Supporting Information

Coordination-based pH-Responsive Metal-Nucleotide System: pH-Responsive Fluorescence Switch and SHG Crystalline Material

Pei Zhou, Chong Wang, Qi-ming Qiu, Jian-feng Yao, Chuan-Fang Sheng, and Hui Li*

Key Laboratory of Clusters Science of Ministry of Education, School of Chemistry,

Beijing Institute of Technology, Beijing, 100081, P. R. China.

*E-mail address: lihui@bit.edu.cn

Tel: 86-10-68912667

Contents

Section 1	Acidity Constants for 5'-Nucleoside Monophosphates.	p. S3
Section 2	UV-vis and Fluorescence Titration Spectra.	p.S12
Section 3	Crystallography date and Structural Information.	p. S3
Section 4	XRPD Patterns and IR spectra for 1-4.	p. S10
Section 5	Liquid-State CD Spectra of 1, 2 and CMP.	p. S15
Section 6	Solid-State UV-vis Spectra.	p. S15
Section 7	TGA (Thermogravimetric Analysis).	p. S16
Section 8	Crystal-to-crystal transformation.	p. S16

Section 1 Acidity Constants for 5'-Nucleoside Monophosphates.

5'-NMP	N1	N7	N9	N3
AMP	~1.1 or 0.2±0.5	3.8		
GMP	9.5	2.4		
IMP	8.9	1.3		
СМР			-	4.4
UMP			-	9.6
ТМР			-	9.9

Table S1. Acidity Constants for 5'-Nucleoside Monophosphates. (pKa. near 25 °C and 0.1 M ionic strength)

Section 2. UV-vis and Fluorescence Titration Spectra

Figure S1. UV-visible absorption spectra recorded during titration of a solution of CMP-bpe-Mn(II) ([CMP]=[bpe]=[Mn²⁺]= 5×10^{-5} mol/L⁻¹) with HNO₃ (0.8M, *a*) or NaOH(1M, *b*). (*insert*) The changes of λ_1 (wavelength of the highest energy absorption peak) at different pH value for the solution of complex 1 by addition of HNO₃. λ_1 shows obvious red shift and a new absorption peak near 325nm appears at pH<5, stating that there is a new species.

	(a)															
$V_{(H^{+},\mu I)}$	10.0	8.0	6.0	4.0	3.0	2.5	2.0	1.5	1.0	0.5	0					
V _(OH-,µI)											0	0.2	0.4	0.8	1.0	1.5
pH ₍₁₎	3.22	3.38	3.91	4.12	4.82	5.09	5.53	6.03	6.41	6.79	7.11	.7.72	8.11	8.18	8.32	8.54
$pH_{(2)}$	3.22	3.37	3.58	3.80	4.25	5.28	5.96	6.40	6.63	7.04	7.25	7.52	7.98	8.09	8.21	8.44
рН ₍₃₎	3.21	3.38	3.60	4.09	4.36	5.32	5.78	6.32	6.66	6.96	7.23	7.49	8.02	8.13	8.20	8.49
pH _(eve)	3.21	3.38	3.40	4.00	4.47	5.23	5.75	6.25	6.57	6.93	7.20	7.58	8.03	8.13	8.24	8.48
	(b)															
$V_{(H^+,\mu I)}$	10.0	8.0	6.0	4.0	3.0	2.5	2.0	1.5	1.0	0.5	0					
V _(OH-,µI)											0	0.2	0.4	0.8	1.0	1.5
рН ₍₁₎	2.92	3.02	3.22	3.25	4.19	4.49	5.11	5.95	6.34	6.67	6.98	.7.31	7.38	7.49	7.78	8.40
pH ₍₂₎	2.92	3.02	3.25	3.27	4.13	4.62	4.98	5.57	5.94	6.23	6.38	7.08	7.19	7.55	7.84	8.43
рН ₍₃₎	2.93	3.00	3.29	3.32	4.43	4.67	5.05	5.76	6.04	6.40	6.62	7.10	7.35	7.44	7.80	8.41
pH _(eve)	0.00	2.01	0.05	0.00										7.40		0.44

Table S2. The relationship between pH value and the acid/alkali addition in the solution of (a) bpe-Mn and (b)bpe-CMP ([bpe-Mn]=[bpe-CMP]= 5×10^{-5} mol/L).

Figure S2. UV-visible absorption spectra recorded during titration of a solution of (a) bpe-Mn and (c) bpe-CMP with 0.8M HNO₃. [bpe-Mn] = [bpe-CMP]= 5×10^{-5} mol/L⁻¹). The changes of λ_1 at different pH value for (b) bpe-Mn and (d) bpe-CMP, which also show red shift as pH reduce.

Figure S3. UV-visible absorption spectra recorded during titration of a solution of (a) bpe-Mn and (b) bpe-CMP with 1.0M NaOH. [bpe-Mn] = [bpe-CMP] = 5×10^{-5} mol/L⁻¹).

Figure S4. Fluorescence titration spectra (λ_{ex} =365nm) of a solution of bpe-Mn and bpe-CMP ([bpe-Mn] = [bpe-CMP] = 5.0×10⁻⁵ molL⁻¹) with HNO₃ (0.8M, *a and c*) or NaOH(1M, *b and d*).

Figure S5. Fluorescence titration spectra (λ_{ex} =365nm) of a solution of CMP-bpe-Co ([bpe]=[CMP]=[Co²⁺]= 5.0×10⁻⁵ molL⁻¹) with HNO₃ (0.8M, *a and c*) or NaOH(1M, *b and d*).

Figure S6. Room-temperature UV-vis absorption spectra (a) and the relative absorption peaks (b) in water solution of complex 1 (black line), 2 (red line), bpe (blue line) and CMP (cyan line). $[1] = [2] = [bpe] = [CMP] = 5.0 \times 10^{-5} \text{ molL}^{-1}$. Samples are dissolved in aqueous solution and the thickness of sample cell is 1cm.

Figure S7. UV-vis titration spectra for the reversible convert between 1 and 2 adjusted by 1M HCl or NaOH.

Section 3	Crystallography	date and Structural	Information.

	Table S3. Crystal D	Data and Structure Refinement	of Complexes	
Complex	1	2	3	5
Empirical formula	C ₂₁ H ₃₆ N ₅ O ₁₅ P Mn	$C_{60} H_{94} N_{16} O_{43} P_4 Mn_2$	$C_{60}H_{64}Cl_2MnN_{10}O_{15}$	$C_{60}H_{94}N_{16}\ O_{43}\ P_4\ Co_2$
Formula weight	684.46	1961.27	1291.5	1969.25
Wavelength (Å)	0.71073	0.71073	0.71073	0.71073
Temperature(K)	153.15(2)	296(2)	293(2)	153.15(2)
Crystal system	Monoclinic	Orthorhombic	Monoclinic	Orthorhombic

space group	P2 ₁	P2 ₁ 2 ₁ 2 ₁	$P2_1/c$	P2 ₁ 2 ₁ 2 ₁
a (Å)	9.2640(19)	13.870(3)	16.568(3)	13.666(3)
b (Å)	12.020(2)	14.057(3)	13.671(3)	13.939(3)
c (Å)	13.833(3)	20.780(5)	29.949(10)	20.703(4)
α (°)	90	90	90	90
β (°)	106.95(3)	90	111.38(3)	90
γ (°)	90	90	90	90
Volume (Å ³)	1473.5(5)	4051.5(16)	6317(3)	3943.7(14)
Z	2	2	4	2
$D_{calc.}$ (g/cm ⁻³)	1.543	1.608	1.358	1.658
Abs coeff (mm ⁻¹)	0.581	0.501	0.367	0.615
F (000)	714	2040	2692	2048
θ Range /°	2.36-29.14	1.75-28.28	3.03-27.49	1.97-29.14
Reflections collected / unique	13197/7588	24639 / 9673	50160/14436	34938/10554
Completeness to theta	29.14, 99.4 %	28.28, 98.3 %	27.49, 99.7%	29.14, 99.8%
GOF on F ²	0.967	1.044	1.164	1.042
R1,wR2 [I >2σ(I)]	0.0394, 0.0686	0.0609, 0.1432	0.0959, 0.2410	0.0645, 0.11679
R1,wR2 (all data)	0.0497, 0.0725	0.0977, 0.1627	0.1164, 0.2565	0.0781, 0.1803
Flack parameter	-0.001(12)	-0.03(3)		-0.009(17)

Table S4. Selected Bond Lengths (Å) and Angles (deg) in Coordination Metal Environments in 1, 2 and 3ª.						
	1					
Mn(1)-O(9)	2.1252(17)	Mn(1)-O(8)	2.1372(17)			
Mn(1)-O(11)	2.2011(17)	Mn(1)-O(10)	2.2133(17)			
Mn(1)-N(3)	2.2578(19)	Mn(1)-N(4)	2.2699(19)			
O(9)-Mn(1)-O(8)	91.53(7)	O(9)-Mn(1)-O(11)	173.83(7)			
O(8)-Mn(1)-O(11)	92.42(7)	O(9)-Mn(1)-O(10)	90.11(7)			
O(8)-Mn(1)-O(10)	177.87(7)	O(11)-Mn(1)-O(10)	86.06(7)			

O(9)-Mn(1)-N(3)	92.23(7)	O(8)-Mn(1)-N(3)	88.26(7)	
O(11)-Mn(1)-N(3)	92.62(7)	O(10)-Mn(1)-N(3)	90.32(7)	
O(9)-Mn(1)-N(4)	89.52(7)	O(8)-Mn(1)-N(4)	92.11(7)	
O(11)-Mn(1)-N(4)	85.61(7)	O(10)-Mn(1)-N(4)	89.26(7)	
N(3)-Mn(1)-N(4)	178.20(8)			
		2		
Mn(1)-O(6)	2.146(3)	Mn(1)-O(3)	2.154(3)	
Mn(1)-O(5)	2.198(3)	Mn(1)-N(8)	2.264(4)	
Mn(1)-O(4)	2.284(4)	Mn(1)-N(7)	2.264(4)	
O(6)-Mn(1)-O(3)	92.72(13)	O(6)-Mn(1)-O(5)	86.79(11)	
O(3)-Mn(1)-O(5)	177.82(12)	O(6)-Mn(1)-N(8)	95.98(15)	
O(3)-Mn(1)-N(8)	90.39(14)	O(5)-Mn(1)-N(8)	91.78(14)	
O(6)-Mn(1)-O(4)	178.62(12)	O(3)-Mn(1)-O(4)	88.66(13)	
O(5)-Mn(1)-O(4)	91.83(13)	N(8)-Mn(1)-O(4)	83.97(15)	
O(6)-Mn(1)-N(7)	92.58(14)	O(3)-Mn(1)-N(7)	86.14(13)	
O(5)-Mn(1)-N(7)	91.75(13)	N(8)-Mn(1)-N(7)	170.83(14)	
O(4)-Mn(1)-N(7)	87.55(15)			
		3		
Mn(1)-O(19)	2.060(3)	Mn(1)-O(8)	2.062(3)	
Mn(1)-N(4)	2.115(3)	Mn(1)-N(2)	2.112(3)	
Mn(1)-N(1)	2.136(3)	Mn(1)-N(3)	2.152(3)	
O(19)-Mn(1)-O(8)	178.51(11)	O(19)-Mn(1)-N(4)	90.28(11)	
O(8)-Mn(1)-N(4)	91.13(11)	O(19)-Mn(1)-N(2)	87.79(11)	
O(8)-Mn(1)-N(2)	91.79 (11)	O(19)-Mn(1)-N(1)	91.18(12)	
O(8)-Mn(1)-N(1)	89.30(11)	N(4)-Mn(1)-N(1)	89.48(12)	
N(2)-Mn(1)-N(1)	177.59(12)	O(19)-Mn(1)-N(3)	89.50(10)	
O(8)-Mn(1)-N(3)	89.08(10)	N(4)-Mn(1)-N(3)	179.54(12)	
N(2)-Mn(1)-N(3)	91.24(11)	N(1)-Mn(1)-N(3)	90.93(11)	
N(4)-Mn(1)-N(2)	88.34(11)			
		5		
Co(1)-O(2)	2.065(3)	Co(1)-O(3)	2.107(3)	
Co(1)-O(4)	2.132(3)	Co(1)-N(1)	2.140(3)	
Co(1)-N(2)	2.147(3)	Co(1)-O(1)	2.164(3)	
O(2)-Co(1)-O(3)	91.52(11)	O(2)-Co(1)-O(4)	177.71(12)	
O(3)-Co(1)-O(4)	87.04(11)	O(2)-Co(1)-N(1)	86.63(12)	
O(3)-Co(1)-N(1)	91.70(12)	O(4)-Co(1)-N(1)	O(4)-Co(1)-N(1)	
O(2)-Co(1)-N(2)	90.95(13)	O(3)-Co(1)-N(2)	94.24(13)	
O(4)-Co(1)-N(2)	90.92(13)	N(1)-Co(1)-N(2)	173.65(14)	
O(2)-Co(1)-O(1)	89.19(12)	O(3)-Co(1)-O(1)	178.59(13)	
O(4)-Co(1)-O(1)	92.29(12)	N(1)-Co(1)-O(1)	89.56(13)	
N(2)-Co(1)-O(1)	84.54(13)			

	Table S5. Hydrogen Bond Distances (Å) and Angles (deg) in 1-3.						
D-HA	d(D-H)	d(HA)	d(DA)	∠(DHA)	Symmetry transformation for acceptor		
			1				
N20-H20A…O15	0.860	2.330	3.170	165.56	-x+1, y+1/2, -z+1		
N20-H20BO5	0.860	2.000	2.849	168.82	-x+1, y+1/2, -z+1		
O8-H8C…O6	0.850	1.827	2.677	179.49	-x+1, y+1/2, -z+1		
O8-H8D…O5	0.850	1.822	2.672	179.62			
О9-Н9С…О6	0.850	1.866	2.714	175.60			
O9-H9D…O14	0.850	1.767	2.615	175.62	-x+1, y-1/2, -z+1		
O10-H10C…N20	0.850	2.400	3.224	163.65	-x, y-1/2, -z+1		
O10-H10D…O7	0.850	1.820	2.643	162.52	x-1, y, z		
O11-H11DO15	0.850	1.891	2.741	178.36	x-1, y, z		
011-H11C…O7	0.850	1.740	2.590	179.20	-x+1, y+1/2, -z+1		
O12-H12…N1	0.820	2.032	2.852	177.74	-x+1, y-1/2, -z+2		
O13-H13A…O2	0.820	1.792	2.589	163.89	-x+1, y-1/2, -z+2		
O14-H14C…O11	0.850	2.069	2.918	176.04	x+1, y, z		
O14-H14D…O5	0.850	1.919	2.767	176.35			
O15-H15B…O5	0.847	1.883	2.716	167.27			
O15-H15D…O12	0.850	2.080	2.887	158.36	x, y, z-1		
O16-H16C… O6	0.850	1.974	2.823	175.98	-x+1, y+1/2, -z+1		
O16-H16DO13	0.850	1.977	2.826	175.68	-x+1, y+1/2, -z+1		
			2				
N3-H3A…O19	0.860	2.002	2.853	170.25	-x, y+1/2, -z+1/2		
N3-H3B…O8	0.860	2.218	3.060	166.26	-x+1, y+1/2, -z+1/2		
N6-H6A…O1	0.860	2.031	2.886	172.79	x, y-1/2, -z+1/2		
N6-H6B…O10	0.860	2.488	3.307	159.40	-x+1, y-1/2, -z+1/2		
O3-H3E…O11	0.850	1.771	2.616	172.24	-x+1, y-1/2, -z+1/2		
O3-H3F…O23	0.850	1.858	2.699	170.03	-x+3/2, -y+1, z-1/2		
O4-H4C…O23	0.857	2.514	3.371	179.17	-x+3/2, -y+1, z-1/2		
O4-H4D…O11	0.874	1.844	2.718	178.79			
O7-H7C⋯O5	0.820	1.755	2.563	168.20			
O10-H10DO22	0.820	2.107	2.712	130.52			
O14-H14A…O7	0.820	2.304	3.018	145.81	x-1/2, -y+3/2, -z		
O15-H15A…O21	0.820	1.973	2.750	157.84	x, y, z-1		
O16-H16…O10	0.820	1.890	2.627	148.84	x-1/2, -y+3/2, -z		
O18-H18A…O8	0.820	1.829	2.637	168.19	x-1/2, -y+1/2, -z		
O20-H20C…O8	0.850	2.483	3.328	172.72	x-1/2, -y+1/2, -z+1		
O20-H20D…O16	0.850	2.301	3.028	143.62	x, y-1, z+1		
O21-H21E…O1	0.850	2.289	3.098	159.07	x+1/2, -y+3/2, -z+1		
O21-H21F…O14	0.850	2.530	3.338	159.12	x+1/2, -y+3/2, -z+1		
O22-H22C…O15	0.850	2.007	2.728	142.19	x+1/2, -y+3/2, -z		

O22-H22DO23	0.850	2.229	3.041	146.04	x+1/2, -y+3/2, -z+1	
O23-H23B…O18	0.850	2.156	2.687	120.28	x+1, y, z+1	
O23-H23D…O20	0.850	1.978	2.828	178.41	x+1/2, -y+1/2, -z+2	
			3			
O8-H8…N11	0.820	1.963	2.771	168.29	-x+1, -y+2, -z+1	
O8-H8C…O13	0.850	1.856	2.681	163.06	x+1, y, z	
O19-H19…N10	0.820	1.968	2.779	169.62	-x+2, -y+2, -z+2	
O19-H19D… O20	0.850	1.830	2.658	164.68		
O13-H13C…O21	0.849	1.909	2.754	173.61	-x, -y+1, -z+1	
O13-H13D…N6	0.849	1.982	2.828	173.90	x, -y+3/2, z+1/2	
O20-H20C…O22	0.850	1.910	2.759	177.44	-x+1, y+1/2, -z+3/2	
O20-H20D…N5	0.851	1.898	2.749	177.67		
O21-H21C…N20	0.851	1.984	2.827	170.79	x-1, y, z	
O21-H21DO11	0.850	2.059	2.906	174.25	-x+1, -y+1, -z+1	
O22-H22C…N7	0.850	1.969	2.817	175.48		
O22-H22D…O18	0.851	2.136	2.981	172.16	-x+1, y-1/2, -z+3/2	
O23-H23C…O20	0.851	1.994	2.839	171.75	x, y-1, z	
O23-H23D…O22	0.851	2.110	2.955	171.68		
			5			
N7-H7A…O8	0.860	1.994	2.846	170.66	-x+1, y+1/2, -z+1/2	
N7-H7B…O16	0.860	2.102	2.950	168.36	-x+2, y+1/2, -z+1/2	
N8-H8A…O7	0.860	2.002	2.859	174.10	-x+1, y-1/2, -z+1/2	
N8-H8A…O14	0.860	2.319	3.132	157.79	-x+2, y-1/2, -z+1/2	
O1-H1C…O22	0.850	1.979	2.672	137.99		
01-H1D…024	0.850	2.619	3.316	140.14	-x+3/2, -y+1, z-1/2	
O2-H2C…O22	0.850	1.767	2.612	172.72	-x+2, y-1/2, -z+1/2	
O2-H2D…O24	0.850	1.852	2.699	174.07	-x+3/2, -y+1, z-1/2	
O9-H9A…O14	0.820	1.844	2.648	166.26	x-1/2, -y+3/2, -z	
O10-H10…O21	0.820	2.229	2.946	146.08	x-1/2, -y+3/2, -z	
O11-H11A…O16	0.820	1.817	2.623	167.33	x-1/2, -y+1/2, -z	
012-H12A…017	0.820	1.932	2.721	161.22	x+1/2, -y+3/2, -z	
O14-H14C…O17	0.850	1.871	2.721	179.24	x+1, y, z	
O17-H17C⋯O5	0.850	2.404	3.244	169.47	x-1/2, -y+3/2, -z	
O17-H17B…O24	0.865	2.048	2.912	176.91	x-1/2, -y+3/2, -z+1	
O18-H18E…O7	0.850	2.218	3.034	160.80	x-1/2, -y+3/2, -z+1	
O18-H18F…O10	0.850	2.354	3.168	160.41	x-1/2, -y+3/2, -z+1	
O19-H19D…O10	0.850	2,327	3.159	166.17	x, y-1, z+1	
019-H19BD…N7	0.850	2.417	3.100	137.81	-x+3/2, -y+1, z+1/2	
O21-H21E…O4	0.979	1.567	2.542	173.58		
O24-H24C…O11	0.850	1.844	2.693	178.02	x, y, z+1	
O24-H24D…O19	0.850	1.904	2.754	177.62	x-1/2, -y+1/2, -z+2	

Figure S8. (a) 2D Hydrogen bonding layer of complex 1 in *ab* plane formed by hydrogen bonds between coordination water molecules and accepter atoms of CMP²⁻ ligands. (b) Perspective view of hydrogen bonds between CMP²⁻ ligands and coordination molecules. (c) Supramolecular helix formed by CMP ligands in the form of head-to-tail through hydrogen bonding (N20-H20B \cdots O5, 2.849Å and 168.75 °).

Figure S9. 1D chain of 2 viewed down from *c* axis (a) and *b* axis (b).

Figure S10. The 3D stacking structure picture of 2 assembled from interlayer hydrogen-bonding interactions viewed down from c axis.

Figure S11. (a) 2D layer of **3** formed by inter-linear hydrogen bonding. (b)Two kinds of Mn····Mn distance between layers shown in red and blue dotted lines, respectively. (c) Two adjacent layers with 2D grid structure in **3**.

Figure S12. 3D supramolecular architecture of **3** assembled by noncovalent interactions (b and c), including hydrogen bonds formed between coordinated water molecules and free bpe, ClO_4 - or water molecules, as well as π - π stacking between adjacent bpe molecules.

Figure S13. 3D supramolecular architecture of **3** with 1D channels filled with guest water molecules((a) viewed down from a axis, and (b) from c axis).

Figure S14. (a) P-EAC in **1** with clockwise orientated CMP ligand surrounding the axis of bpe. (b) P-EAC in **2** with equal clockwise and counterclockwise orientated chiral inducers surrounding the axis of bpe.

Figure S15. (a) PXRD patterns show the comparison between the experimental value and simulated ones for complexes 1 and 2. 1 and 2 prepared under different acidic conditions show different structures. (b) IR spectra of complexes 1 and 2. A new absorption a appeared in the spectrum of 2 because there is one more P-O Vibration mode, which can be explain by the protonation of one phosphate oxygen atom at more acidic condition.

Figure S16. Comparison of PXRD patterns between 1 and 3 (a) as well as 2 and 4 (b). It is clearly that complexes of different kinds of metal ions adopt the same structure at similar acidity conditions.

Figure S17. IR spectra of complexes 1 and 3(a) as well as 2 and 4 (b). A new absorption peak *a* appeared in the spectra of 2 and 4 because there is one more P-O Vibration mode, which can be explain by the protonation of one phosphate oxygen atom at more acidic condition.

Section 5 Liquid-State CD Spectra.

Figure S18. The liquid-state CD spectra of CMP ligands and its complexes 1 and 2 in water at 20°C. The spectra was obtained by measuring a 0.02mM solution in a 1mm cell. The typical CD spectrum of CMP illustrates that the nucleotides ligand is D-ribonucleotide, which has a positive band near 271nm. The weak negative band centred at 300nm in the spectra of 1 and 2 demonstrates there exist interaction between CMP ligand and the metal ions, which can prevent the mutarotation, making ligands keep the β -anomers in their complexes.

Section 6 Solid-State UV-vis Spectra.

Figure S19. The solid-state UV-vis spectra of complexes 1, 2, 4, and 5 at room temperature. There exist d–d electron transitions in the region of 400-600nm for complexes 4 and 5.

Section 7 TGA (Thermogravimetric Analysis).

Figure S20. TG analysis curves of **1**, **2**, **4**, and **5**. The mass loss of ca. 18.41 % from 80.2 °C to 122.4 °C is related to the loss of guest water solvates and coordinated water molecules (calculated value 18.32 %) for **1**. And it begin to collapse at about 200.0°C. The first weight loss stage of **2** is from 99.8°C to 144.9 °C, and the mess loss (cal.10.09%, calculated value 10.22%) is also related to the loss of guest and coordinated water molecules. Complex **2** showed better thermal stability than **1**, the collapse temperature of which is about 221.5°C. The thermal properties of **4** and **5** are similar to **1** and **2**, respectively, which give reasons that there are three guest water molecules in complex **4**. However, the TG analysis of **3** is not studied because of its explosive components (ClO₄⁻).

Section 8 Crystal-to-crystal transformation.

Figure S21. Crystal-to-crystal transformation from 4 to 5 (*a* to *c*), and from 5 to 4 (*d* to *f*).

Figure S22. (a) Comparison between crystal transition product c (crystalline) and complex **5** by the methods of PXRD. (b) Comparison between crystal transition product f (powder) and complex **4** by the methods of IR.