Electronic Supplementary Information for

Non-redox metal ions can promote Wacker-type oxidations even better

than copper(II): a new opportunity in catalyst design

Shuhao Qin[†], Lei Dong[†], Zhuqi Chen, Sicheng Zhang, Guochuan Yin*

School of Chemistry and Chemical Engineering, Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, PR China.

[†]These authors equally contribute to this work. Correspondence to: gyin@hust.edu.cn

Contents

Figure S1. The UV-Vis spectra of Pd(OAc)₂/Sc(OTf)₃ in acetonitrile under different concentrations.

Figure S2. ¹H-¹³C HSQC spectra of Pd(OAc)₂ plus Sc(OTf)₃ in CD₃CN

Figure S3. UV- visible spectra of Pd(OAc)2 with different amount of Sc(OTf)₃.

Figure S4. ¹H NMR spectra of Pd(OAc)₂ with different amount of Sc(OTf)₃.

Figure S5. The UV- visible spectra of Pd(OAc)₂/Al(OTf)₃ in acetonitrile.

Figure S6 The UV- visible spectra of Pd(OAc)₂/Cu(OTf)₂ in acetonitrile.

Figure S7-1-5 The ¹H NMR kinetics of olefinic bond in 1-hexene isomerization.

Figure S8-1-5 The ¹H NMR kinetics of olefinic bond in 1-octene isomerization.

Figure S9-1-5 The ¹H NMR kinetics of olefinic bond in 1-dodecene isomerization.

Figure S10 Isomerization kinetics of 1,5-cyclooctadiene.

Figure S11-1-3. GC-MS graph of 1-octene oxidation by Pd(OAc)₂ plus Sc(OTf)_{3.}

Figure S12-1-3. GC-MS graph of 1,5-cyclooctadiene isomerization by Pd(OAc)₂ plus Sc(OTf)₃.

 Table S1 Optimization of Pd(II)-catalyzed 1-hexene oxidation under different solvent conditions^[a]

 Table S2 The influence of water content on Pd(II)/Sc(III)-catalyzed 1-hexene oxidation^a

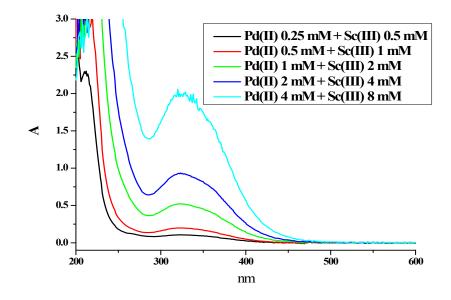

Table S3 The influence of Pd(II)/Sc(III) ratio on 1-hexene oxidation^[a]

Table S4 Lewis acid promoted Pd(II)-catalyzed 1-hexene isomerization under different conditions^[a]

Table S5 Lewis acid promoted Pd(II)-catalyzed 1-octene isomerization under different conditions.

Table S6 Lewis acid promoted Pd(II)-catalyzed 1-dodecene isomerization under different conditions.

 Table S7 Lewis acid promoted Pd(II)-catalyzed 1,5-cycloctadiene isomerization under different conditions.

Figure S1. The UV- visible spectra of Pd(OAc)₂/Sc(OTf)₃ in acetonitrile under different concentrations.

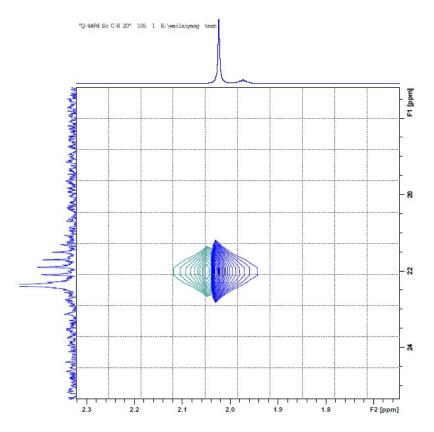


Figure S2. ¹H-¹³C HSQC spectrum of Pd(OAc)₂ plus Sc(OTf)₃ in CD₃CN.

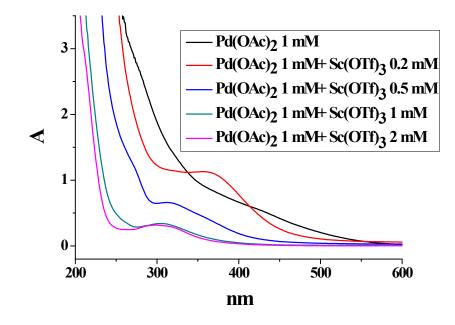


Figure S3. UV- visible spectra of Pd(OAc)₂ with different amount of Sc(OTf)₃.

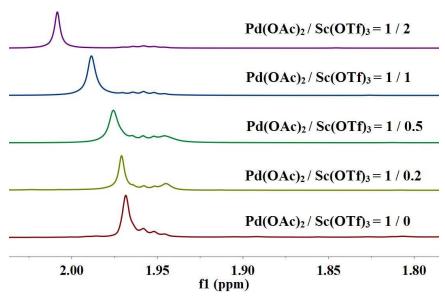


Figure S4. ¹H NMR spectra of Pd(OAc)₂ with different amount of Sc(OTf)₃.

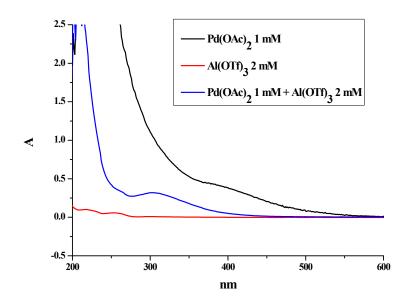


Figure S5. The UV- visible spectra of Pd(OAc)₂/Al(OTf)₃ in acetonitrile.

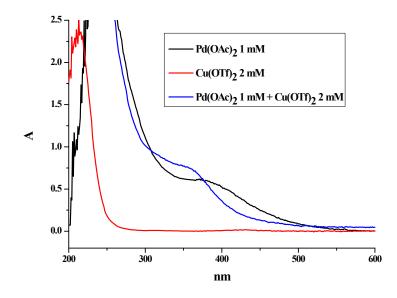
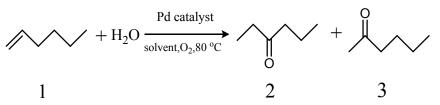
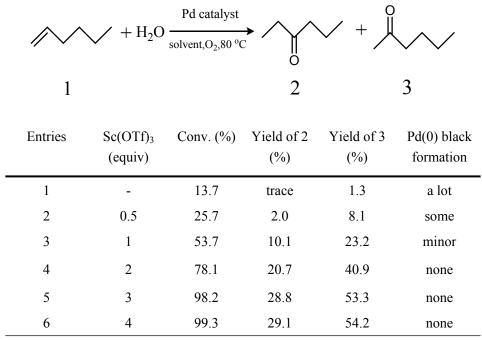



Figure S6 The UV- visible spectra of Pd(OAc)₂/Cu(OTf)₂ in acetonitrile.

 Table S1 Optimization of Pd(II)-catalyzed 1-hexene oxidation under different solvent conditions^[a]

Entries	Catalyst	Additives	Solvent	Conv. [%]	Yield of 2 [%]	Yield of 3 [%]
1	Pd(OAc) ₂	Sc (OTf) ₃	DMF	28.3	trace	6.9
2	Pd(OAc) ₂	Sc (OTf) ₃	DMSO	23.0	trace	4.5
3	Pd(OAc) ₂	Cu (OTf) ₂	DMSO	21.9	trace	4.3
4	Pd(OAc) ₂	Sc (OTf) ₃	DMA	21.8	trace	11.8
5 ^[b]	Pd(OAc) ₂	Sc (OTf) ₃	CH ₃ CN	>99	29.3	53.1
6 ^[b]	PdCl ₂	Sc (OTf) ₃	CH ₃ CN	19.7	trace	3.9
7 ^[b]	Pd(OAc) ₂	Sc (OTf) ₃	5 mL CH ₃ CN+ 0.2 mL DMSO	23.6	2.9	11.8
8 ^[b]	Pd(OAc) ₂	Sc (OTf) ₃	5 mL CH ₃ CN+ 0.2 mL DMF	35.1	7.1	13.7
9 ^[b]	Pd(OAc) ₂	Sc (OTf) ₃	5 mL CH ₃ CN+ 0.2 mL DMA	29.4	3.2	9.9

[a] Reaction conditions: solvent (5 mL), H_2O (0.2 mL),1-hexene (2 mmol), Pd(II) catalyst (0.02 mmol), Sc(OTf)₃ (0.04 mmol), O₂ (20 atm), 80 °C, 16 h.

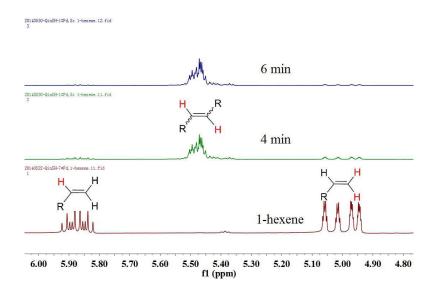

[b] Reaction conditions: solvent (5 mL), H_2O (0.2 mL), 1-hexene (2 mmol), Pd(II) catalyst (0.02 mmol), Sc(OTf)₃ (0.04 mmol), O₂ (20 atm), 80 °C, 2 h.

$H_2O \xrightarrow{Pd catalyst} + H_2O \xrightarrow{Pd catalyst} + \underbrace{O}_{O}$							
	1		2	3			
Entries	$H_2O(mL)$	Conv. [%]	Yield of 2 [%]	Yield of 3 [%]			
1	-	15.1	trace	1.4			
2	0.05	31.1	2.1	8.3			
3	0.1	83.3	21.7	41.2			
4	0.2	84.1	24.3	43.2			
5	0.3	64.0	13.4	27.5			
6	0.4	62.2	14.9	31.1			

Table S2 The influence of water content on Pd(II)/Sc(III)-catalyzed 1-hexene oxidation^a

[a] Reaction conditions: CH₃CN (5 mL), 1-hexene (2 mmol), Pd(OAc)₂ (0.02 mmol), Sc(OTf)₃ (0.04 mmol), O₂ (20 atm), 60 °C, 5 h.

Table S3 The influence of Pd(II)/Sc(III) ratio on 1-hexene oxidation^[a]



[a] Reaction conditions: CH_3CN (5 mL), H_2O (0.2 mL), 1-hexene (2 mmol), Pd(OAc)_2 (0.02 mmol), O_2 (20 atm), 60 °C, 2 h.

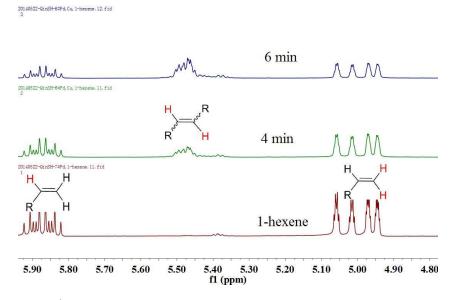
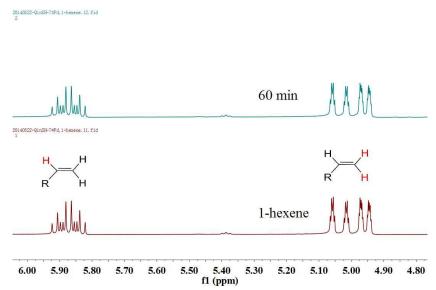

_	Entries	Catalyst	Lewis acid	Time	Conv./%	Internal olefin yield /%
	1	$Pd(OAc)_2$	-	1 h	-	-
	2	-	Cu(OTf) ₂	1 h	-	-
	3	-	Sc(OTf) ₃	1 h	-	-
	4	$Pd(OAc)_2$	Sc(OTf) ₃	6 min	98.2	89.5
	5	$Pd(OAc)_2$	Cu(OTf) ₂	6 min	55.8	49.3

Table S4 Lewis acid promoted Pd(II)-catalyzed 1-hexene isomerization under different conditions^[a]


[a] Reaction conditions: CD_3CN (0.5 mL), $Pd(OAc)_2$ (4 mM), Lewis acid (8 mM), 1-hexene (40 mM), reaction performed in NMR tube at 25 °C.

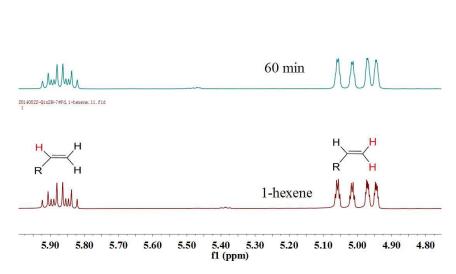

Figure S7-1 The ¹H NMR kinetics of olefinic bond in 1-hexene isomerization at 25 °C (0.5 mL of acetonitrile-d₃ containing 4 mM Pd(OAc)₂, 8 mM Sc(OTf)₃ and 40 mM 1-hexene).

Figure S7-2 The ¹H NMR kinetics of olefinic bond in 1-hexene isomerization 25 °C (0.5 mL of acetonitrile-d₃ containing 4 mM Pd(OAc)₂, 8 mM Cu(OTf)₂ and 40 mM 1-hexene).

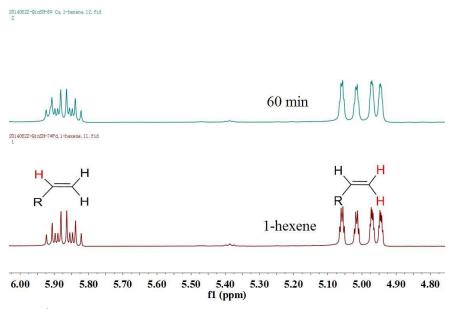


Figure S7-3 The ¹H NMR kinetics of olefinic bond in 1-hexene isomerization 25 °C (0.5 mL of acetonitrile-d₃ containing 4 mM Pd(OAc)₂ and 40 mM 1-hexene).

20140722-1#Sc+1-hexene. 11. fid

Figure S7-4 The ¹H NMR kinetics of olefinic bond in 1-hexene isomerization 25 °C (0.5 mL of acetonitrile-d₃ containing 8 mM Sc(OTf)₃ and 40 mM 1-hexene).

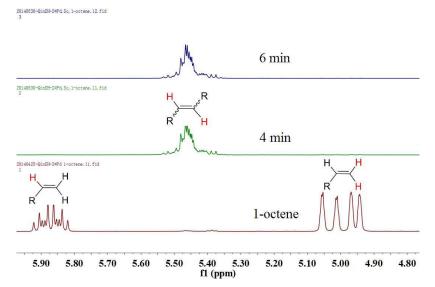


Figure S7-5 The ¹H NMR kinetics of olefinic bond in 1-hexene isomerization 25 °C (0.5 mL of acetonitrile-d₃ containing 8 mM Cu(OTf)₂ and 40 mM 1-hexene).

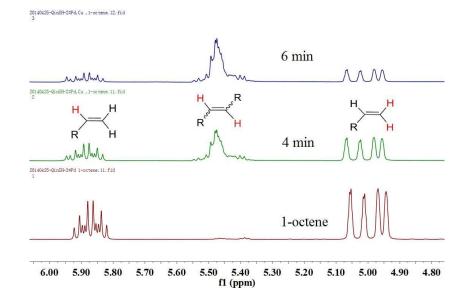

Entries		Catalyst	talyst Lewis acid Tim		Conv./%	Internal olefin yield /%	
	1	Pd(OAc) ₂	-	1 h	-	-	
	2	-	Cu(OTf) ₂	1 h	-	-	
	3	-	Sc(OTf) ₃	1 h	-	-	
	4	$Pd(OAc)_2$	Sc(OTf) ₃	4 min	94.5	90.3	
	5	$Pd(OAc)_2$	Cu(OTf) ₂	6 min	75.7	63.2	

 Table S5 Lewis acid promoted Pd(II)-catalyzed 1-octene isomerization under different conditions^[a]

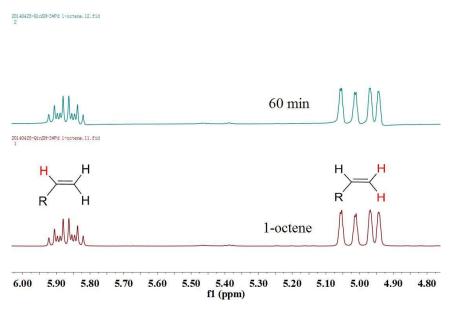

[a] Reaction conditions: CD₃CN (0.5 mL), $Pd(OAc)_2$ catalyst (4 mM), Lewis acid (8 mM), 1-octene (40 mM), reaction performed in NMR tube at 25 °C.

Figure S8-1 The ¹H NMR kinetics of olefinic bond in 1-octene isomerization 25 °C (0.5 mL of acetonitrile-d₃ containing 4 mM Pd(OAc)₂, 8 mM Sc(OTf)₃ and 40 mM 1-octene).

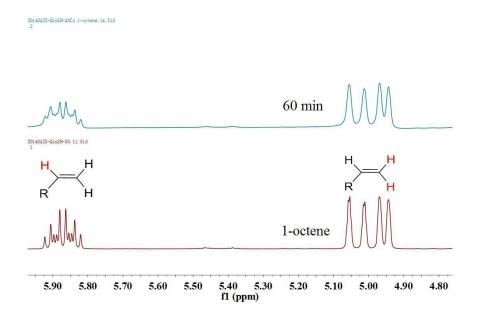

Figure S8-2 The ¹H NMR kinetics of olefinic bond in 1-octene isomerization 25 °C (0.5 mL of acetonitrile-d₃ containing 4 mM Pd(OAc)₂, 8 mM Cu(OTf)₂ and 40 mM 1-octene).

Figure S8-3 The ¹H NMR kinetics of olefinic bond in 1-octene isomerization 25 °C (0.5 mL of acetonitrile-d₃ containing 4 mM Pd(OAc)₂ and 40 mM 1-octene).

Figure S8-4 The ¹H NMR kinetics of olefinic bond in 1-octene isomerization 25 °C (0.5 mL of acetonitrile-d₃ containing 8 mM Sc(OTf)₃ and 40 mM 1-octene).

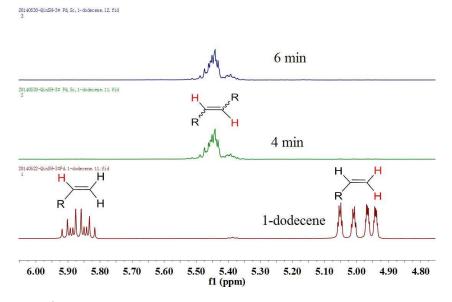
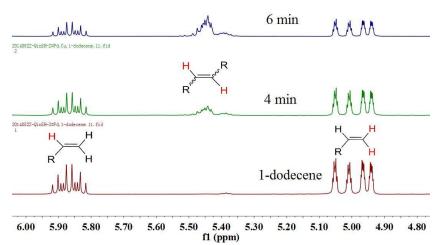


Figure S8-5 The ¹H NMR kinetics of olefinic bond in 1-octene isomerization 25 °C (0.5 mL of acetonitrile-d₃ containing 8 mM Cu(OTf)₂ and 40 mM 1-octene).

-	Entries	Catalyst	Lewis acid	Time	Conv./%	Internal olefin yield /%
	1	Pd(OAc) ₂	-	1 h	-	-
	2	-	Cu(OTf) ₂	1 h	-	-
	3	-	Sc(OTf) ₃	1 h	-	-
	4	Pd(OAc) ₂	Sc(OTf) ₃	6 min	99.6	84.4
	5	Pd(OAc) ₂	Cu(OTf) ₂	6 min	48.4	41.4


 Table S6 Lewis acid promoted Pd(II)-catalyzed 1-dodecene isomerization under different conditions^[a]

[a] Reaction conditions: CD_3CN (0.5 mL), $Pd(OAc)_2$ (4 mM), Lewis acid (8 mM), 1-dodecene (40 mM), reaction performed in NMR tube at 25 °C.

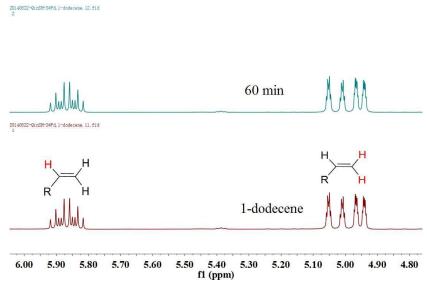


Figure S9-1 The ¹H NMR kinetics of olefinic bond in 1-dodecene isomerization 25 °C (0.5 mL of acetonitrile-d₃ containing 4 mM Pd(OAc)₂, 8 mM Sc(OTf)₃ and 40 mM 1-dodecene).

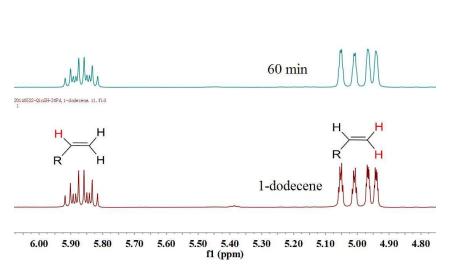


Figure S9-2 The ¹H NMR kinetics of olefinic bond in 1-dodecene isomerization 25 °C (0.5 mL of acetonitrile-d₃ containing 4 mM Pd(OAc)₂, 8 mM Cu(OTf)₂ and 40 mM 1-dodecene).



Figure S9-3 The ¹H NMR kinetics of olefinic bond in 1-dodecene isomerization 25 °C (0.5 mL of acetonitrile-d₃ containing 4 mM Pd(OAc)₂ and 40 mM 1-dodecene).

20140722-3#Sc+dodecene.11.fid 2

Figure S9-4 The ¹H NMR kinetics of olefinic bond in 1-dodecene isomerization 25 °C (0.5 mL of acetonitrile-d₃ containing 8 mM Sc(OTf)₃ and 40 mM 1-dodecene).

Figure S9-5 The ¹H NMR kinetics of olefinic bond in 1-dodecene isomerization 25 °C (0.5 mL of acetonitrile-d₃ containing 8 mM Cu(OTf)₂ and 40 mM 1-dodecene).

	A		B) +		
Entries	Catalyst	Lewis acid	Time	Conv./%	Yield B /%	Yield C /%
1	$Pd(OAc)_2$	-	24 h	0.9	-	-
2	-	Sc(OTf) ₃	24 h	1.1	-	-
3	-	Cu(OTf) ₂	24 h	1.0	-	-
4	$Pd(OAc)_2$	Sc(OTf) ₃	24 h	95.2	89.0	4.7
5	$Pd(OAc)_2$	Cu(OTf) ₂	24 h	93.0	88.0	4.1
6	Pd(OAc) ₂	Al(OTf) ₃	22 h	91.6	87.3	3.4
7	Pd(OAc) ₂	Mg(OTf) ₂	22 h	88.5	79.6	4.8
8	Pd(OAc) ₂	Zn(OTf) ₂	22 h	89.1	80.0	6.5

 Table S7 Lewis acid promoted Pd(II)-catalyzed 1,5-cyclooctadiene isomerization under different conditions^[a]

[a] Reaction conditions: CH₃CN (5 mL), Pd(OAc)₂ (4 mM), Lewis acid (8 mM), 1,5-cycloctadiene (0.2 M), 90 °C.

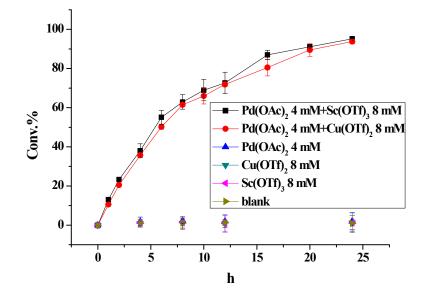


Figure S10 Isomerization kinetics of 1,5-cyclooctadiene. Conditions: CH₃CN (5 mL), Pd(OAc)₂ (4 mM), Lewis acid (8 mM), 1,5-cyclooctadiene (0.2 M), 90 °C.

GC-MS data for catalytic oxidation of 1-octene by Pd(OAc)₂ plus Sc(OTf)₃.

Conditions: CH₃CN (5 mL), water (0.2 mL), Pd(OAc)₂ (0.02 mmol), Sc(OTf)₃ (0.04 mmol), 1-octene (2 mmol), O₂ (20 atm), temperature 80 °C, reaction time 12 h. The measurements were conducted with auto sampler, HP-5 capillary column and a flame ionization detector.

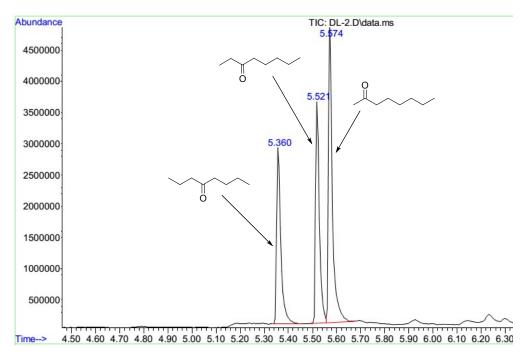
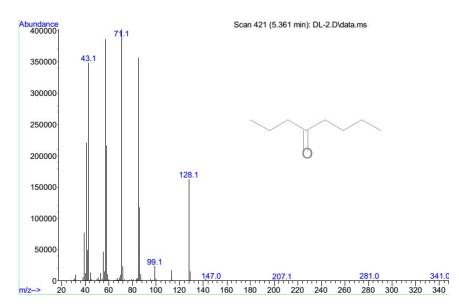
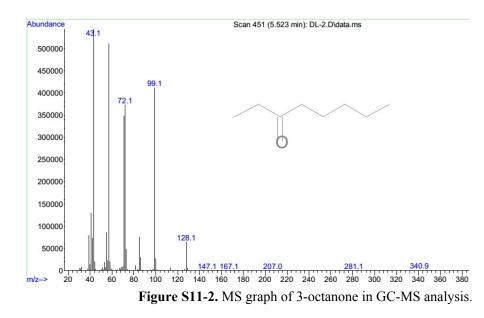
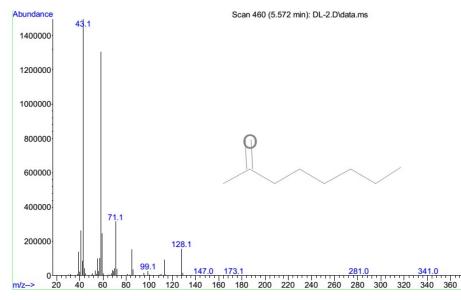
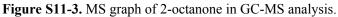
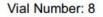


Figure S11. GC-MS graph of 1-octene oxidation by Pd(OAc)₂ plus Sc(OTf)₃.


Figure S11-1. MS graph of 4-octanone in GC-MS analysis.

GC-MS data for catalytic isomerization of 1,5-cyclooctadiene by Pd(OAc)₂ **plus Sc(OTf)**₃. Conditions: CH₃CN (5 mL), Pd(OAc)₂ (0.02 mmol), Sc(OTf)₃ (0.04 mmol), 1,5-cyclooctadiene (1 mmol), temperature 90 °C; reaction time 24 h. The measurements were conducted with auto sampler, HP-5 capillary column and a flame ionization detector.

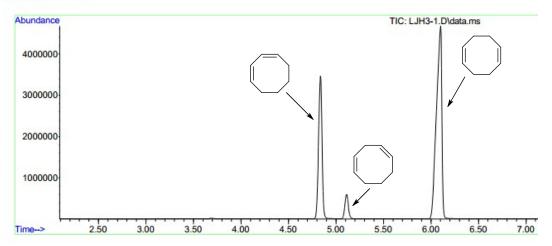


Figure S12. GC-MS graph of 1,5-cyclooctadiene isomerization by Pd(OAc)₂ plus Sc(OTf)₃.

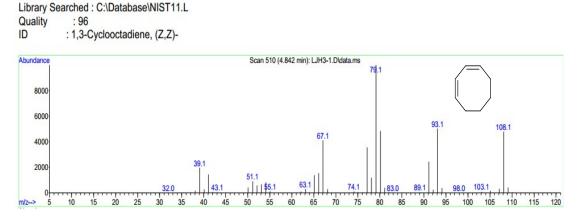


Figure S12-1. MS graph of 1,3-cyclooctadiene in GC-MS analysis.

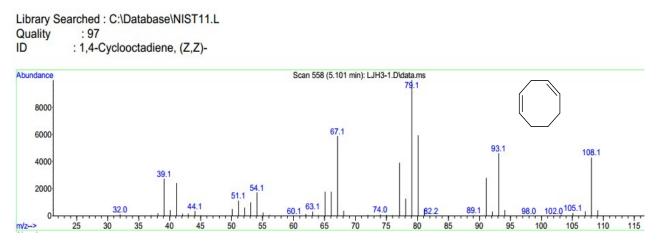


Figure S12-2. MS graph of 1,4-cyclooctadiene in GC-MS analysis.

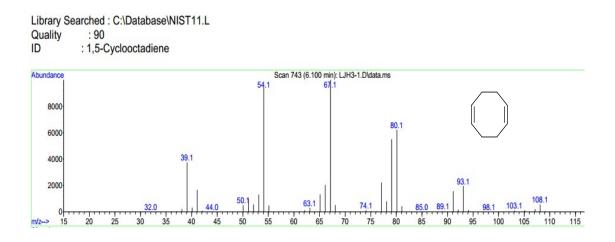


Figure S12-3. MS graph of 1,5-cyclooctadiene in GC-MS analysis.