Electronic Supporting Information

Intracellular detection of Cu²⁺ and S²⁻ ions through a quinazoline functionalized benzimidazole-based new fluorogenic differential chemosensor

Anup Paul,^a* Sellamuthu Anbu,^a Gunjan Sharma,^b Maxim L. Kuznetsov,^a Fátima C. Guedes

da Silva,^a Biplob Koch,^b Armando J. L. Pombeiro^a*

^aCentro de Química Estrutural, Complexo I, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa. Portugal. E-mail: <u>kanupual@gmail.com</u>, <u>pombeiro@tecnico.ulisboa.pt</u>

^bDepartment of Zoology, Faculty of Science, Banaras Hindu University, Varanasi - 221 005 (U.P.) India.

Contents:

1. Fig. S1, ¹ H spectrum of H_3L	S2
2. Fig. S2, ¹³ C NMR spectrum of H_3L	S2
3. Fig. S3, ESI-MS spectrum of H ₃ L	S3
4. Fig. S4, ESI-MS spectrum of H_2L -Cu ²⁺ in CH ₃ OH	S3
5. Fig. S5. Experimental and simulated of isotopic distribution of	S4
H_2L-Cu^{2+} at m/z = 467.76.	
6. Fig. S6, Spin density distribution in complex $[Cu(HR)(H_2O)]H_2O(d)$	S4
7. Fig. S7, pH effect on the fluorescence intensity of H_3L and H_2L - Cu^{2+}	S5
8. Fig. S8, UV-vis spectra of H_3L and H_2L-Cu^{2+}	S5
9. Fig. S9, Naked eye and fluorescence changes of H_3L with Cu^{2+} and CN^{-}	S 6
10. Fig. S10, Job's plot for H_3L and Cu^{2+} from absorption data	S6
11. Fig. S11, Time dependent fluorescence response of H_3L with Cu^{2+}	S7
12. Fig. S12, Job's plot for H_3L with Cu^{2+} from emission data	S7
13. Fig. S13 , Detection limit for Cu^{2+}	S8
14. Fig. S14, Interference of other anions in presence of H_2L-Cu^{2+}	S 8
15. Fig. S15 Change in the absorption intensity of H_2L - Cu^{2+} upon addition of CN-	S9
16. Fig. S16 Change in the fluorescence intensity of H_2L - Cu^{2+} upon addition of CN-	S9

ig. S17 , Detection limit for S^{2-}	S10
18. Fig. S18, Time dependent fluorescence response of H_2L-Cu^{2+} for CN-	S10
19. Fig. S19 ESI-MS spectrum of H_2L -Cu ²⁺ in presence of Na ₂ S	S11
20. Fig. S20, MTT assay for H_3L and H_2L - Cu^{2+} on DL cells	S11

References

Fig. S1. ¹H NMR NMR spectrum of H_3L recorded in DMSO-d₆.

Fig. S2. ¹³C NMR spectrum of H_3L recorded in DMSO-d₆.

Fig. S3. ESI-MS spectrum of H₃L in CH₃OH.

Fig. S4. ESI-MS spectrum of H_2L - Cu^{2+} in CH₃OH.

Fig. S5. Experimental and simulated¹ of isotopic distribution of $[Cu(Cl)(H_2L)(H_2O) + Na]^+$ at m/z = 467.76.

Fig. S6. Spin density distribution in complex [Cu(HL)(H₂O)]H₂O (d).

Fig. S7. pH effect on the fluorescence intensity of H_3L and H_2L-Cu^{2+} at $\lambda = 425$ nm ($\lambda_{ex} = 365$ nm) in DMF/0.02 M HEPES (1:1, v/v,) at different pH (*ca.* 3-12) medium.

Fig. S8. UV-vis absorption spectra of H_3L and H_2L - Cu^{2+} .

Fig. S9. Observed visual color changes in room light (A) and under UV (B) of probe H_3L upon addition of Cu²⁺ and S²⁻, respectively, in DMF/0.02 M HEPES (1:1, v/v, pH = 7.4) medium.

Fig. S10, Job's plot for H_3L and Cu^{2+} from absorption data at $\lambda = 425$ nm.

Fig. S11. Time dependent fluorescence response of H_3L at $\lambda = 425$ nm ($\lambda_{ex} = 365$ nm) (5 μ M; DMF/0.02 M HEPES (1:1, v/v, pH = 7.4) in presence of *ca*. 5 equiv. of Cu²⁺ (5 μ M).

Fig. S12. Job's plot for the fluorescence titration of H_3L with Cu^{2+} ions at $\lambda = 425$ nm ($\lambda_{ex} = 365$ nm).

Fig. S13. Cu^{2+} ion detection limit plot for the sensor H_3L . Concentration is in nM.

Fig. S14. Change in the absorbance of receptor H_2L - Cu^{2+} upon mixing with other anions.

Fig. S15. Change in the absorption intensity of H_2L-Cu^{2+} (5 μ M) upon gradual addition of CN⁻ solution in DMF/0.02 M HEPES (1:1, v/v, pH = 7.4) medium . Insets show the corresponding Benesi-Hildebrand plot.

Fig. S16. Change in the fluorescence intensity of H_2L-Cu^{2+} (5 µM) upon gradual addition of CN⁻ solution in DMF/0.02 M HEPES (1:1, v/v, pH = 7.4) medium. Insets show the titration curve of H_2L-Cu^{2+} vs. the ratio of CN⁻ and H_2L-Cu^{2+} concentrations at $\lambda = 425$ nm ($\lambda_{ex} = 365$ nm).

Fig. 17. S²⁻ ion detection limit plot for the sensor H_2L -Cu²⁺. Concentration is in μ M.

Fig. S18. Time dependent fluorescence response of H_2L-Cu^{2+} at $\lambda = 425$ nm ($\lambda_{ex} = 365$ nm) in DMF/0.02 M HEPES (1:1, v/v, pH = 7.4) medium in presence of *ca*. 3 equiv. of S²⁻.

Fig. S19. ESI-MS spectrum of H_2L - Cu^{2+} in presence of 2 equiv. of Na₂S obtained in negative mode in methanol.

Fig. S20. Cytotoxicity and cell proliferation effect of H_3L and H_2L-Cu^{2+} were tested by MTT assay. DL cells were incubated with 10 to 150 μ M concentrations of probes for 24 h.

References

1. Patiny, L.; Borel, A.; *Journal of Chemical Information and Modeling*, 2013. http://www.chemcalc.org