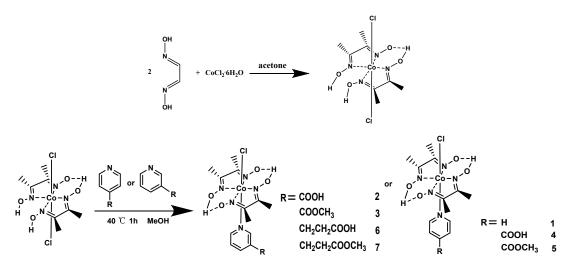
Supporting Information

Enhanced Photocatalytic Hydrogen Production by Introducing Carboxylic Acid Group into Cobaloxime Catalysts

Junfei Wang,^{*a b*} Chao Li,^{*a*} Qianxiong Zhou, ^{*a*} Weibo Wang, ^{*a*} Yuanjun Hou,* ^{*a*} Baowen Zhang, ^{*a*} Xuesong Wang* ^{*a*}

^a Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute


of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China

^b Graduate School of Chinese Academy of Sciences, Beijing 100049, P. R. China

Table of Contents

- 1. Synthesis and characterization (Scheme S1)
- 2. UV-visible absorption spectrum of Eosin Y (0.01 mM) in CH₃CN/H₂O (1:1) (Figure S1).
- 3. Optimization of the photocatalytic H₂ production conditions (Figure S2-S5).
- 4. Fluorescence quenching of Eosin Y by 1-7 and TEOA (Figure S6-S13).
- 5. Cyclic voltammograms of acetic acid alone in CH₃CN and **6** in CH₃CN in the presence of 15 equiv acetic acid (Figure S14).

Synthesis and characterization

Scheme S1. Synthetic routes for 1-7.

Synthesis of $[CoCl_2(dmgH)(dmgH_2)]$.¹ CoCl₂.6H₂O (50 g, 0.210 mol) was dissolved in acetone (1.5 L) and dimethylglyoxime (49 g, 0.422 mol) was added. The mixture was agitated for 10 min and filtered to remove any un-dissolved material. The green crystals formed when the solution was allowed to stand overnight were collected and washed with acetone. Yield, 59.5 g (79%). Synthesis of 1-7. Et₃N (42 mL, 0.3 mmol) was added to a stirred suspension of

[CoCl₂(dmgH)(dmgH₂)] (108 mg, 0.3 mmol) in MeOH (8 mL), resulting in a brown solution. Pyridine or its derivative was added after five minutes and the reaction mixture was heated at 40°C for one hour. The solution was allowed to cool to room temperature to precipitate the brown product, which was filtered off, washed with water (10 mL), ethanol (10 mL), and diethyl ether (10 mL) and dried under high vacuum.

Complex 1. ¹H NMR (400 MHz, d₆-DMSO): δ in ppm 18.49 (br, 2O*H*), 8.03 (d, *J* = 5.2 Hz, 2H, py), 7.90 (m, 1H, py), 7.47 (m, 2H, py), 2.32 (s, 12H, dmg²⁻). MS (ESI, CH₃CN): m/z = 404.0523 ([M+H]⁺); 368.0758 ([M-Cl]⁺); 289.0336 ([M-Cl-py]⁺). Anal. calcd for C₁₃H₁₉N₅ClCoO₄: C, 38.68; H, 4.74; N, 17.35. Found: C, 38.77; H, 4.77; N, 17.20. **Complex 2.** ¹H NMR (400 MHz, d₆-DMSO): δ in ppm 18.45 (br, 2O*H*), 13.96 (s, H, 3-COO*H*), 8.61(s, H, py), 8.32 (d, *J* = 7.6 Hz, 1H, py), 8.20 (d, *J* = 5.6 Hz, 1H, py), 7.62 (m, 1H, py), 2.31 (s, 12H, dmg²⁻). MS (ESI, CH₃CN): m/z = 448.0421 ([M+H]⁺); 412.0654 ([M-Cl]⁺); 289.0337 ([M-Cl]⁺); 289.033

Cl-py-*m*-COOH]⁺). Anal. calcd for C₁₄H₁₉N₅ClCoO₆ • 2H₂O: C, 34.76; H, 4.79; N, 14.48. Found: C, 34.77; H, 4.70; N, 14.26.

Complex 3. ¹H NMR (400 MHz, d₆-DMSO): δ in ppm 18.50 (br, 2O*H*), 8.69 (s, H, py), 8.28 (d, J = 6.0 Hz, 1H, py), 8.26 (d, J = 1.2 Hz, 1H, py), 7.42 (m, H, py), 3.91 (s, 3H, -CH₃), 2.31 (s, 12H, dmg²). MS (ESI, CH₃CN): m/z = 462.0576 ([M+H]⁺); 426.0810 ([M-Cl]⁺); 289.0335 ([M-

Cl-py-*m*-COOCH₃]⁺). Anal. calcd for C₁₅H₂₁N₅ClCoO₆: C, 39.02; H, 4.58; N, 15.17. Found: C, 38.77; H, 4.64; N, 14.82

Complex 4. ¹H NMR (400 MHz, d₆-DMSO): δ in ppm 18.43 (br, 2O*H*), 14.04 (s, 1H, 4-COO*H*), 8.22 (d, *J* = 6.4 Hz, 2H, py), 7.86 (d, *J* = 6.4 Hz, 2H, py), 2.31 (s, 12H, dmg²⁻). MS (ESI, CH₃CN): m/z = 448.0421 ([M+H]⁺); 412.0654 ([M-Cl]⁺); 289.0337 ([M-Cl-py-*p*-COOH]⁺). Anal, calcd for C₁₄H₁₉N₅ClCoO₆ • H₂O: C, 36.10; H, 4.54; N, 15.04. Found: C, 35.78; H, 4.55; N, 14.90. **Complex 5.** ¹H NMR (400 MHz, d₆-DMSO): δ in ppm 18.49 (br, 2O*H*), 8.32 (d, J = 6.8 Hz, 2H, py), 7.73 (d, J = 6.4 Hz, 2H, py), 3.87 (s, 3H, -CH₃), 2.31 (s, 12H, dmg²⁻). MS (ESI, CH₃CN): m/z = 462.0580 ([M+H]⁺); 426.0812 ([M-Cl]⁺); 289.0336 ([M-Cl-py-*p*-COOCH₃]⁺). Anal. calcd for C₁₅H₂₁N₅ClCoO₆: C, 39.02; H, 4.58; N, 15.17. Found: C, 39.22; H, 4.65; N, 15.02.

Complex 6. ¹H NMR (400 MHz, d₆-DMSO): δ in ppm 18.43 (br, 2O*H*), 12.18 (s , H, 3-CH₃CH₂COO*H*),7.88 (d, *J* = 6.8 Hz, 2H, py), 7.80 (d, *J* = 7.6 Hz, 1H, py), 7.38 (m, 1H, py), 2.72 (t, *J* = 7.2 Hz, 2H, -CH₂-), 2.48 (d, *J* = 7.2 Hz, 2H, -CH₂-), 2.32 (s, 12H, dmg²⁻). MS (ESI, CH₃CN): m/z = 476.0736 ([M+H]⁺); 440.0968 ([M-Cl]⁺); 289.0336 ([M-Cl-py-*m*-CH₂CH₂COOH]⁺). Anal. calcd for C₁₆H₂₃N₅ClCoO₆ • 0.5H₂O: C, 39.64; H, 4.99; N, 14.45. Found: C. 39.58; H, 5.08; N, 14.21.

Complex7. ¹H NMR (400 MHz, d₆-DMSO): δ in ppm 18.44 (br, 2O*H*), 7.89 (d, *J* = 9.2 Hz, 2H, py), 7.81(d, *J* = 8.0 Hz, 1H, py), 7.39 (m, 1H, py), 3.58 (s, 3H, -CH₃), 2.76 (t, *J* = 7.2 Hz, 2H, -CH₂-), 2.58 (t, *J* = 7.2 Hz, 2H, -CH₂-), 2.32 (s, 12H, dmg²⁻). MS (ESI, CH₃CN): m/z = 490.0891 ([M+H]⁺); 454.1123 ([M-Cl]⁺); 289.0335 ([M-Cl-py-*m*-CH₂CH₂COOCH₃]⁺). Anal. calcd for C₁₇H₂₅N₅ClCoO₆: C, 41.69; H, 5.14; N, 14.30. Found: C, 41.36; H, 5.09; N, 14.12.

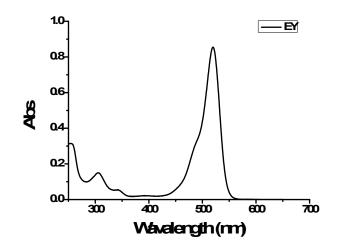
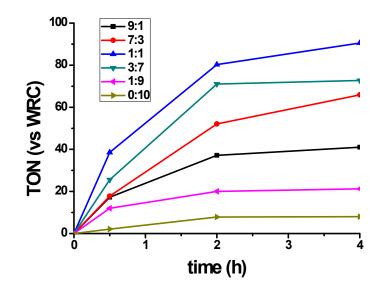
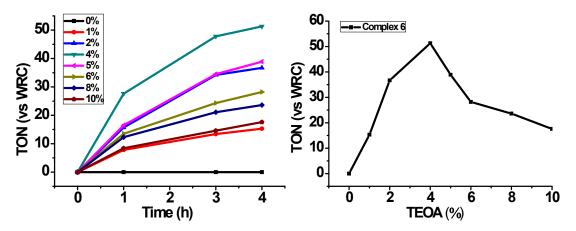
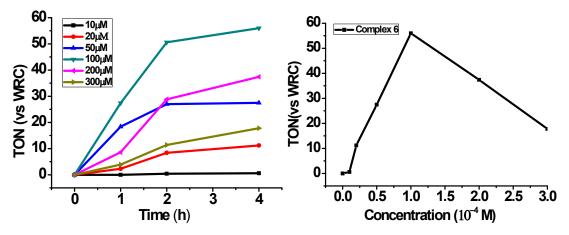
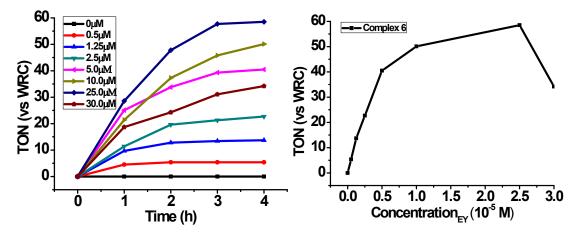


Figure S1. UV-visible absorption spectrum of Eosin Y (0.01 mM) in CH₃CN/H₂O (1:1).


Figure S2. Photocatalytic H₂ production profiles of the AP systems containing 0.025 mM Eosin Y, 0.1 mM 6, 4% TEOA in CH₃CN/H₂O (pH = 7.5) of varied compositions.

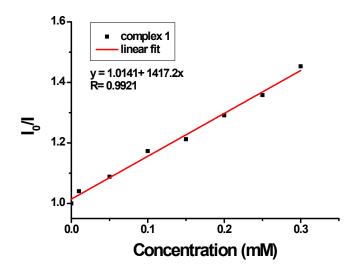

Figure S3. (a) Photocatalytic H_2 production profiles of the AP systems containing 0.025 mM Eosin Y, 0.1 mM **6**, and varied concentrations of TEOA in CH₃CN/H₂O (1:1, pH = 7.5); (b) H₂ production amounts of the AP systems after 4 h irradiation.

Figure S4. (a) Photocatalytic H_2 production profiles of the AP systems containing 0.025 mM Eosin Y, 4% TEOA, and varied concentrations of **6** in CH₃CN/H₂O (1:1, pH = 7.5); (b) H₂ production amounts of the AP systems after 4 h irradiation.

Figure S5. (a) Photocatalytic H₂ production profiles of the AP systems containing 0.1 mM **6**, 4% TEOA, and varied concentrations of Eosin Y in CH₃CN/H₂O (1:1, pH = 7.5); (b) H₂ production amounts of the AP systems after 4 h irradiation.

Figure S6. Stern-Volmer plot of the fluorescence quenching of Eosin Y by **1** in CH₃CN/H₂O (1:1, pH = 7.5).

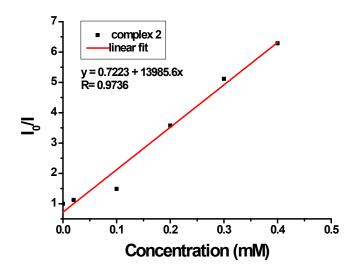
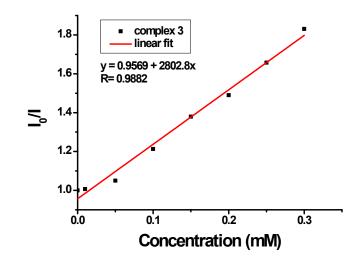
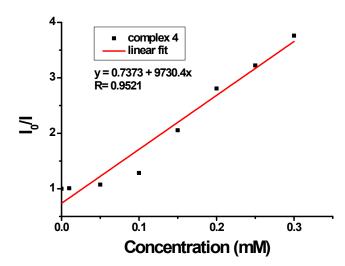




Figure S7. Stern-Volmer plot of the fluorescence quenching of Eosin Y by 2 in CH₃CN/H₂O (1:1,

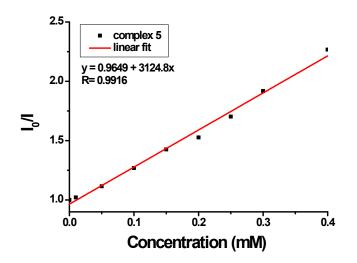
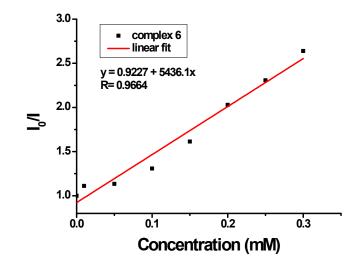
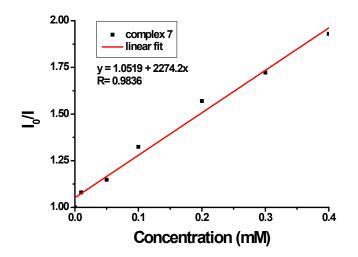
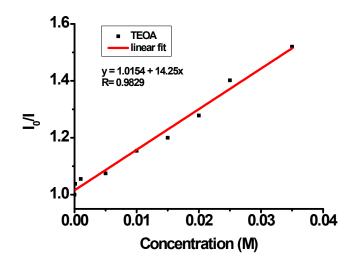

pH = 7.5).

Figure S8. Stern-Volmer plot of the fluorescence quenching of Eosin Y by **3** in CH₃CN/H₂O (1:1, pH = 7.5).

Figure S9. Stern-Volmer plot of the fluorescence quenching of Eosin Y by **4** in CH₃CN/H₂O (1:1, pH = 7.5).

Figure S10. Stern-Volmer plot of the fluorescence quenching of Eosin Y by **5** in CH_3CN/H_2O (1:1, pH = 7.5).

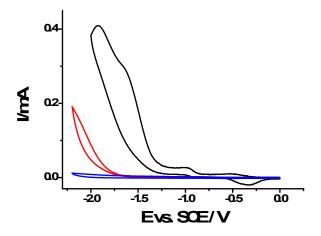

Figure S11. Stern-Volmer plot of the fluorescence quenching of Eosin Y by 6 in CH_3CN/H_2O (1:1, pH = 7.5).

Figure S12. Stern-Volmer plot of the fluorescence quenching of Eosin Y by 7 in CH_3CN/H_2O (1:1, pH = 7.5).

Figure S13. Stern-Volmer plot of the fluorescence quenching of Eosin Y by TEOA in CH_3CN/H_2O (1:1, pH = 7.5).

Figure S14. Cyclic voltammograms of blank CH₃CN (blue), 15 equiv acetic acid in CH₃CN (red), and 15 equiv acetic acid and 1 equiv **6** (1 mM) in CH₃CN (black).

References

1. (a) W. C. Trogler, R. C. Stewart, L. A. EPPS and L. G. Marzilli, *Inorg. Chem.*, 1974, 13, 1564-1570.