Supplementary Information

Higher fluorescence in platinum(IV) orthometallated complexes of perylene imine compared with their platinum(II) or palladium(II) analogues

J. Emilio Expósito,^a Marta Álvarez-Paino,^a Gabriel Aullón,^b Jesús A. Miguel and *^a Pablo Espinet*^a

^a IU CINQUIMA Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, E-47071 Valladolid, Spain;

^b Departament de Química Inorgànica, Universitat de Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain.

Fig. S1 Absorption spectra of **4** in different solvents $(ca.10^{-5} M)$ at room temperature.

Fig. S2 Emission and excitation spectra of **4** in MeTHF (ca. 10^{-5} M) at room temperature (RT) and low temperature (LT, 77 K).

Fig. S3 Emission and excitation spectra of **8** in MeTHF (ca. 10^{-5} M) at room temperature (RT) and low temperature (LT, 77K).

Fig. S4 ¹H, ¹H/¹⁹⁵Pt 2D HMBC and ³¹P NMR spectra

Fig. S5 Fluorescence decays in dichloromethane, at room temperature

Table S1 Calculated absorption parameters (wavelengths in nm, and their intensities) for Perylene imine (HC^N), [Pd(C^N)(acac)], [Pt(C^N)(acac)], and [Pd(C^N)(acac)MeI] in gas phase and chloroform solution. For each entry, main contributions of the orbitals for the transition and their coefficients are shown.

Table S2 Molecular orbitals for Perylene imine (HC^N), $[Pd(C^N)(acac)]$, $[Pt(C^N)(acac)]$, and $[Pd(C^N)(acac)MeI]$. Percentage compositions for each one entry are obtained from Natural Populations Analysis.

Figure S1. Absorption spectra of of **4** in different solvents $(ca.10^{-5} M)$ at room temperature.

Fig. S2 Emission and excitation spectra of **4** in MeTHF (ca. 10^{-5} M) at room temperature (RT) and low temperature (LT, 77 K).

Fig. S3 Emission and excitation spectra of **8** in MeTHF (ca. 10^{-5} M) at room temperature (RT) and low temperature (LT, 77K).

Fig. S4¹H, ¹H/¹⁹⁵Pt 2D HMBC and ³¹P NMR spectra

¹H NMR **2**

¹H/¹⁹⁵Pt 2D HMBC spectrum of **4**

 1 H NMR 5

¹H/¹⁹⁵Pt 2D HMBC spectrum of **5**

$^{1}\text{H}/^{195}\text{Pt}$ 2D HMBC spectrum of **6**

$^{1}\text{H}/^{195}\text{Pt}$ 2D HMBC spectrum of **7**

¹H/¹⁹⁵Pt 2D HMBC spectrum of **9**

¹H NMR **9**

Table S1. Calculated absorption parameters (wavelengths in nm, and their intensities) for Perylene imine (HC^N), $[Pd(C^N)(acac)]$, $[Pt(C^N)(acac)]$, and $[Pd(C^N)(acac)MeI]$ in gas phase and chloroform solution. For each entry, main contributions of the orbitals for the transition and their coefficients are shown.

(a) Perylene imine HC^N

	Gas phase	CHCl ₃	
λ (<i>f</i>)	Assignation	λ (<i>f</i>)	Assignation
486 (0.79)	Perylene: HOMO → LUMO [0.70]	506 (0.95)	Perylene: HOMO → LUMO [0.70]
397 (0.02)	ILCT (Ar \rightarrow Per): $\pi(Ar) \rightarrow LUMO [0.67]$	394 (0.04)	ILCT (Ar \rightarrow Per): $\pi(Ar) \rightarrow LUMO [0.67]$
362 (0.03)	Perylene: HOMO $\rightarrow \pi^*(\text{Per,C=N})$ [0.64]	366 (0.03)	Perylene: HOMO $\rightarrow \pi^*(\text{Per}, C=N)$ [0.66]
301 (0.06)	Perylene: HOMO $\rightarrow \pi^*(\text{Per})$ [0.39] $\pi(\text{Per}, C=N) \rightarrow \text{LUMO}$ [0.28] HOMO $\rightarrow \pi^*(\text{Per})$ [0.26] $\pi(\text{Per}, \text{Ar}) \rightarrow \text{LUMO}$ [0.20] $\pi(C=N) \rightarrow \text{LUMO}$ [0.20]	302 (0.12)	Perylene: HOMO $\rightarrow \pi^*(\text{Per})$ [0.37] $\pi(\text{Per}) \rightarrow \text{LUMO}$ [0.28] HOMO $\rightarrow \pi^*(\text{Per})$ [0.26] $\pi(\text{Per,Ar}) \rightarrow \text{LUMO}$ [0.26] $\pi(\text{Per,C=N}) \rightarrow \text{LUMO}$ [0.23]
295 (0.23)	ILCT (Ar \rightarrow Per): $\pi(Ar) \rightarrow \pi^*(Per,C=N)$ [0.56] $\pi(Per,C=N) \rightarrow LUMO$ [0.29]	294 (0.21)	ILCT (Ar \rightarrow Per): $\pi(Ar) \rightarrow \pi^*(Per,C=N)$ [0.58] $\pi(C=N) \rightarrow LUMO$ [0.23]
264 (0.22)	Perylene: HOMO $\rightarrow \pi^*(\text{Per})$ [0.46] HOMO $\rightarrow \pi^*(\text{Per},\text{Ar})$ [0.31] $\pi(\text{Per}) \rightarrow \text{LUMO}$ [0.24]	267 (0.27)	Perylene: HOMO $\rightarrow \pi^*(\text{Per})$ [0.44] HOMO $\rightarrow \pi^*(\text{Ar})$ [0.35] HOMO $\rightarrow \pi^*(\text{Per,Ar})$ [0.19]
259 (0.07)	Perylene: HOMO $\rightarrow \pi^*(\text{Per,Ar})$ [0.53] HOMO $\rightarrow \pi^*(\text{Per})$ [0.26]	261 (0.09)	Perylene: HOMO $\rightarrow \pi^*(\text{Per,Ar})$ [0.58] HOMO $\rightarrow \pi^*(\text{Per})$ [0.20]

Annotation for the involved orbitals:

- π (Per) and π *(Per) indicate generic occupied and empty orbitals of perylene. Since all perylene orbitals are of type π , only HOMO and LUMO are emphasized.
- $\pi(Ar), \pi(C=N), \pi(acac)$ and $\sigma(acac)$ indicate occupied bonding orbitals of ethylphenyl substituent, imine group and acetylacetonato ligand. Analogously, $\pi^*(Ar), \pi^*(C=N), \pi^*(acac)$ and $\sigma^*(acac)$ are empty antibonding ones. I specify a lone pair of iodide ligand
- $x^2 y^2$, z^2 and $\pi d(xy, xz \text{ or } yz)$ indicate a *d*-orbital centered in the metal, assuming the most symmetric environment for the metal.

(*b*) [Pd(C^N)(acac)]

	Gas phase	CHCl ₃	
λ (<i>f</i>)	Assignation	λ (f)	Assignation
524 (0.60)	Perylene: HOMO → LUMO [0.70]	545 (0.76)	Perylene: HOMO → LUMO [0.70]
429 (0.01)	Perylene+LLCT (acac \rightarrow Per): $\pi(acac) \rightarrow$ LUMO [0.69]	423 (0.07)	Perylene+LLCT (acac \rightarrow Per): $\pi(acac) \rightarrow LUMO [0.68]$
353 (0.06)	Perylene: $\pi(\text{Per,Ar}) \rightarrow \text{LUMO} [0.62]$	356 (0.10)	Perylene: $\pi(\text{Per,Ar}) \rightarrow \text{LUMO} [0.64]$
344 (0.04)	$d-d \text{ band:}$ $z^{2} \rightarrow x^{2}-y^{2} [0.41]$ $\pi(\text{acac}) \rightarrow x^{2}-y^{2} [0.32]$	344 (0.07)	$d-d \text{ band:}$ $z^{2} \rightarrow x^{2}-y^{2} [0.50]$ $\pi(\text{Per,Ar}),\pi d \rightarrow x^{2}-y^{2} [0.22]$
286 (0.08)	Perylene: HOMO $\rightarrow \pi^*$ (Per) [0.50] $\pi d \rightarrow LUMO$ [0.21]	286 (0.09)	Perylene: HOMO $\rightarrow \pi^*(\text{Per})$ [0.47] $z^2 \rightarrow \pi^*(\text{Per}, C=N)$ [0.34]
279 (0.02)	MLCT (Pd \rightarrow Per): $\pi d \rightarrow LUMO [0.42]$ HOMO $\rightarrow \pi^*(Ar) [0.31]$ HOMO $\rightarrow \pi^*(Per) [0.23]$ HOMO $\rightarrow \pi^*(Per) [0.22]$	278 (0.11)	MLCT (Pd \rightarrow Per): $\pi d \rightarrow LUMO [0.44]$ HOMO $\rightarrow \pi^*$ (Per) [0.37]
270 (0.10)	Perylene: HOMO $\rightarrow \pi^*(\text{Per}) [0.36]$ $\pi(\text{Per,Ar}) \rightarrow x^2 \cdot y^2 [0.24]$ $\pi(\text{acac}) \rightarrow \pi^*(\text{acac}) [0.23]$ $\pi d \rightarrow \text{LUMO} [0.22]$	271 (0.19)	Perylene: $\pi d \rightarrow LUMO \ [0.38]$ HOMO $\rightarrow \pi^*(Per) \ [0.36]$
267 (0.03)	LLCT (Per \rightarrow acac): π (Per,Ar), π d $\rightarrow \pi^*$ (acac) [0.49] $z^2 \rightarrow \pi^*$ (acac) [0.30] π (Per,Ar), π d $\rightarrow x^2 \cdot y^2$ [0.20]	268 (0.06)	LLCT (Per \rightarrow acac): π (Per,Ar), π d $\rightarrow \pi^*$ (acac) [0.44] $z^2 \rightarrow \pi^*$ (acac) [0.23] π d $\rightarrow x^2 - y^2$ [0.20]
262 (0.08)	Perylene: HOMO $\rightarrow \pi^*(\text{Per,Ar})$ [0.47] $\pi(\text{Per,Ar}) \rightarrow \pi^*(\text{Per,C=N})$ [0.30] $\sigma(\text{acac}) \rightarrow \text{LUMO}$ [0.20]	263 (0.09)	Perylene: HOMO $\rightarrow \pi^*(\text{Per,Ar})$ [0.52] $\pi(\text{Per,Ar}) \rightarrow \pi^*(\text{Per,C=N})$ [0.31]
259 (0.06)	LMCT (Per \rightarrow Pd): π (Per,Ar) $\rightarrow x^2 \cdot y^2$ [0.34] σ (acac) \rightarrow LUMO [0.27] π (Per,Ar), $\pi d \rightarrow x^2 \cdot y^2$ [0.27] π (Per,Ar), $\pi d \rightarrow \pi^*$ (acac) [0.22]	262 (0.11)	LMCT (Per \rightarrow Pd): π (Per,Ar), π d $\rightarrow x^2 \cdot y^2$ [0.30] π (Per,Ar), π d $\rightarrow \pi^*$ (acac) [0.28] π (Per,Ar) $\rightarrow x^2 \cdot y^2$ [0.28] π d $\rightarrow x^2 \cdot y^2$ [0.24]

(*c*) [Pt(C^N)(acac)]

Gas phase		CHCl ₃		
λ (f)	Assignation	λ (f)	Assignation	
535 (0.51)	Perylene: HOMO → LUMO [0.66]	553 (0.67)	Perylene: HOMO → LUMO [0.69]	
440 (0.13)	Perylene+LLCT (acac \rightarrow Per):: $\pi(acac,Per),\pi d \rightarrow LUMO [0.63]$	441 (0.14)	Perylene+LLCT (acac \rightarrow Per):: $\pi(acac,Per),\pi d \rightarrow LUMO \ [0.63]$	
348 (0.08)	ILCT (Ar \rightarrow Per): $\pi(Ar,Per) \rightarrow LUMO [0.62]$	353 (0.13)	ILCT (Ar \rightarrow Per): $\pi(\text{Ar,Per}) \rightarrow \text{LUMO} [0.56]$ HOMO $\rightarrow \pi^*(\text{Per,C=N}) [0.36]$	
289 (0.12)	No be classified: $\pi(acac,Per),\pi d \rightarrow \pi^*(acac) [0.50]$ HOMO $\rightarrow \pi^*(Per) [0.23]$ $\pi(Per),\pi d \rightarrow LUMO [0.20]$	289 (0.14)	No be classified: HOMO $\rightarrow \pi^*(\text{Per})$ [0.38] $\pi(\text{acac,Per}),\pi d \rightarrow \pi^*(\text{acac})$ [0.36] $z^2 \rightarrow \pi^*(\text{Per,C=N})$ [0.23]	
271 (0.08)	Perylene: $\pi(acac,Per),\pi d \rightarrow \pi^*(Ar), x^2 - y^2 [0.29]$ $\pi(acac,Per),\pi d \rightarrow \pi^*(acac) [0.28]$ HOMO $\rightarrow \pi^*(Per) [0.23]$	272 (0.18)	Perylene: $\pi d, \pi(Per) \rightarrow LUMO [0.34]$ HOMO $\rightarrow \pi^*(Per) [0.31]$ $\pi(acac,Per), \pi d \rightarrow \pi^*(Ar), x^2 - y^2 [0.26]$ $\pi(Ar,Per) \rightarrow \pi^*(Per,C=N) [0.20]$	
270 (0.07)	LLCT (Per \rightarrow acac): $\pi(acac,Per),\pi d \rightarrow \pi^*(acac)$ [0.40] $\pi(Ar,Per,acac),\pi d \rightarrow \pi^*(acac)$ [0.27] HOMO $\rightarrow \pi^*(Per)$ [0.22]	269 (0.03)	LLCT (Per \rightarrow acac): $\pi(acac,Per),\pi d \rightarrow \pi^*(acac)$ [0.40] $\pi(Ar) \rightarrow \pi^*(acac)$ [0.33] $\pi(Ar,Per) \rightarrow \pi^*(Per,C=N)$ [0.21] $\sigma(acac) \rightarrow \pi^*(acac)$ [0.20]	
263 (0.05)	Perylene: $\pi(Ar,Per) \rightarrow \pi^{*}(Per,C=N) [0.44]$ HOMO $\rightarrow \pi^{*}(Per) [0.26]$ $\pi(acac,Per),\pi d \rightarrow \pi^{*}(Ar),x^{2}-y^{2} [0.23]$	265 (0.07)	Perylene: $\pi(Ar,Per) \rightarrow \pi^{*}(Per,C=N) [0.49]$ HOMO $\rightarrow \pi^{*}(Per) [0.25]$ $\pi(acac,Per),\pi d \rightarrow \pi^{*}(Ar),x^{2}-y^{2} [0.22]$	
259 (0.08)	Perylene: $\pi(acac,Per),\pi d \rightarrow \pi^*(Per) \ [0.60]$	259 (0.12)	Perylene: HOMO $\rightarrow \pi^*(\text{Per}), x^2 - y^2$ [0.46] $\pi(\text{acac,Per}), \pi d \rightarrow \pi^*(\text{Per})$ [0.37]	

	Gas phase	CHCl ₃	
λ(f)	Assignation	λ (f)	Assignation
518 (0.60)	Perylene: HOMO \rightarrow LUMO [0.66] I \rightarrow LUMO [0.23]	547 (0.72)	Perylene: HOMO → LUMO [0.70]
390 (0.04)	Perylene+LLCT (acac \rightarrow Per): $\pi(acac) \rightarrow LUMO \ [0.67]$	388 (0.04)	Perylene+LLCT (acac \rightarrow Per): $\pi(Ar) \rightarrow LUMO [0.67]$
381 (0.03)	Perylene: HOMO $\rightarrow \pi^*(\text{Per}, \text{C=N})$ [0.50] $\pi(\text{Ar}) \rightarrow \text{LUMO}$ [0.38]	380 (0.05)	Perylene+LLCT (acac \rightarrow Per): HOMO $\rightarrow \pi^*(\text{Per}, \text{C=N})$ [0.59] $\pi(\text{acac}) \rightarrow \text{LUMO}$ [0.34]
363 (0.04)	ILCT+Perylene: $\pi(Ar) \rightarrow LUMO [0.48]$ HOMO $\rightarrow \pi^*(Per,C=N) [0.28]$ HOMO $\rightarrow x^2 - y^2 [0.23]$	365 (0.13)	LLCT+Perylene: $\pi(acac) \rightarrow LUMO \ [0.59]$ HOMO $\rightarrow \pi^*(Per,C=N) \ [0.34]$
332 (0.05)	Perylene: $\pi(\text{Per}) \rightarrow \text{LUMO} [0.63]$	324 (0.06)	Perylene: $\pi(\text{Per}) \rightarrow \text{LUMO} [0.61]$
291 (0.07)	LLCT+LMCT (acac \rightarrow Per,Pt): $\pi(acac) \rightarrow \pi^*(\text{Per-CN})$ [0.50] $\pi(acac) \rightarrow x^2 - y^2$ [0.31] $\pi(\text{Ar}) \rightarrow x^2 - y^2$ [0.22]	286 (0.10)	ILCT+LLCT (Ar, I \rightarrow Per,Pt): $\pi(Ar) \rightarrow \pi^*(Per,C=N)$ [0.48] $I \rightarrow \pi^*(Per), z^2$ [0.31]
278 (0.11)	ILCT+LMCT (Ar \rightarrow Per,Pt): $\pi(Ar) \rightarrow \pi^*(Per,C=N)$ [0.53] $\pi(Ar) \rightarrow x^2 - y^2$ [0.32]	276 (0.05)	CT (Ar,acac \rightarrow Per,Pt): $\pi(Ar) \rightarrow x^2 - y^2$ [0.38] $\pi(acac) \rightarrow \pi^*(Per,C=N)$ [0.26] $\pi(acac) \rightarrow x^2 - y^2$ [0.25] I, $\pi(acac) \rightarrow \pi^*(Per), z^2$ [0.23]
274 (0.05)	LLCT (acac,Per \rightarrow Per,Ar): I, π (acac) $\rightarrow \pi^*$ (Per), z^2 [0.31] HOMO $\rightarrow \pi^*$ (Ar) [0.28] I $\rightarrow \pi^*$ (Ar) [0.27] π (Ar) $\rightarrow \pi^*$ (Per,C=N) [0.23]	276 (0.14)	LLCT (acac, Ar \rightarrow Per): $\pi(acac) \rightarrow \pi^*(\text{Per}, C=N)$ [0.40] I, $\pi(acac) \rightarrow \pi^*(\text{Per}), z^2$ [0.39] $\pi(\text{Ar}) \rightarrow \pi^*(\text{Per}, C=N)$ [0.21]
268 (0.05)	Perylene+CT (I \rightarrow Pt): I $\rightarrow \pi^*$ (Per) [0.40] HOMO $\rightarrow \pi^*$ (Per) [0.28] $\pi d \rightarrow LUMO$ [0.23]	269 (0.09)	Perylene+CT (Ar \rightarrow acac,Pt): HOMO $\rightarrow \pi^*$ (Per) [0.35] π (Ar) $\rightarrow \pi^*$ (acac) [0.34] π (Ar) $\rightarrow x^2 \cdot y^2$ [0.20]
266 (0.08)	No be classified: $\pi(acac) \rightarrow \pi^*(acac) [0.31]$ $\pi d \rightarrow LUMO [0.25]$ $\pi(Per) \rightarrow x^2 - y^2 [0.22]$ $I,\pi(acac) \rightarrow \pi^*(Per), z^2 [0.20]$ HOMO $\rightarrow \pi^*(Per) [0.20]$	261 (0.10)	No be classified: $\pi(\text{Per}) \rightarrow x^2 \cdot y^2 [0.26]$ $\pi(\text{Ar}) \rightarrow \pi^*(\text{Per}), z^2 [0.25]$ $I, \pi(\text{acac}) \rightarrow \pi^*(\text{Per}), z^2 [0.22]$ $\pi(\text{Per}) \rightarrow x^2 \cdot y^2 [0.21]$

Table S2. Molecular orbitals for Perylene imine (HC^N), $[Pd(C^N)(acac)]$, $[Pt(C^N)(acac)]$, and $[Pd(C^N)(acac)MeI]$. Percentage compositions for each one entry are obtined from Natural Populations Analysis.

(*a*) Perylene imine HC^N

(*b*) [Pd(C^N)(acac)]

MO 138: -0.046 Ha **Per (56)**, imine (23), Ar (9), Pd (3)

MO 139: -0.032 Ha **Pd (47)**, Per (17), acac(10), imine (8), Ar (5)

MO 140: -0.029 Ha acac (93), Pd (2)

MO 141: -0.015 Ha Per (96)

MO 144: 0.003 Ha Per (78), Pd (8), Ar (4)

MO 145: +0.008 Ha Per (45), Ar (39), Pd (3), imine (2)

MO 124: -0.270 Ha Per (45), Pt (42), acac (6)

MO 132: -0.233 Ha Ar (41), Per (24), acac (12), Pt (8), imine (4)

MO 134: -0.214 Ha Pt (31), acac (26), Per (20), imine (8), Ar (4)

MO 136 (*HOMO*): -0.180 Ha **Per (82)**, imine (7), Pt (4), Ar (3)

MO 130: -0.246 Ha Pt (30), acac (25), Per (25), Ar (11)

MO 133: -0.223 Ha **Pt (89)**, Per (3), acac (2)

MO 135: -0.207 Ha Pt (30), acac (30), Per (30)

MO 137 (*LUMO*): -0.084 Ha **Per (67)**, imine (19), Pt (5), Ar (3)

MO 138: -0.044 Ha **Per (60)**, imine (23), Ar (8), Pt (2)

MO 140: -0.014 Ha **Per (92)**, Pt (1)

MO 139: -0.035 Ha acac (93), Pt (2)

MO 141: -0.007 Ha Ar (39), Pt (27), Per (13), acac (4), CN (3)

MO 143: +0.002 Ha **Per (92)**, Pt (2)

MO 145: +0.016 Ha **Per (44)**, Pt (21), Ar (12), imine (9), acac (2)

MO 144: +0.006 Ha **Per (86)**, Pt (8)

$(d) [Pt(C^N)(acac)MeI]$

MO 130: -0.309 Ha Pt (51), Per (25), acac (7), imine (3)

MO 132: -0.289 Ha acac (48), Pt (38), Per (3)

MO 140: -0.230 Ha acac (47), Per (24), Pt (8), I (6), Ar (3), Me (2)

MO 131: -0.093 Ha Pt (42), Per (29), acac (8), imine (8)

MO 139: -0.235 Ha Ar (43), Per (22), imine (9), acac (7), Pt (4), I (4)

MO 141: -0.212 Ha I (48), acac (25), Me (13), Pt (6)

MO 144 (*HOMO*): -0.190 Ha **Per (82)**, imine (5), I (6)

MO 146: -0.054 Ha **Per (55)**, imine (22), Pt (7), I (4), Me (2)

MO 145 (*LUMO*): -0.095 Ha **Per (66)**, imine (21), Ar (3), Pt (2), I (2)

MO 147: -0.052 Ha Pt (32), acac (13), Ar (11), imine (10), Me (10), Per (6), I (4)

MO 148: -0.042 Ha acac (86), Pt (4), Me (2)

MO 150: -0.019 Ha **Per (67)**, Pt (12), Me (8), I (3), acac (2)

MO 149: -0.025 Ha **Per (55)**, Pt (20), Me (6), I (5), acac (2)

Fig. S7. Fluorescence decays in dichloromethane, at room temperature

Mono-exponential and bi-exponential fluorescence decay models were fitted to each decay. Eqn (1) describes the mono-exponential decay model:

$$I(t) = I_0 \cdot \exp(-t/\tau) \tag{1}$$

where I_0 is the relative intensity, t is the time and τ is the fluorescence lifetime, both expressed in ns. The bi-exponential decay model is expressed by Equation (2) as:

$$I(t) = A + B_1 \cdot \exp(-t/\tau_1) + B_2 \cdot \exp(-t/\tau_2)$$
(2)

where B_1 and B_2 are the relative intensities associated with two lifetimes, τ_1 and τ_2 , respectively.

Mono-exponential models are normally used to fit fluorescence decay. Bi-exponential fits may be more appropriate for samples containing non-linear decays. Fitting was done using FAST software from Edinburgh Instruments by a least-squares algorithm using a reconvolution approach. In this method, convolution of Equation (1) or (2) with the instrumental response function (IRF) is done prior to evaluating the goodness of fit with a weighted χ^2 parameter.

2

3

Param	Value/ns	Std.	Rel.%
		Dev./ns	
τ1	2.14	0.21	12.95
τ2	4.00	0.05	87.05

 $\begin{array}{ll} A & 7.272 \\ \chi^2 & 1.051 \end{array}$

4

Param	Value/ns	Std.	Rel.%
		Dev./ns	
τ1	2.33	0.50	5.08
τ2	5.02	0.04	94.92

 $\begin{array}{ll} A & 7.593 \\ \chi^2 & 1.182 \end{array}$

Param	Value/ns	Std.	Rel.%
		Dev./ns	
τ1	1.24	0.05	9.25
τ2	5.10	0.02	90.75

6

Param	Value/ns	Std.	Rel.%
		Dev./ns	
τ1	1.87	0.18	5.60
τ2	5.14	0.03	94.40

 $\begin{array}{ll} A & 8.778 \\ \chi^2 & 1.246 \end{array}$

Param	Value/ns	Std.	Rel.%
		Dev./ns	
τ1	0.19	0.00	93.71
τ2	4.05	0.11	6.29

 $\begin{array}{c} A \\ \chi^2 \end{array}$ 0.926

1.201

8

Param	Value/ns	Std.	Rel.%
		Dev./ns	
τ1	1.48	0.01	98.63
τ2	3.80	0.95	1.37

0.926 1.201 $\begin{array}{c} A \\ \chi^2 \end{array}$

Param	Value/ns	Std.	Rel.%
		Dev./ns	
τ1	0.77	0.00	90.68
τ2	4.77	0.10	9.32

1.462 1.262 $\begin{array}{c} A \\ \chi^2 \end{array}$

