Supporting Information

Synthesis, Structure, Spectral, Electrochemical and Fluoride Sensing Properties of *meso*-Pyrrolyl Boron Dipyrromethene

Booruga Umasekhar, Emandi Ganapathi, Tamal Chatterjee and Mangalampalli Ravikanth*

Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India. E-mail: <u>ravikanth@chem.iitb.ac.in</u>

Entry	Contents	Page no
1	Figure S1. HRMS spectrum of compound 5	3
2	Figure S2. ¹ H NMR spectrum of compound 5 recorded in CDCl ₃	4
3	Figure S3. ¹ H NMR spectrum of compound5recorded in DMSO- d_6	5
4	Figure S4. ¹ H- ¹ HCOSY spectrum of compound5	6
5	Figure S5. ¹³ C NMR spectrum of compound 5	7
6	Figure S6. ¹⁹ F NMR spectrum of compound 5	8
7	Figure S7. ¹¹ B NMR spectrum of compound 5	9
8	Figure S8. HRMS spectrum of compound 6	10
9	Figure S9. ¹ H NMR spectrum of compound 6	11
10	Figure S10. ¹³ C NMR spectrum of compound6	12
11	Figure S11. ¹⁹ F NMR spectrum of compound 6recorded in CDCl ₃	13
12	Figure S12. ¹⁹ F NMR spectrum of compound 6 recorded in DMSO- d_6	14
13	Figure S13. ¹¹ B NMR spectrum of compound 6	15
14	Figure S14.Comparison of ¹ H-NMR spectra of compound 5 and6	16
15	Figure S15. HRMS spectrum of compound 7	17
16	Figure S16. ¹ H NMR spectrum of compound 7	18
17	Figure S17. ¹⁹ F NMR spectrum of compound 7	19
18	Figure S18. ¹¹ B NMR spectrum of compound 7	20
19	Figure S19. HRMS spectrum of compound 8	21
20	Figure S20. ¹ H NMR spectrum of compound 8	22
21	Figure S21. ¹⁹ F NMR spectrum of compound 8	23
22	Figure S22. ¹¹ B NMR spectrum of compound 8	24
23	Figure S23. ¹ H NMR spectrum of compound 9	25
24	Figure S24. ¹ H- ¹ H COSY spectrum of compound 9	26

25	Figure S25. ¹³ C NMR spectrum of compound 9	27
26	Figure S26. ¹⁹ F NMR spectrum of compound 9	28
27	Figure S27. ¹¹ B NMR spectrum of compound 9	29
28	Figure S28. ¹ H NMR spectrum of compound 11	30
29	Figure S29. Comparison of absorption spectrum of compound 5	31
30	Figure S30. Comparison of absorption spectrum of compound 6	32
31	Figure S31. Comparison of absorption spectrum of compound 7	33
32	Figure S32. Comparison of absorption spectrum of compound 8	34
33	Figure S33. Comparison of absorption spectrum of compound 9	35
34	Figure S34. Comparison of emission spectrum of compound 5	36
35	Figure S35. Comparison of emission spectrum of compound 6	37
36	Figure S36. Comparison of emission spectrum of compound 8	38
37	Figure S37. Comparison of emission spectrum of compound 9	39
38	Figure S38.Job's plot of compound5	40
39	Figure S39.Supramolecular assembly through a weak intermolecular	41
	hydrogen bonding network in BODIPY 5.	
40	Figure S40.Supramolecular assembly through a weak intermolecular	42
	hydrogen bonding network in BODIPY 6.	
41	Figure S41.Optical response of BODIPY 5 after addition of different	43
	anions	
42	Experimental details	44
<mark>43</mark>	Figure S42. Absorption spectrum of compound 5 with HPO_4^{-2} and	<mark>45</mark>
	H ₂ PO ₄ -	
<mark>44</mark>	Figure S43. Absorption spectrum of compound 5 with F^- in CH ₃ OH	<mark>46</mark>
<mark>45</mark>	Figure S44. Absorption spectrum titration of compound 5 with F ⁻ in	<mark>47</mark>
	CH ₃ CN	
<mark>46</mark>	Figure S45. Absorption spectrum titration of compound 5 with F ⁻ in	<mark>48</mark>
	CH ₃ CN:H ₂ O	

Figure S1: HRMS spectrum of compound 5

Figure S2: ¹H NMR spectrum of compound 5 recorded in CDCl_{3.}

Figure S3: ¹H NMR spectrum of compound **5** recorded in DMSO-d₆. Inset shows the expansion.

Figure S4: ¹H-¹HCOSY NMR spectrum of compound 5 recorded in CDCl_{3.}

Figure S5: ¹³C NMR spectrum of compound 5 recorded in CDCl_{3.}

Figure S6: ¹⁹F NMR spectrum of compound **5** recorded in CDCl₃. Inset shows the expansion.

Figure S7: ¹¹B NMR spectrum of compound **5** recorded in CDCl₃. Inset shows the expansion.

Calcd mol. wt. = 294.0987 Observed mol. Wt. = 294.0960

Figure S8: HRMS spectrum of compound 6

Figure S9: ¹H NMR spectrum of compound 6 recorded in CDCl₃. Inset shows the expansion.

Figure S10: ¹³C NMR spectrum of compound 6 recorded in CDCl_{3.}

Figure S11: ¹⁹F NMR spectrum of compound **6** recorded in CDCl₃. Inset shows the expansion.

Figure S12: ¹⁹F NMR spectrum of compound **6** recorded in DMSO-d6 Inset shows the expansion.

Figure S13: ¹⁹B NMR spectrum of compound **6** recorded in CDCl₃. Inset shows the expansion.

Figure S14: Comparison of ¹H NMR spectrum of compound 5 and 6 recorded in CDCl_{3.}

Calcd mol. wt. = 357.9936

Observed mol. Wt. = 357.9920

Figure S16: ¹H NMR spectrum of compound **7** recorded in CDCl₃. Inset shows the expansion.

Figure S17: ¹⁹F NMR spectrum of compound 7 recorded in CDCl₃. Inset shows the expansion

Figure S18: ¹¹B NMR spectrum of compound 7 recorded in CDCl_{3.}

Calcd mol. wt. = 308.0780

Observed mol. Wt. = 308.0779

Figure S19: HRMS spectrum of compound 8

21

Figure S20: ¹H NMR spectrum of compound 8 recorded in CDCl₃. Inset shows the Expansion.

Figure S21: ¹H NMR spectrum of compound 8 recorded in CDCl₃. Inset shows the Expansion.

Figure S22: ¹¹B NMR spectrum of compound **8** recorded in CDCl₃. Inset shows the Expansion.

Figure S23: ¹H NMR spectrum of compound 9 recorded in CDCl₃. Inset shows the Expansion.

Figure S24: ¹H-¹H COSY spectrum of compound 9 recorded in CDCl₃

Figure S25: ¹³C NMR spectrum of compound 9 recorded in CDCl_{3.}

Figure S26: ¹⁹F NMR spectrum of compound **9** recorded in CDCl₃. Inset shows the Expansion.

F

Figure S27: ¹¹B NMR spectrum of compound **9** recorded in CDCl₃. Inset shows the Expansion.

Figure S28: ¹H NMR spectrum of compound 11 recorded in CDCl_{3.}

Figure S29: Comparison of absorption spectra of compound **5** (2×10⁻⁵M) recorded in different solvents.

Figure S30: Comparison of absorption spectra of compound **6** (2×10⁻⁵M) recorded in different solvents.

Figure S31: Comparison of absorption spectra of compound **7** (2×10⁻⁵M) recorded in different solvents.

Figure S32: Comparison of absorption spectra of compound **8** (2×10⁻⁵M) recorded in different solvents.

Figure S33: Comparison of absorption spectra of compound **9** (2×10⁻⁵M) recorded in different solvents.

Figure S34: Comparison of emission spectrum of compound **5**(2×10⁻⁵M) recorded in different solvents

Figure S35: Comparison of emission spectrum of compound 6 (2×10⁻⁵M) recorded in different solvents

Figure S36: Comparison of emission spectrum of compound **8** (2×10⁻⁵M) recorded in different solvents

Figure S37: Comparison of emission spectrum of compound 9 (2×10⁻⁵M) recorded in different solvents

Figure S38. Job's plots of compound 5

Figure 39. Supramolecular assembly through a weak intermolecular hydrogen bonding network in BODIPY **5**.

Figure 40. Supramolecular assembly through intermolecular-hydrogen bonding network (between Methyl-H and F (2.247 Å) which is attached to boron in Compound **6**.

Figure 41. Optical response of BODIPY 5 after addition of different anions

Experimental section

General: THF and n-hexane was dried over sodium benzophenone ketyl, BF₃. Et₂O, 2,3dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and TFA were used as obtained. All other chemicals used for the synthesis were reagent grade unless otherwise specified. Column chromatography was performed on silica (60-120 mesh) or alumina. All the ¹H NMR spectra (δ in ppm) were recorded using Bruker 400 and 500 MHz instruments. ¹³C NMR spectra were recorded on Bruker operating at 100.6 and 125.7 MHz. TMS was used as an internal reference for ¹H and ¹³C (δ 77.0 signal) in CDCl₃. For UV-vis, the stock solution of compound **5** (2×10⁻⁵ M) was prepared by using spectroscopic grade toluene.

Their corresponding UV-vis was recorded at 298 K. In ¹H NMR titration, the spectra were measured on 400 MHz NMR spectrometer. A solution of **5** in CDCl₃ was prepared (2×10^{-5} M), and a 0.4 mL portion of this solution was transferred to a 5-mm NMR tube. A small aliquot of Bu₄NF in CDCl₃ was added in an incremental fashion, and their corresponding spectra were recorded.

X-ray crystal structure analysis:

Single-crystal X-ray structure analysis was performed on a Rigaku Saturn 724 diffractometer that was equipped with a low-temperature attachment. Data were collected at 100 K using graphite-monochromated Mo-K_{α} radiation (λ_{α} = 0.71073 Å) with the ω -scan technique. The data were reduced by using CrystalClear-SM Expert 2.1 b24 software. The structures were solved by direct methods and refined by least-squares against F² utilizing the software packages SHELXL-97,³³ SIR-92,³⁴ and WINGX.³⁵ All non-hydrogen atoms were refined anisotropically.

References:

- (33) G. M. Sheldrick, Acta Crystallogr., 2008, A64, 112-122.
- (34) A. Altomare, G. Cascarano, C. Giacovazzo and A. Gualardi, *J. Appl. Crystallogr.*, 1993, **26**, 343-350.

(35) L. J. Farrugia, J. Appl. Crystallogr., 1999, 32, 837-838.

Figure 42. Absorption spectra of compound **5** (2×10^{-5} M) and after addition of HPO₄²⁻ H₂PO₄⁻ recorded in Toluene

Figure 43. Absorption spectral change of compound **5** (2×10⁻⁵M) and after addition of different equivalents of F⁻ (0-50 equiv.) recorded in CH₃OH.

Figure 44. Absorption spectral changes of BODIPY **5** (2×10^{-5} M) upon addition of increasing equivalents of F⁻ ions (0-15 equiv) in CH₃CN.

Figure 45. Absorption spectral changes of BODIPY **5** (2×10⁻⁵ M) upon addition of increasing equivalents of F⁻ ions (0–50 equiv) in CH₃CN:H₂O (9:1).