrm{L} \rightarrow \left[\mathrm{ML(NO_3)}\right]^{2+} + \mathrm{NO_3}^+ + 3\mathrm{H_2O}$	<mark>-0.98</mark>	<mark>-0.83</mark>	<mark>0.19</mark>	<mark>-0.07</mark>	
$\left[\mathrm{M(NO_3)_2(H_2O)_3}\right]^+ + \mathrm{L} \rightarrow \left[\mathrm{ML(H_2O)_3}\right]^{3+} + 2\mathrm{NO_3}^-$	<mark>-1.36</mark>	<mark>-2.49</mark>	<mark>-2.39</mark>	<mark>-2.39</mark>	
$[M(NO_3)_2(H_2O)_3]^+ + L \rightarrow [ML(NO_3)(H_2O)_2]^{2+} + H_2O + NO_3^-$	<mark>-4.183</mark>	<mark>-1.29</mark>	<mark>0.22</mark>	<mark>-0.43</mark>	
$\left[\mathrm{M(NO_3)_2(H_2O)_3}\right]^+ + \mathrm{L} \rightarrow \left[\mathrm{ML(NO_3)_2}\right]^+ + 3\mathrm{H_2O}$	<mark>-2.31</mark>	<mark>-2.48</mark>	<mark>-1.32</mark>	<mark>-1.76</mark>	
$[M(NO_3)_2(H_2O)_3]^+ + NO_3^- + L \rightarrow ML(NO_3)_3 + 3H_2O_3^-$	<mark>-5.11</mark>	<mark>-5.50</mark>	<mark>4.08</mark>	<mark>1.69</mark>	
$\left[M(NO_3)_2(H_2O)_4\right]^+ + L \rightarrow \left[ML(NO_3)\right]^{2+} + NO_3^- + 4H_2O$	-0.88	-0.22	1.34	0.53	

$[M(NO_3)_2(H_2O)_4]^+ + L \rightarrow [ML(H_2O)_3]^{3+} + 2NO_3^- + H_2O$	-1.25	-1.89	-1.79	-2.03
$[M(NO_3)_2(H_2O)_4]^+ + L \rightarrow [ML(NO_3)(H_2O)_2]^{2+} + 2H_2O + NO_3^-$	-0.31	-0.68	0.82	0.18
$\left[\mathrm{M(NO_3)_2(H_2O)_4}\right]^+ + L \rightarrow \left[\mathrm{ML(NO_3)_2}\right]^+ + 4\mathrm{H_2O}$	-2.22	-1.88	-0.72	-1.16
$\left[\mathrm{M}(\mathrm{NO}_3)_2(\mathrm{H}_2\mathrm{O})_4\right]^+ + \mathrm{NO}_3^- + \mathrm{L} \rightarrow \qquad \mathrm{ML}(\mathrm{NO}_3)_3 + 4\mathrm{H}_2\mathrm{O}$	-5.01	-4.90	7.59	2.30
$M(NO_3)_3(H_2O)_3 + L \rightarrow [ML(NO_3)]^{2+} + 2NO_3^{-} + 3H_2O$	0.65	1.14	2.15	1.89
$M(NO_3)_3(H_2O)_3 + L \rightarrow [ML(H_2O)_3]^{3+} + 3NO_3^{-1}$	0.27	-0.53	-30.97	-0.67
$M(NO_3)_3(H_2O)_3 + L \rightarrow [ML(NO_3)(H_2O)_2]^{2+} + H_2O + 2NO_3^{-}$	1.22	0.68	2.18	1.54
$M(NO_3)_3(H_2O)_3 + L \rightarrow [ML(NO_3)_2]^+ + NO_3^- + 3H_2O$	-0.68	-0.52	0.64	-0.20
$M(NO_3)_3(H_2O)_3 + L \rightarrow ML(NO_3)_3 + 3H_2O$	-3.48	-3.54	6.05	3.66
$[M(H_2O)_9]^{3+} + NO_3^{-} + L \rightarrow [ML(NO_3)]^{2+} + 9H_2O$	5.43	3.19	4.21	3.94
$[M(H_2O)_9]^{3+} + L \rightarrow [ML(H_2O)_3]^{3+} + 6H_2O$	5.05	1.52	1.62	1.38
$[M(H_2O)_9]^{3+} + L + NO_3 \rightarrow [ML(NO_3)(H_2O)_2]^{2+} + 7H_2O$	6.00	2.73	4.23	3.59
$[M(H_2O)_9]^{3+} + L + 2NO_3 \rightarrow [ML(NO_3)_2]^+ + 9H_2O$	4.10	1.53	2.69	2.25
$[M(H_2O)_9]^{3+} + L + 3NO_3 \rightarrow ML(NO_3)_3 + 9H_2O$	1.30	1.49	8.10	29.9

Fig. S1 Changes of Gibbs free energy (ΔG , kcal/mol) for 25 complexing reactions from five different Eu(III) starting reactants to five different products in the gas phase.

Complete Gaussian 09 reference (Reference 37)

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;Robb, M. A.; Cheeseman, J. R.;
Scalmani, G.; Barone, V.; Mennucci,B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.;
Hratchian, H.P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.;Ehara, M.;
Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima,T.; Honda, Y.; Kitao, O.; Nakai, H.;
Vreven, T.; Montgomery, J. A., Jr.;Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers,
E.; Kudin,K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.;Rendell, A.;
Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J.
E.; Cross, J. B.; Bakken, V.; Adamo,C; Jaramillo, J.; Gomperts, R. E.; Stratmann, O.; Yazyev, A.

J.; Austin, R.; Cammi, C.; Pomelli, J. W.; Ochterski, R.; Martin, R. L.; Morokuma, K.; Zakrzewski,

V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.;

Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. *Gaussian 09*, revision A.02; Gaussian, Inc.: Wallingford, CT, 2009.