Electronic supplementary material

Bis(alkyl) rare-earth complexes supported by new tridentate amidinate ligand with a pendant diphenylphosphine oxide group. Synthesis, structures and catalytic activity in isoprene

polymerization

Aleksei O. Tolpygin,^a Tatyana A. Glukhova,^a Anton V. Cherkasov,^a Georgy K. Fukin,^a Diana V. Aleksanyan,^b Dongmei Cui,^c Alexander A. Trifonov^{a,b,*}

^aInstitute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina 49, GSP-445, 630950, Nizhny Novgorod (Russia) Fax: 007831 4627497; Tel: 007831 4623532; E-mail: trif@iomc.ras.ru

^bInstitute of Organoelement compounds of Russian Academy of Sciences, Vavilova str. 28, 119334, Moscow (Russia)

^cState Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin street, Changchun 130022 (China)

Table 1S.Crystallographic data and structure refinement details for 1, 2, 4 and 5.

Table 2S. Catalytic tests in isoprene polymerization initiated by systems (3-5)/borate/AlMe3(borate: $[Et_3NH][BPh_4]$, $B(C_6F_5)_3$, $[Ph_3C][B(C_6F_5)_4]$, $[PhNHMe_2][B(C_6F_5)_4]$, $[Ln]/[borate]/[AlMe_3]=1:1:10)$.

Figure 1S.¹H NMR spectrum of $2-[Ph_2P(O)]C_6H_4NHC(tBu)=N(2,6-Me_2C_6H_3)$ (1).

Figure 2S.¹³C NMR spectrum of $2-[Ph_2P(O)]C_6H_4NHC(tBu)=N(2,6-Me_2C_6H_3)$ (1).

Figure 3S.³¹P NMR spectrum of 2-[Ph₂P(O)]C₆H₄NHC(tBu)=N(2,6-Me₂C₆H₃) (1).

Figure 4S.IR spectrum of $2-[Ph_2P(O)]C_6H_4NHC(tBu)=N(2,6-Me_2C_6H_3)$ (1).

Figure 5S.¹H NMR spectrum of $\{2-[Ph_2P(O)]C_6H_4NC(tBu)N(2,6-Me_2C_6H_3)\}$ YCl₂(DME) (2).

Figure 6S.¹³C NMR spectrum of $\{2-[Ph_2P(O)]C_6H_4NC(tBu)N(2,6-Me_2C_6H_3)\}YCl_2(DME)$ (2).

Figure 7S.³¹P NMR spectrum of $\{2-[Ph_2P(O)]C_6H_4NC(tBu)N(2,6-Me_2C_6H_3)\}$ YCl₂(DME) (2).

Figure 8S.IR spectrum of $\{2-[Ph_2P(O)]C_6H_4NC(tBu)N(2,6-Me_2C_6H_3)\}$ YCl₂(DME) (2).

Figure 9S.¹H NMR spectrum of [2-(P(O)Ph₂)PhNC(*t*Bu)(2,6-Me₂C₆H₃)Y(CH₂SiMe₃)₂THF] (**3**).

Figure 10S.¹³C NMR spectrum of $[2-(P(O)Ph_2)PhNC(tBu)(2,6-Me_2C_6H_3)Y(CH_2SiMe_3)_2THF]$ (3).

Figure 11S.³¹P NMR spectrum of $[2-(P(O)Ph_2)PhNC(tBu)(2,6-Me_2C_6H_3)Y(CH_2SiMe_3)_2THF]$ (3).

Figure 12S.¹H NMR spectrum of $[2-(P(O)Ph_2)PhNC(tBu)(2,6-Me_2C_6H_3)Lu(CH_2SiMe_3)_2]$ (5).

Figure 13S.¹³C NMR spectrum of [2-(P(O)Ph₂)PhNC(*t*Bu)(2,6-Me₂C₆H₃)Lu(CH₂SiMe₃)₂] (5).

Figure 14S.³¹P NMR spectrum of [2-(P(O)Ph₂)PhNC(*t*Bu)(2,6-Me₂C₆H₃)Lu(CH₂SiMe₃)₂] (5).

Compound	1	2	4	5	
Empirical formula	C ₃₁ H ₃₃ N ₂ OP	C ₃₇ H ₄₇ Cl ₂ N ₂ O ₄ PY	C ₄₃ H ₆₂ ErN ₂ O ₂ PSi ₂	C _{42.50} H ₅₈ LuN ₂ OPSi ₂	
Formula weight	480.56	774.55	893.35	875.03	
T [K]	100(2)	100(2)	100(2)	100(2)	
Wavelength [Å]	0.71073	0.71073	0.71073	0.71073	
Crystal system	Monoclinic	Tetragonal	Monoclinic	Triclinic	
Space group	P2(1)/c	I-1	P2(1)/n	P-1	
a [Å]	14.4270(2)	26.2291(7)	10.243(1)	11.6576(2)	
b [Å]	18.0000(2)	26.2291(7)	19.035(2)	11.9319(2)	
c [Å]	10.2803(2)	10.7386	21.678(3)	18.0960(3)	
α [°]	90	90	90	74.619(1)	
β [°]	102.366(1)	90	95.195(2)	72.630(1)	
γ [°]	90	90 90		63.078(1)	
Volume [Å ³]	2607.72(6)	7387.8(4)	4209.1(8)	2116.79(5)	
Z	4	8	4	2	
pcalcd. [g cm ⁻³]	1.224	1.393	1.410	1.373	
Absorption coefficient [mm ⁻¹]	0.132	1.807	2.126	2.459	
F(000)	1024	3224	1844	898	
Crystal size [mm]	0.40×0.20×0.10	0.37×0.20×0.18	0.23×0.14×0.11	0.50×0.25×0.15	
θ range for data collection [°]	3.04 to 28.00	2.05 to 26.00	2.169 to 26.00	2.83 to 27.00	
	-19≤h≤19,	-32≦h≦32,	-12≦h≦12,	-14≤h≤14,	
Index ranges	-23≤k≤23,	-31≤k≤32,	-23≤k≤23,	15≤k≤15,	
	-13≤l≤13	-13≤l≤13	-26≤l≤26	-23≤l≤23	
Reflections collected	45921	31590	38140	34254	
Independent reflections	6265	7213	8254	9179	
Rint	0.0536	0.0490	0.0380	0.0406	
Completeness to θ [%]	99.6	99.6	99.5	99.4	
Data/restraints/paramete rs	6265/0/325	7213/21/432	8254/0/471	9179/0/490	
Goodness-of-fit on F ²	1.036	1.001	1.066	1.037	
Final R indices	R1 = 0.0383,	R1 = 0.0355,	R1 = 0.0309,	R1 = 0.0243,	
[I>2σ(I)]	wR2 = 0.0961	wR2 = 0.0788	wR2 = 0.0818	wR2 = 0.0504	
R indices (all data)	R1 = 0.0509,	R1 = 0.0458,	R1 = 0.0367,	R1 = 0.0297,	
ix marces (an data)	wR2 = 0.1021	wR2 = 0.0818	wR2 = 0.0851	wR2 = 0.0516	
Largest diff. peak and hole [eÅ ⁻³]	0.554/-0.260	1.157/-0.507	1.927/-0.702	1.136/-0.604	

Table 1S.Crystallographic data and structure refinement details for 1, 2, 4 and 5

Table 2S.Catalytic tests in isoprene polymerization initiated by systems (3-5)/borate/AlMe3(borate: $[Et_3NH][BPh_4]$, $B(C_6F_5)_3$, $[Ph_3C][B(C_6F_5)_4]$, $[PhNHMe_2][B(C_6F_5)_4]$, $[Ln]/[borate]/[AlMe_3]=1:1:10)$.

	comp.	borate	[IP]/[Ln]	t, h	Yield, %	Cis-1,4	Trans-1,4	3,4-	M _n (×10 ⁻³) ^a	M _n (×10 ⁻³) _{calc} ^b	M _w /M _n
1	3	Et₃NB	1000	24	0	-	-	-	-	65.0	-
2	3	$B(C_6F_5)_3$	1000	24	0	-	-	-	-	65.0	-
3	3	HNB	1000	24	0	-	-	-	-	65.0	-
4	3	тв	1000	24	0	-	-	-	-	65.0	-
5	4	Et₃NB	1000	24	0	-	-	-	-	65.0	-
6	4	$B(C_{6}F_{5})_{3}$	1000	24	0	-	-	-	-	65.0	-
7	4	HNB	1000	24	0	-	-	-	-	65.0	-
8	4	ТВ	1000	24	0	-	-	-	-	65.0	-
9	5	Et₃NB	1000	24	0	-	-	-	-	65.0	-
10	5	B(C ₆ F ₅) ₃	1000	24	0	-	-	-	-	65.0	-
11	5	HNB	1000	24	0	-	-	-	-	65.0	-
12	5	ТВ	1000	24	0	-	-	-	-	65.0	-
13	3	-	1000	24	0	-	-	-	-	65.0	-
14	4	-	1000	24	0	-	-	-	-	65.0	-
15	5	-	1000	24	0	-	-	-	-	65.0	-

Conditions: complex (10 µmol in toluene, [AlMe₃]:[Ln]:[borate] = 10/1/1, T: 25 °C.); HNB = [PhNHMe₂][B(C₆F₅)₄], TB = [Ph₃C][B(C₆F₅)₄], Et₃NB = [Et₃NH][BPh₄]; a) Determined by GPC against polystyrene standard; *The catalytic tests were performed without the addition of borate; b) M_{calc} =([IP]/[Ln])× 68.12×(conversion).

Figure 1S.¹H NMR spectrum(400 MHz, CDCl₃, 298 K) of2-[Ph₂P(O)]C₆H₄NHC(*t*Bu)=N(2,6-Me₂C₆H₃) (1).

Figure 2S.¹³C NMR spectrum(50 MHz, CDCl₃, 298 K) of2-[Ph₂P(O)]C₆H₄NHC(*t*Bu)=N(2,6-Me₂C₆H₃) (1).

Figure 3S.³¹P NMR spectrum(81 MHz, CDCl₃, 298 K)of 2-[Ph₂P(O)]C₆H₄NHC(*t*Bu)=N(2,6-Me₂C₆H₃) (1).

Figure 4S.IR spectrum of $2-[Ph_2P(O)]C_6H_4NHC(tBu)=N(2,6-Me_2C_6H_3)$ (1).

Figure 58.¹H NMR spectrum (400 MHz, C_6D_6 , 298 K)of{2-[Ph₂P(O)]C₆H₄NC(*t*Bu)N(2,6-Me₂C₆H₃)}YCl₂(DME) (2).

Figure 6S.¹³C NMR spectrum(100 MHz, C_6D_6 , 298 K) of {2-[Ph₂P(O)]C₆H₄NC(*t*Bu)N(2,6-Me₂C₆H₃)} YCl₂(DME) (2).

Figure 75.³¹P NMR spectrum(81 MHz, C_6D_6 , 298 K)of{2-[Ph₂P(O)]C₆H₄NC(*t*Bu)N(2,6-Me₂C₆H₃)}YCl₂(DME) (2).

Figure 8S.IR spectrum of $\{2-[Ph_2P(O)]C_6H_4NC(tBu)N(2,6-Me_2C_6H_3)\}$ YCl₂(DME) (2).

Figure 9S.¹H NMR spectrum(400 MHz, C₆D₆, 298 K)of[2-(P(O)Ph₂)PhNC(*t*Bu)(2,6-Me₂C₆H₃)Y(CH₂SiMe₃)₂THF] (**3**).

Figure 10S.¹³C NMR spectrum(100 MHz, C₆D₆, 298 K) of[2-(P(O)Ph₂)PhNC(*t*Bu)(2,6-Me₂C₆H₃)Y(CH₂SiMe₃)₂THF] (3).

Figure 11S.³¹P NMR spectrum(81 MHz, C₆D₆, 298 K) of [2-(P(O)Ph₂)PhNC(*t*Bu)(2,6-Me₂C₆H₃)Y(CH₂SiMe₃)₂THF] (3).

Figure 12S.¹H NMR spectrum of(400 MHz, C₆D₆, 298 K)[2-(P(O)Ph₂)PhNC(*t*Bu)(2,6-Me₂C₆H₃)Lu(CH₂SiMe₃)₂] **(5).**

Figure 13S.¹³C NMR spectrum(100 MHz, C₆D₆, 298 K) of[2-(P(O)Ph₂)PhNC(*t*Bu)(2,6-Me₂C₆H₃)Lu(CH₂SiMe₃)₂] **(5).**

Figure 14S.³¹P NMR spectrum(81 MHz, C₆D₆, 298 K) of[2-(P(O)Ph₂)PhNC(*t*Bu)(2,6-Me₂C₆H₃)Lu(CH₂SiMe₃)₂] (5).