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Fig. S1. Crystal packing along b axis; helical species are equally distributed between  and  
isomers in  fashion along C3-helical axis. Hydrogen atoms, counterions and metal 
centres have been omitted for clarity.
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Determination of CF Parameters in the Lanthanide Complexes.

The approach depends crucially on the coordination number (CN) of the geometry of 
the coordination sphere of the lanthanide ion. Crystallographic analysis of compounds 1, 2, 3, 
4, 5, and 6 revealed that all of them comprise isostructural homonuclear dimers with 
constituent trivalent lanthanide ions with CN=9 and the coordination geometry of a distorted 
tricapped trigonal prism (TTP, D3h). The top and base faces of the prism corresponding to the 
first lanthanide ion Ln1

3+ are taken by three symmetry related atoms N1 and O1, respectively. 
The capping of the prism comprises three symmetry related N2 atoms. The TTP coordination 
sphere of the second lanthanide ion Ln2

3+ in the dimer shares the base face of O1 atoms with 
the former one, the top face is made-up of a threesome of N3 atoms, while the capping 
comprises three symmetry related N4 atoms. Both coordination spheres share a threefold axis 
going through the lanthanide centers. The third versor  of the local orthogonal right-handed �̂�𝜂1

coordinate frame of Ln1
3+ is chosen along the threefold axis and pointing toward the TTP top 

face. The second versor  is obtained by projecting the vector  onto the plane �̂�𝜉1 �⃗�𝑂1 + �⃗�𝑁1

perpendicular to the third versor  and normalizing the projection, where r’s denote the �̂�𝜂1

position vectors of the corresponding atoms relative to the central Ln1
3+ ion . And finally the 

first versor of the coordinate frame is calculated as the cross product of the two former ones: 
. Analogously, we define the local coordinate frame of Ln2

3+ replacing the vector �̂�𝜁1 = �̂�𝜉1 × �̂�𝜂1

 by . Figure S2 shows the crystallographically truthful picture of both the �⃗�𝑂1 + �⃗�𝑁1 �⃗�𝑂1 + �⃗�𝑁3

coordination spheres with their local frames.

Figure S2: Crystallographically truthful picture of the dinuclear lanthanide complex with the 
local frames used in the calculations. Color code: blue – N, red – O, green - Ln.

The Hamiltonian pertinent to the present systems under external magnetic field is 
. The first term accounts for the Zeeman effect. For two Ln3+ ions in the 𝐻 = 𝐻𝑍 + 𝐻𝐶𝐹 + 𝐻𝑆𝐸

dimer it reads

𝐻𝑍 = 𝜇𝐵(𝐽𝐿𝑛1 ∙ 𝑔𝐿𝑛1 + 𝐽𝐿𝑛2 ∙ 𝑔𝐿𝑛2) ∙ 𝐻

where  is the Bohr magneton and H denotes the external magnetic field. The total magnetic 𝜇𝐵

moment operator  is used in the corresponding  𝜇 =‒ 𝜇𝐵(𝐽𝐿𝑛1 ∙ 𝑔𝐿𝑛1 + 𝐽𝐿𝑛2 ∙ 𝑔𝐿𝑛2) |𝐽1,𝐽1𝑧;𝐽2,𝐽2𝑧〉

representation. The components of both  and   of which we assume to be diagonal and 𝑔𝐿𝑛1 𝑔𝐿𝑛2
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isotropic were assumed to be equal  (quasi-symmetric approximation, 𝑔𝐿𝑛1 = 𝑔𝐿𝑛2 = 𝑔 𝑑𝑖𝑎𝑔(1,1,1)

see text below) and varied during the fitting procedure. The second term corresponds to the 
crystal field (CF) interaction, which is expressed in the framework of the extended operator 
equivalent approach1-3. Following the notation by Altshuler and Kozyrev3, the ligand field 
part of the Hamiltonian is written as 

.
𝐻𝐶𝐹 = ∑

2,4,6

𝑘

∑
𝑞 = 0

𝐵 𝑞
1𝑘𝑂 𝑞

1𝑘 + 𝐵 𝑞
2𝑘𝑂 𝑞

2𝑘

The coefficients  and  are the parameters to be determined. The  (i=1,2) operators are 𝐵 𝑞
1𝑘 𝐵 𝑞

2𝑘 𝑂 𝑞
𝑖𝑘

polynomials of the total angular momentum operators , , and  defined in the local 𝐽𝑖𝑧 𝐽𝑖 + 𝐽𝑖 ‒

coordinate system of each ion (and their definitions are given in the Appendix for instant 
reference). Because the angles and distances in the coordination spheres of both lanthanide 
ions in the dimer are all comparable we decide to take here a simplifying assumption that the 
crystal field of both ions is identical in their corresponding local frames, so it is described by 
the same set of parameters . We call it a quasi-symmetrical approximation as the 𝐵 𝑞

1𝑘 = 𝐵 𝑞
2𝑘 = 𝐵𝑞

𝑘

local frames of the lanthanide ions are not equivalent. This assumption reduces greatly the 
number of free parameters to be determined. The operator equivalents  do not include the 𝑂 𝑞

𝑖𝑘

operator equivalent coefficients or the radial factors . Both factors are included in the 〈𝑟𝑘〉
parameters , which restricts their application to a single J-manifold. The coefficients are 𝐵𝑞

𝑘

conversed into another set of parameters  (more commonly used in the literature) using 𝐴𝑞
𝑘〈𝑟𝑘〉

the formula
𝐵𝑞

𝑘 = 𝐴𝑞
𝑘〈𝑟𝑘〉〈𝐽||𝛼𝑘||𝐽〉

where the last factor are the operator-equivalent coefficients. They relate the angular 
momentum operators to the potential operators and depend on the ion and the coupling 
scheme assumed (e.g. L-S or intermediate). Their values tabulated for all lanthanide ions in 
the L-S scheme can be found in ref. 3.

The last component of the total Hamiltonian  is to account for the superexchange coupling 𝐻𝑆𝐸

between the lanthanide ions mediated through the phenoxo bridges. The coupling should be 
taken between the corresponding spin operators. If we can neglect mixing of the multiplets 
with different J quantum numbers, so that only the matrix elements within the subspace of 
wave functions corresponding to the ground term value of J are taken into account,  the spin 
operator can be projected onto the total angular momentum operator . Equations  𝑆 𝐽 𝐿 + 𝑆 = 𝐽
and  imply that this projection is . We further assume that the 𝐿 + 2𝑆 = 𝑔𝐽 𝑆 = (𝑔 ‒ 1)

superexchange coupling between the lanthanide ions is isotropic so the Hamiltonian  reads𝐻𝑆𝐸

.𝐻𝑆𝐸 =‒ 2𝐽(𝑔 ‒ 1)2𝐽𝐿𝑛1 ∙ 𝐽𝐿𝑛2

With an arbitrary choice of a set of  coefficients and a finite external field, the 𝐵𝑞
𝑘

Hamiltonian H is diagonalized. The determination of a full set of eigenvalues and 
eigenfunctions permits the calculation of the magnetic molar susceptibility together with the 
isothermal magnetization. This is performed using the generalized van Vleck formalism

𝜒 =
𝑁

3𝑘𝐵𝑇𝑍0
∑
𝑛,𝑖

[∑
𝑗

|⟨𝜑𝑛,𝑖│𝜇│𝜑𝑛,𝑗⟩|2 ‒ 2𝑘𝐵𝑇 ∑
𝑗,𝑚 ≠ 𝑛

|⟨𝜑𝑛,𝑖│𝜇│𝜑𝑚,𝑗⟩|2

𝐸𝑛 ‒ 𝐸𝑚 ]𝑒𝑥𝑝( ‒
𝐸𝑛

𝑘𝐵𝑇)
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𝑀 =
𝑁
𝑍𝐻

∑
𝑘

⟨𝜓𝑘│𝜇│𝜓𝑘⟩𝑒𝑥𝑝( ‒
𝐸𝑘(𝐻)

𝑘𝐵𝑇 )

where  , and . Here  denote the -fold 
𝑍0 = ∑

𝑛

𝑑𝑛𝑒𝑥𝑝( ‒ 𝐸𝑛 𝑘𝐵𝑇) 𝑍𝐻 = ∑
𝑘

𝑒𝑥𝑝( ‒ 𝐸𝑘(𝐻) 𝑘𝐵𝑇)
𝜑𝑛,𝑖 𝑑𝑛

degenerate eigenfunctions with energy  in the absence of magnetic field, whereas the 𝐸𝑛

eigensystem  was calculated assuming the nonzero external magnetic field H. The {𝜓𝑘,𝐸𝑘(𝐻)}
three principal values of the magnetic susceptibility are denoted . The observed molar 𝜒𝑥, 𝜒𝑦, 𝜒𝑧

magnetic susceptibility of powder sample is the following average 

.
�̅� =

1
3

(𝜒𝑥 + 𝜒𝑦 + 𝜒𝑧)

The magnetic moment per molecule measured on the powder sample was calculated for an 
array of 13 independent applied field orientations filling uniformly the total solid angle . The 
number of these orientations was chosen to obtain a good balance between accuracy of 
calculated values and time taken by the calculation.

Besides the interactions incorporated in the Hamiltonian H, for some of the compounds it 
turned out that the fitting quality of the susceptibility data was much enhanced at the lowest 
temperatures by accounting for the intermolecular interaction. It was introduced in an 
approximate way within the framework of the molecular field theory. The resultant molar 
powder susceptibility of a compound was calculated as 

�̅� =
�̅�0

1 ‒ 𝑧𝐽'�̅�0/(𝑁𝐴𝑔2
𝐽𝜇2

𝐵)

where  denotes the molar susceptibility of an isolated dimer, z is the number of nearest �̅�0

neighbors, and  is the intermolecular coupling constant.𝐽'

Fitting was carried out with the help of a specially designed procedure prepared within 
Mathematica8.0 environment. Two test functions to be minimized were used. The first test 
function was the relative mean-square (r.m.s.) deviation from the measured  values:𝜒𝑇

𝜎𝜒𝑇 =

𝑁𝜒𝑇

∑
𝑖 = 1

[(�̅�𝑖𝑇)𝑡ℎ𝑒𝑜𝑟 ‒ (�̅�𝑖𝑇)𝑒𝑥𝑝]2

𝑁𝜒𝑇

∑
𝑖 = 1

(�̅�𝑖𝑇) 2
𝑒𝑥𝑝

where  denotes the number of experimental points. The second one, being more time 𝑁𝜒𝑇

consuming, was extended to include the r.m.s. deviation from the measured  values defined 𝑀
as follows

𝜎𝑀 =

𝑁𝑀

∑
𝑗 = 1

[�̅�𝑗 𝑡ℎ𝑒𝑜𝑟 ‒ �̅�𝑗 𝑒𝑥𝑝]2

𝑁𝑀

∑
𝑗 = 1

�̅� 2
𝑗 𝑒𝑥𝑝
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where denotes the number of experimental magnetization points. The first test function 𝑁𝑀 

was used in the first step of fitting procedure to find good starting values of the parameters. 
The extended test function was employed in the final step. To account for the imbalance 
between the number and temperature distribution of susceptibility and magnetization points, 
usually a simple weighted combination  was used with 0.25<x<0.3. 𝜎 = 𝑥𝜎𝑀 + (1 ‒ 𝑥)𝜎𝜒𝑇

Because the lanthanide site is expected to be of low symmetry (distorted TTP geometry) no 
initial assumptions should be made as to the parameters. On the other hand, the many-
dimensional fits where only powder data are available will be of poor reliability. To overcome 
that problem the initial calculations were performed assuming a high symmetry Ansatz 
corresponding to ideal TTP geometry with only six nonzero crystal field parameters , 𝐴0

2〈𝑟2〉

, , , , and . Such a treatment is justified if one looks on the 𝐴0
4〈𝑟4〉  𝐴3

4〈𝑟4〉 𝐴0
6〈𝑟6〉 𝐴3

6〈𝑟6〉  𝐴6
6〈𝑟6〉

resulting parameter sets as the effective ones. Unfortunately, this strategy was not successful 
for all the complexes. For 1 and 2 the crystal field parameter set has been fully extended. As 
mentioned above, the presented model is based on the quasi-symmetrical approximation for 
the lanthanide homonuclear dimer. In reality, the crystal-field parameters corresponding to 
both the lanthanide ions may well differ. Although this assumption is crucial for the 
plausibility of the calculation it may cause and it does that some of the best-fit crystal-field 
parameters take on greatly enhanced values. Nevertheless, we believe that the proposed model 
gives an effective description reproducing satisfactorily available experimental data and 
reflecting approximate energy spectra of the constituent lanthanides.
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Detailed DC magnetic properties 

Table S1. The collection of values of average Lande factor gav, χMT products at 300 K and 
magnetization of Msat at 70 kOe together with the expected values.

Compound,
Ln3+

Ground 
state term

gtheor gexp χTtheor, 300 K / 
cm3·K·mol-1

χTexp,300 K  / 
cm3·K·mol-1

Msat,theor / 
NAµB

M(70 kOe) / 
NAµB

1, Tb3+ 7F6 3/2 1.54(3) 23.62 24.60 17.94 13.02
2, Dy3+ 6H15/2 4/3 1.386(7) 28.33 29.44 19.92 14.21
3, Ho3+ 5I8 5/4 1.22(1) 28.12 26.35 19.90 11.90
4, Er3+ 4I15/2 6/5 1.228(3) 22.95 23.74 17.89 11.78
5, Tm3+ 3H6 7/6 1.168(8) 14.29 13.02 13.88 3.55
6, Yb3+ 2F7/2 8/7 1.092(4) 5.14 4.54 7.88 3.12

Table S2. Best Fit Crystal Field Parameters (CFP) in the Quasi-Symmetrical Approximation.
CFP [cm-1] 1 2 3 4 5 6

𝐴0
2〈𝑟2〉 -365(28) -34(4) 164(22) 139(9) -510(5) -119(4)

𝐴1
2〈𝑟2〉 107(13) 38(7) 173(5)

𝐴2
2〈𝑟2〉 -7(1) 50(7) -481(14)

𝐴0
4〈𝑟4〉 117(14) -430(11) -13(2) -152(9) -548(6) -767(20)

𝐴1
4〈𝑟4〉 747(51) 172(34) -325(12)

𝐴2
4〈𝑟4〉 -633(40) 73(24) 508(17)

𝐴3
4〈𝑟4〉 175(21) 660(40) 621(93) 578(27) -197(18) 288(10)

𝐴4
4〈𝑟4〉 -231(22) 1039(12) -316(9)

𝐴0
6〈𝑟6〉 1200(101) 454(41) -49(8) 417(11) -441(7) -114(4)

𝐴1
6〈𝑟6〉 -202(29) 2618(47) 100(3)

𝐴2
6〈𝑟6〉 1872(199) -189(44) 100(3)

𝐴3
6〈𝑟6〉 -147(18) -1150(126) 1521(134) -1589(60) -99(10) 99(4)

𝐴4
6〈𝑟6〉 333(44) 448(66) 101(4)

𝐴5
6〈𝑟6〉 276(39) 665(41) 100(3)

𝐴6
6〈𝑟6〉 333(26) 125(10) -2.5(5) -151(5) 1079(14) 104(4)
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Magnetic properties of 1

Figure S3 (left) shows the χMT(T) and M(H) characteristics for the powder sample of 1. The 
χMT(T) curve displays a smooth increase with decreasing temperature starting at the value of 
24.60 cm3·K·mol-1 for 300 K and attains a maximum of 31.38 cm3·K·mol-1 at 18.5 K. The 
increasing  values on lowering temperature are somewhat surprising, as what one would 𝜒𝑇
expect is damping the signal due to the depopulation of the crystal-field split levels. The 
observed contrary behavior points to the presence of a substantial ferromagnetic super-
exchange coupling between the constituent Tb3+ ions through the phenoxo-bridges. Upon 
further cooling the signal drops to 23.29 cm3·K·mol-1  at 1.8 K. The relevant M(H) curve at T 
= 1.8 K increase strongly up to H = 4.1 kOe, then the slope becomes far less steep to reach a 
slow steady increasing tendency above 12 kOe. The magnetization value of 13.02  at 70 𝑁𝐴𝜇𝐵

kOe is much smaller than 17.94  expected on the basis of the free-ion approximation 𝑁𝐴𝜇𝐵

calculated at the same values of temperature and external magnetic field. The low field 
behavior is consistent with ferromagnetic ground state. The further slow and unaccomplished 
saturation of magnetization indicate a significant anisotropy, which is slowly overcome by 
increasing magnetic field. This indicates that the interactions between the Tb3+ ions as well as 
the crystal field effects play a crucial role in defining the magnetic properties of 1 at low 
temperatures. The non-collinear character of the reduced magnetization M(H/T) curves 
confirms a presence of magnetic anisotropy in 1 (Figure S3 right)

Figure S3: Temperature dependence of  for 1 (left).  Inset: Isothermal magnetization at T=1.8 K. 𝜒𝑇
Magnetization vs. reduced magnetic field for 1 for seven indicated applied field values (right). The 

experimental points form separate branches indicating the presence of magnetic anisotropy.

The ground state arising from the 4f8 configuration of the Tb3+ ion is 7F6. The dimension of its 
ground-state subspace is hence 13. The theoretically predicted value of the Landé factor is 
3/2(=1.5). The model system comprises two exchange coupled Tb3+ centers. The dimension of 
the state space of the dimer, where the calculations are performed, is hence 132=169. The fit 
to the experimental data required taking into account the full set of crystal-field parameters, as 
all trials to confine the model to the high symmetry case were unsuccessful. The best fit was 
found for the crystal field parameters listed in Table S2, and 

(the CF parameters and the exchange couplings are 𝑔𝑇𝑏 = 1.54(3), 𝐽 =+ 1.4(2), 𝑧𝐽' =‒ 0.008(1) 

always given in cm-1 everywhere in the text. The r.m.s. deviation obtained for the 
susceptibility and magnetization data are T=1.8∙10-4 and =8.0∙10-4, respectively.
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2b. Magnetic properties of 2

Figure S4 (left) shows the χMT(T) and M(H) characteristics for the powder sample of 2. As 
temperature lowers the χMT decreases from a value of 29.44 cm3·K·mol-1 at room temperature 
down to 22.81 cm3·K·mol-1 at 2 K. The decrease is smooth down to ca. 100 K then becomes 
more steep. This tendency is only disrupted by a small step-like feature at about 8 K. The 
course of χMT(T) curve may be attributed to the gradual depopulation of the crystal-field split 
levels, combined with weak super-exchange coupling between the constituent Dy3+ ions 
through the phenoxo-bridges and intermolecular interactions operating in low temperatures. 
Below 2 K it steeply rises attaining a value of 24.17 cm3·K·mol-1 at 1.8 K. The latter feature 
may probably be attributed to the onset of intermolecular interactions. The relevant M(H) 
curve at 2 K increase strongly up to H = 4.6 kOe, then the slope becomes far less steep. At 40 
kOe the inflection point occur and the value 14.21  is reached at 70 kOe, being 𝑁𝐴𝜇𝐵

considerably lower than the value of 19.92  calculated within the free-ion approximation 𝑁𝐴𝜇𝐵 

at the corresponding values of temperature and magnetic field. The low field behavior is 
consistent with ferromagnetic ground state. The further slow and unaccomplished saturation 
of magnetization indicate a strong anisotropy, which is slowly overcome by increasing 
magnetic field. The inflection point at 40 kOe can be interpreted in terms of changes in 
magnetic ground state. This indicates that the interactions between the Dy3+ ions as well as 
the crystal field effects play a crucial role in defining the magnetic properties of 2 at low 
temperatures. The non-collinear character of the reduced magnetization M(H/T) curves 
confirms a presence of magnetic anisotropy in 2 (Figure. 4 right)

Figure S4.  Temperature dependence of  for 2 (left). Inset: Isothermal magnetization at T=1.8 K. 𝜒𝑇
Magnetization vs. reduced magnetic field for 2 for seven indicated applied field values (right). The 

experimental points form separate branches indicating the presence of magnetic anisotropy.

The ground state arising from the 4f9 configuration of the Dy3+ ion is 6H15/2. The dimension of 
its ground-state subspace is hence 16. The theoretically predicted value of the Landé factor is 
4/3(≈1.3). The model system comprises two exchange coupled Dy3+ centers. The dimension 
of the state space of the dimer, where the calculations are performed, is hence 162=256. The 
fit to the experimental data required taking into account the full set of crystal-field parameters, 
as all trials to confine the model to the high symmetry case were unsuccessful. The best fit 
was found for the crystal field parameters listed in Table S2, and 

. The r.m.s. deviation obtained for the susceptibility 𝑔𝐷𝑦 = 1.386(7), 𝐽 =+ 0.05(5) , 𝑧𝐽' =‒ 0.01(1)

and magnetization data are T=7.0∙10-5 and =6.6∙10-4, respectively.
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Magnetic properties of 3

Figure S5 (left) shows the χMT(T) and M(H) characteristics for the powder sample of 3. As 
temperature lowers the χMT decreases from a value of 26.35 cm3·K·mol-1 at room temperature 
down to 9.08 cm3·K·mol-1 at 1.8 K. The decrease is smooth down to ca. 50 K then becomes 
strongly steep. The course of χMT(T) curve may be attributed to the gradual depopulation of 
the crystal-field split levels, combined with weak antiferromagnetic super-exchange coupling 
between the constituent Ho3+ ions through the phenoxo-bridges and intermolecular 
interactions operating in low temperatures. The relevant M(H) curve at 2 K increase up to H = 
11 kOe, then the slope becomes less steep to reach the value 11.90  at 70 kOe, being 𝑁𝐴𝜇𝐵

considerably lower than the value of 19.90  calculated within the free-ion approximation 𝑁𝐴𝜇𝐵

at the corresponding values of temperature and magnetic field. The low field increase in M(H)  
is weaker compared to 1, 2 or 4 (see below) which could be indicative to a contribution of 
antiferromagnetic ground state. Unaccomplished saturation of magnetization indicate a strong 
anisotropy, which is slowly overcome by increasing magnetic field. This indicates that the 
interactions between the Ho3+ ions as well as the crystal field effects play a crucial role in 
defining the magnetic properties of 3 at low temperatures. The non-collinear character of the 
reduced magnetization M(H/T) curves confirms a presence of magnetic anisotropy in 3 
(Figure S5 right).

Figure S5  Temperature dependence of  for 3 (left). Inset: Isothermal magnetization at T=1.8 K. 𝜒𝑇
Magnetization vs. reduced magnetic field for 3 for seven indicated applied field values (right). The 

experimental points form separate branches indicating the presence of magnetic anisotropy.

The ground state arising from the 4f10 configuration of the Ho3+ ion is 5I8. The dimension of 
its ground-state subspace is hence 17. The theoretically predicted value of the Landé factor is 
5/4(=1.25). The model system comprises two exchange coupled Ho3+ centers. The dimension 
of the state space of the dimer, where the calculations are performed, is hence 172=289. The 
fit to the experimental data was satisfactory on confining the model to the high symmetry 
case. The best fit was found for the crystal field parameters listed in Table S2, and 

. The r.m.s. deviation obtained for the susceptibility 𝑔𝐻𝑜 = 1.22(1),  𝐽 =‒ 0.11(2),  𝑧𝐽' =‒ 0.025(7) 

and magnetization data are T=2.5∙10-4 and =7.0∙10-5, respectively.
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Magnetic properties of 4

Figure S6 (left) shows the χMT(T) and M(H) characteristics for the powder sample of 4. The 
χMT(T) decrease smoothly from 23.74 cm3·K·mol-1 in 300 K reaching a minimum of 21.23 
cm3·K·mol-1 at 24.0 K then increase strongly towards 27.44 cm3·K·mol-1 at 1.8 K. Such 
behavior is indicative for depopulation of the crystal-field split levels combined in lower 
temperature with ferromagnetic super-exchange coupling between the constituent Er3+ ions 
through the phenoxo-bridges and intermolecular interactions. The relevant M(H) curve at T = 
1.8 K increase strongly up to H = 2.7 kOe, then the slope becomes far less steep to reach a 
slow steady increasing tendency above 10 kOe. The magnetization value of 11.78  at 70 𝑁𝐴𝜇𝐵

kOe is much smaller than 17.89  expected on the basis of the free-ion approximation 𝑁𝐴𝜇𝐵

calculated at the same values of temperature and external magnetic field. The low field 
behavior is consistent with ferromagnetic ground state. The further slow and unaccomplished 
saturation of magnetization indicate a strong anisotropy, which is slowly overcome by 
increasing magnetic field. This indicates that the interactions between the Er3+ ions as well as 
the crystal field effects play a crucial role in defining the magnetic properties of 4 at low 
temperatures. The non-collinear character of the reduced magnetization M(H/T) curves 
confirms a presence of magnetic anisotropy in 4 (Figure S6 right)

Figure S6  Temperature dependence of  for 4 (left). Inset: Isothermal magnetization at T=1.8 K. 𝜒𝑇
Magnetization vs. reduced magnetic field for 4 for seven indicated applied field values (right). The 

experimental points form separate branches indicating the presence of magnetic anisotropy.

The ground state arising from the 4f11 configuration of the Er3+ ion is 4I15/2. The dimension of 
its ground-state subspace is hence 16. The theoretically predicted value of the Landé factor is 
6/5(=1.2). The model system comprises two exchange coupled Er3+ centers. The dimension of 
the state space of the dimer, where the calculations are performed, is hence 162=256. The fit 
to the experimental data was satisfactory on confining the model to the high symmetry case. 
The best fit was found for the crystal field parameters listed in Table S3, and 

. The r.m.s. deviation obtained for the susceptibility 𝑔𝐸𝑟 = 1.228(3),  𝐽 =+ 1.8(1),  𝑧𝐽' =+ 0.019(1) 

and magnetization data are T=5.1∙10-5 and =1.9∙10-4, respectively.
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Magnetic properties of 5

Figure S7 shows the χMT(T) and M(H) characteristics for the powder sample of 5. As 
temperature lowers the χMT decreases from a value of 13.02 cm3·K·mol-1 at room temperature 
down to 0.64 cm3·K·mol-1 at 1.8 K. The decrease is smooth down to ca. 50 K then becomes 
strongly steep. The course of χMT(T) curve may be attributed to the gradual depopulation of 
the crystal-field split levels, combined with non-negligible antiferromagnetic super-exchange 
coupling between the constituent Tm3+ ions through the phenoxo-bridges and intermolecular 
interactions operating in low temperatures. The relevant M(H) curve at 2 K increase in almost 
perfectly linear manner up to ca. 50 kOe, then slightly diverge from this tendency, which is 
completely different in comparison with the M(H) curves for 5. The value 3.55  at 70 𝑁𝐴𝜇𝐵

kOe is significantly lower than the value of 13.88  calculated within the free-ion 𝑁𝐴𝜇𝐵

approximation at the corresponding values of temperature and magnetic field. The observed 
tendency could be, at the first glance, indicative of significant contribution of 
antiferromagnetic ground state, besides the obvious contribution of crystal field parameters. 
In this case it is however very difficult to judge on the real balance between both contribution, 
as different negative values of JTm-Tm could be easily obtained to produce a good 
reproducibility of measured data, unlike in other case under this study. The non-collinear 
character of the reduced magnetization M(H/T) is presented in Figure S7 (right). Unlike the 
case of 1-4 all curves almost linear in the examined range. 

Figure S7  Temperature dependence of  for 5 (left). Inset: Isothermal magnetization at T=1.8 K. 𝜒𝑇
Magnetization vs. reduced magnetic field for 5 for seven indicated applied field values (right). The 

experimental points form separate branches indicating the presence of magnetic anisotropy.

The ground state arising from the 4f12 configuration of the Tm3+ ion is 3H6. The dimension of 
its ground-state subspace is hence 13. The theoretically predicted value of the Landé factor is 
7/6(≈1.17). The model system comprises two exchange coupled Tm3+ centers. The dimension 
of the state space of the dimer, where the calculations are performed, is hence 132=169. The 
fit to the experimental data was satisfactory with confining the model to the high symmetry 
case. The best fit was found for the crystal field parameters listed in Table S2, and 

. The r.m.s. deviation obtained for the susceptibility and 𝑔𝑇𝑚 = 1.168(8), 𝐽 =‒ 0.35(5)

magnetization data are T=6.1∙10-5 and =2.8∙10-4, respectively. 
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Magnetic properties of 6

Figure S8 shows the χMT(T) and M(H) characteristics for the powder sample of 6. As 
temperature lowers the χMT decreases from a value of 4.54 cm3·K·mol-1 at room temperature 
down to 2.04 cm3·K·mol-1 at 3.3 K. The decrease is smooth down to ca. 100 K then becomes 
more steep. Below 3.3 K the signal rises up slightly to 2.08 cm3·K·mol-1. The course of 
χMT(T) curve may be attributed to the gradual depopulation of the crystal-field split levels, 
while it is rather difficult to judge on the type of super-exchange coupling between the 
constituent Yb3+ ions through the phenoxo-bridges. The relevant M(H) curve at 2 K increase 
up to H = 15 kOe, then the slope becomes less steep to reach the value 3.12  at 70 kOe, 𝑁𝐴𝜇𝐵

being significantly lower than the value of 7.88  calculated within the free-ion 𝑁𝐴𝜇𝐵

approximation at the corresponding values of temperature and magnetic field. The low field 
increase in M(H)  is weaker compared to 1, 2 or 4 (see below) indicating rather a contribution 
of antiferromagnetic ground state. Thus, again it is impossible to judge one the balance of 
possible contributions. Unlike the cases of 1-5, the reduced magnetization M(H/T) curves lies 
very close to each other suggesting that magnetic anisotropy is strongly reduced in 6 (Figure 
S8 right).

Figure S8  Temperature dependence of  for 6 (left). Inset: Isothermal magnetization at T=1.8 K. 𝜒𝑇
Magnetization vs. reduced magnetic field for 6 for seven indicated applied field values (right). The 

experimental points form separate branches indicating the presence of magnetic anisotropy.
.
The ground state arising from the 4f13 configuration of the Yb3+ ion is 2F7/2. The dimension of 
its ground-state subspace is hence 8. The theoretically predicted value of the Landé factor is 
8/7(≈1.14). The model system comprises two exchange coupled Yb3+ centers. The dimension 
of the state space of the dimer, where the calculations are performed, is hence 82=64. The fit 
to the experimental data required taking into account the full set of crystal-field parameters, as 
all trials to confine the model to the high symmetry case were unsuccessful. The best fit was 
found for the crystal field parameters listed in Table S2, and . The 𝑔𝑌𝑏 = 1.092(4), 𝐽 =+ 1.05(3)

r.m.s. deviation obtained for the susceptibility and magnetization data are T=2.9∙10-5 and 
=1.1∙10-4, respectively.
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Table S3. Extended Operator Equivalents 𝑂
𝑞
𝑘

k q 𝑂𝑞
𝑘

0
1
2

(3𝐽2
𝑧 ‒ 𝑗𝐼)

1
6

4
[𝐽𝑧,𝐽 + + 𝐽 ‒ ] +2

2
6

4 (𝐽 2
+ + 𝐽 2

‒ )

0
1
8

(35𝐽4
𝑧 ‒ 5(6𝑗 ‒ 5)𝐽2

𝑧 + 3𝑗(𝑗 ‒ 2)𝐼)

1
5

8 [7𝐽3
𝑧 ‒ (3𝑗 + 1)𝐽𝑧,𝐽 + + 𝐽 ‒ ] +

2
10

16 [7𝐽2
𝑧 ‒ (𝑗 + 5)𝐼,𝐽 2

+ + 𝐽 2
‒ ] +

3
35
8 [𝐽𝑧,𝐽 3

+ + 𝐽 3
‒ ] +

4

4
70

16 (𝐽 4
+ + 𝐽 4

‒ )

0
1

16
(231𝐽6

𝑧 ‒ 105(3𝑗 ‒ 7)𝐽4
𝑧 + (105𝑗2 ‒ 525𝑗 + 294)𝐽2

𝑧 ‒ 5𝑗(𝑗2 ‒ 8𝑗 ‒ 12)𝐼)

1
42

32 [33𝐽5
𝑧 ‒ 15(2𝑗 ‒ 1)𝐽3

𝑧 + (5𝑗2 ‒ 10𝑗 + 12)𝐽𝑧,𝐽 + + 𝐽 ‒ ] +

2
105
64 [33𝐽4

𝑧 ‒ (18𝑗 + 123)𝐽2
𝑧 + (𝑗2 + 10𝑗 + 102)𝐼,𝐽 2

+ + 𝐽 2
‒ ] +

3
105
32 [11𝐽3

𝑧 ‒ (3𝑗 + 59)𝐽𝑧,𝐽 3
+ + 𝐽 3

‒ ] +

4
3 14

64 [11𝐽2
𝑧 ‒ (𝑗 + 38)𝐼,𝐽 4

+ + 𝐽 4
‒ ] +

5
3 77

32 [𝐽𝑧,𝐽 5
+ + 𝐽 5

‒ ] +

6

6
231
16 (𝐽 6

+ + 𝐽 6
‒ )

[𝐴,𝐵] + =
(𝐴𝐵 + 𝐵𝐴)

2
, 𝑗 = 𝐽(𝐽 + 1), 𝑎𝑛𝑑 𝐼 ‒ 𝑡ℎ𝑒 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟
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Concluding remarks 

The application of the generalized van Vleck formalism enabled the estimation of the CF 
parameters for the Ln3+ ions within the quasi-symmetrical approximation and the 
determination of the superexchange coupling constants between the constituent Ln3+ ions in a 
dimer unit in 1, 2, 3, 4, 5, and 6. All the compounds discussed are isostructural, so the 
coordination geometry of the Ln3+ ions is that of a distorted tricapped trigonal prism (TTP).  
Only for 3, 4, and 5 the high symmetry Ansatz corresponding to that geometry turned out to 
yield satisfactory results. In the remaining cases the CF parameter set had to be extended to 
include the full set. 
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