Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2015

Supplementary material

(to the paper "Synthesis and cation distribution in the new bismuth oxyhalides with the Sillén – Aurivillius intergrowth

structures" by D.O. Charkin, V.S. Akinfiev, A.M. Alekseeva, M. Batuk, A.M. Abakumov, and S.M. Kazakov)

Table S1. Atomic coordinates and displacement parameters for Ba₂Bi₃Nb₂O₁₁I, Ca_{1.25}Sr_{0.75}Bi₃Nb₂O₁₁Cl and BaCaBi₃Nb₂O₁₁Br

Atom	Site	Ba ₂ Bi ₃ Nb ₂ O ₁₁ I			$Ca_{1.25}Sr_{0.75}Bi_3Nb_2O_{11}Cl$			BaCaBi ₃ Nb ₂ O ₁₁ Br		
Atom		Z	Occupancy	U_{iso} , Å ²	Z	Occupancy	U_{iso} , Å ²	Z	Occupancy	U _{iso} , Å ²
A	1 <i>a</i> (0 0 0)	0	0.93(1) Ba	0.0421(7)	0	0.596(7) Ca	0.0187(9)	0	1 Ca	0.028(6)
			0.07(1) Bi			0.404(7) Sr				
M1	2g(0 0 z)	0.2355(1)	0.56(1) Ba	0.035(1)	0.26368(5)	0.645(2) Bi	0.0239(3)	0.237(2)	0.50(1) Ba	0.013(7)
		0.2666(1)	0.44(1) Bi	0.0395(8)		0.355(2) Ca		0.264(1)	0.50(1) Bi	0.022(3)
М2	$2h(\frac{1}{2}\frac{1}{2}z)$	0.3818(1)	1 Bi	0.0374(3)	0.39413(4)	0.878(3) Bi	0.0145(3)	0.3893(1)	1 Bi	0.013(2)
						0.122(3) Sr				
Nb	$2h(\frac{1}{2}\frac{1}{2}z)$	0.1131(1)	1 Nb	0.0324(6)	0.11221(7)	1 Nb	0.0098(4)	0.1090(2)	1 Nb	0.003(1)
Х	1 <i>b</i> (0 0 ½)	1/2	1 I	0.0429(7)	1/2	1 Cl	0.031(2)	1/2	1 Br	0.020(2)
O1	$1c(\frac{1}{2},\frac{1}{2},0)$	0	10	0.024(4)	0	10	0.037(4)	0	1 O	0.042(7)
O2	8s(0xz)	$0.1052(4)^1$	1 O	0.030(2)	x=0.601(1)	0.5 O	0.033(3)	x=0.599(1)	0.5 O	0.036(8)
					z=0.1012(5)			z=0.104(1)		
O3	$2h(\frac{1}{2}\frac{1}{2}z)$	0.2074(5)	1 O	0.028(3)	0.2175(4)	1 0	0.028(3)	0.209(1)	1 O	0.027(7)
O4	$4i (0 \frac{1}{2}z)$	0.3287(4)	1 O	0.042(2)	0.3360(3)	10	0.014(2)	0.330(1)	10	0.028(6)

¹Site $4i (0 \frac{1}{2}z)$

	Ba ₂ Bi ₃ Nb ₂ O ₁₁ I	$Ca_{1.25}Sr_{0.75}Bi_3Nb_2O_{11}Cl$	BaCaBi ₃ Nb ₂ O ₁₁ Br		
A-8O2	2.822(1)	2.432(7)	2.51(3)		
401	2.851(7)	2.7423(1)	2.763(1)		
<i>M</i> 1–4O4	Ba 2.664(6) Bi 2.322(5)	2.352(4)	Ba 2.62(3) Bi 2.31(2)		
4O3	Ba 2.875(4) Bi 3.038(4)	2.871(2)	Ba 2.81(1) Bi 2.96(1)		
<i>M</i> 2–4O4	2.247(4)	2.214(3)	2.25(1)		
103	3.35(1)	3.249(8)	3.215(4)		
4 <i>X</i>	3.6246(6)	3.3631(4)	3.463(4)		
Nb-103	1.83(1)	1.935(8)	1.88(2)		
4O2	2.0007(7)	1.987(2)	1.993(7)		
101	2.181(2)	2.063(1)	2.057(4)		

Table S2. Selected interatomic distances (in Å) for Ba₂Bi₃Nb₂O₁₁I, Ca_{1.25}Sr_{0.75}Bi₃Nb₂O₁₁Cl and BaCaBi₃Nb₂O₁₁Br

Table S3. Atomic coordinates and displacement parameters for $Sr_2Bi_3Nb_2O_{11}Cl$

Atom	Site	Ζ	Occupancy	U_{iso} , Å ²
A	1 <i>a</i> (000)	0	0.94(1) Sr	0.011(1)
			0.06(1) Bi	
M1	2g(00z)	0.2646(1)	0.40(1) Sr	0.032(1)
			0.60(1) Bi	
М2	$2h\left(\frac{1}{2}/2z\right)$	0.3949(1)	0.13(1) Sr	0.025(1)
			0.87(1) Bi	
Nb	$2h\left(\frac{1}{2}/2Z\right)$	0.1143(1)	1 Nb	0.011(1)
Х	$1b(00\frac{1}{2})$	1/2	1 Cl	0.019(2)
01	$1c(\frac{1}{2}^{1}/20)$	0	1 O	0.025 1
O2	8s(0xz)	x = 0.543(9)	1 O	0.025^{-1}
	× ,	z = 0.1070(4)		
O3	O3 $(\frac{1}{2}\frac{1}{2Z})$	0.2104(8)	1 O	0.025 1
O4	O4 $(0^{1}/2z)$	0.3357(5)	10	0.025 1

¹ Not refined.

SrCaBi₃Nb₂O₁₁Cl

Space group *P*4/*nmm* (# 129), *Z* = 2, *a* = 3.88007(6) Å, *c* = 18.3983(4) Å; single phase sample.

Sr₂Bi₃Nb₂O₁₁Cl

Space group *P*4/*nmm* (# 129), *Z* = 2,*a* = 3.91425(5) Å, *c* = 18.4721(3) Å; single phase sample.

$Sr_2Bi_3Nb_2O_{11}Br$

Space group *P*4/*nmm* (# 129), *Z* = 2, *a* = 3.92218(4)Å, *c* = 18.6618(2)Å; 97.6(1) wt. % target phase, 2.4 (1) wt. % SrBi₂Nb₂O₉.

Figure S1. Typical LeBail fits for the Me¹Me²Bi₃Nb₂O₁₁X oxyhalides.

Figure S2. Experimental, calculated and difference PXRD profiles for $Sr_2Bi_3Nb_2O_{11}Cl$ (top) and $BaCaBi_3Nb_2O_{11}Br$ (bottom) for $2\theta < 100^\circ$.

Figure S3. Elemental profiles for BaCaBi₃Nb₂O₁₁Br measured along the *c* direction (the unit cell is outlined, the *A* positions are indicated).