Supporting Information for:

A New Chiral Uranyl Phosphonate Framework Consisting of Achiral Building Units Gernerated from Ionothermal

Reaction: Structure and Spectroscopy Characterizations

Tao Zheng, ${ }^{\text {a,b, }}$ Yang Gao, ${ }^{\text {a,b, }}$ Lanhua Chen, ${ }^{\text {a,b }}$ Zhiyong Liu, ${ }^{\text {a,b }}$ Juan Diwu, ${ }^{*, a, b}$ Zhifang Chai, ${ }^{\text {a,b }}$ Thomas E. Albrecht-Schmitt, ${ }^{\text {c }}$ Shuao Wang*,a,b

a School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Jiangsu 215123, China.

b Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu 215123, China.
c Department of Chemistry and Biochemistry, Florida State University, 95 Chieftain Way, Tallahassee, Florida 32306, United States.

Contents:

S1. Synthesis of (1,3-phenylenebis(phosphonic acid) (1,3-pbpH ${ }_{4}$).

S2. Circular Dichroism (CD) spectrum and $\mathbf{C s}^{+}$and $\mathbf{S r}^{\mathbf{2 +}}$ exchange experiments of compound 1 .

S1. Synthesis of (1,3-phenylenebis(phosphonic acid) (1,3pbpH_{4}).

Materials: All chemicals used in the synthesis were obtained from commercial sources(J\&K Chemical, Sinopharm Chemical Reagent) and used without further purification. Infrared spectra of chemicals were recorded on a Thermo Nicolet IS50 spectrophotometer in ATR mode. ${ }^{1} \mathrm{H}$ NMR were measured with Unity INOVA 400 instruments.

Scheme S1.

Tetraethyl 1,3-benzenediphosphonate. 1,3-dibromobenzene ($19.5 \mathrm{~g}, 82.7 \mathrm{mmol}$) and 1,3diisopropylbenzene (40 mL) were heated to $180{ }^{\circ} \mathrm{C}$ for 20 min under nitrogen atmosphere, with stirring. Nickel(II) bromide ($2.34 \mathrm{~g}, 10.7 \mathrm{mmol}$) was added in the mixture. After 10 min , Triethyl phosphite ($45 \mathrm{~mL}, 260.8 \mathrm{mmol}$) was added dropwise. After 1 ml was added, waiting for nearly 30 min, the color of mixture was change from near-black to turquoise, finally into yellow. The left triethyl phosphite was added in 5 h . The reaction was hold for 24 h , and then cooled to room temperature. The residue was extracted by ethyl acetate $(100 \mathrm{~mL})$ and water $(100 \mathrm{~mL})$ for triple times. The organic phase was collected and the volatile components (ethyl acetate, 1,3diisopropylbenzene, and triethyl phosphite) were distilled off by vacuum. The brown oil-like residue was obtained. Chromatography of the residue was performed on a column of silica gel eluted with chloroform. Yellowish oil was finally obtained, with yield is $77.6 \%(22.5 \mathrm{~g}$, $64.2 \mathrm{mmol}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.19-8.12\left(1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}\right), 7.96-7.91\left(2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{2}\right), 7.54-$ $7.51\left(1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}\right), 4.15-3.99\left(8 \mathrm{H}, \mathrm{PO}-\mathrm{CH}_{2}-\mathrm{C}\right), 1.28-1.25\left(12 \mathrm{H}, \mathrm{PO}-\mathrm{C}-\mathrm{CH}_{3}\right)$.
(1,3-phenylenebis(phosphonic acid) (1,3-pbpH4). A mixture of tetraethyl 1,3benzenediphosphonate $(10.0 \mathrm{~g}, 28.6 \mathrm{mmol})$, concentrated hydrochloric acid (37 mL) was refluxed over a night. The solution was filtered and the filtrate was evaporated to yield $\mathbf{1 , 3 - \mathbf { p b p H }} \mathbf{4}^{(5.55 \mathrm{~g} \text {, }}$ 23.3 mmol) as a white solid. Yield: 81.5%. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): \delta 8.08-8.02\left(1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}\right), 7.92-$ $7.86\left(2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{2}\right), 7.61-7.57\left(1 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}\right)$,

Fig. S1 IR of Tetraethyl 1,3-benzenediphosphonate (up) and 1,3-phenylenebis(phosphonic acid) (bottom).

Fig. S2 ${ }^{1} \mathrm{H}$ NMR of Tetraethyl 1,3-benzenediphosphonate (up) and 1,3-phenylenebis(phosphonic acid) (bottom).

S2. Circular Dichroism (CD) spectrum and $\mathbf{C s}^{+}$and $\mathbf{S r}^{\mathbf{2 +}}$ exchange experiments of compound 1.

Fig. S3 Circular Dichroism of compound $\left[\mathrm{C}_{4} \mathrm{mim}\right]\left[\left(\mathrm{UO}_{2}\right)_{2}(\mathbf{1 , 3 - p b p H})(\mathbf{1 , 3 - p b p H}) \cdot \mathrm{Hmim}\right](\mathbf{1})$.

$\mathbf{C s}^{+}$and $\mathbf{S r}^{2+}$ exchange experiments:

Cs^{+}and Sr^{2+} exchange experiments were studied by soaking 2 mg of compound $\mathbf{1}$ in 0.5 M CsCl and SrCl_{2} water solution, respectively, which were put on a shaker. The EDS spectra were performed on the samples for desired contacting time 1,2 , and 5 days for Cs^{+}and 1,3 , and 5 days for Sr^{2+}. The EDS results show that the uptake of Cs^{+}is higher than Sr^{2+}, under similar conditions (Fig. S4 and S5), suggesting a decent exchange selectivity towards Cs^{+}possessed by compound 1. The mechanism accounting for such an unexpected selectivity is under further investigation .

Fig. S4 SEM images for EDS spectra of compound 1 soaking in 0.5 M CsCl solution for 0 (a), 1 (b), 2 (c), and 5 (d) days.

Fig. S5 EDS spectra from crystals of compound 1 soaking in 0.5 M CsCl solution for 0 (a), 1 (b), 2 (c), and 5 (d) days.

Table S1. Ratio of selected elements for Cs^{+}exchange experiments.

	0 Day		1 Day		2 Day		5 Day	
Element	Wt\%	At\%	Wt\%	At\%	Wt\%	At\%	Wt\%	At\%
NK	22.88	60.25	06.06	33.71	05.10	30.46	04.71	28.11
PK	26.56	31.62	12.95	32.58	12.19	32.90	13.16	35.49
UL	48.09	07.45	53.16	17.40	55.41	19.47	54.85	19.25
CsL	02.46	00.68	27.83	16.32	27.30	17.17	27.28	17.15
Matrix	Correction	ZAF						

Fig. S6 SEM images for EDS spectra of compound 1 soaking in $0.5 \mathrm{M} \mathrm{SrCl}_{2}$ solution for 0 (a), 1 (b), 3 (c), and 5 (d) days.

Fig. S7 EDS spectra from crystals of compound 1 soaking in $0.5 \mathrm{M} \mathrm{SrCl}_{2}$ solution for 0 (a), 1 (b), 3 (c), and 5 (d) days.

Table S2. Ratio of selected elements for Sr^{2+} exchange experiments.

	0 Day		1 Day		3 Day		5 Day	
Element	Wt\%	At\%	Wt\%	At\%	Wt\%	At\%	Wt\%	At\%
NK	23.04	59.78	24.06	60.26	03.98	27.31	04.83	32.96
$P K$	27.27	32.00	26.31	29.81	10.16	31.58	08.34	25.73
$\boldsymbol{U L}$	47.28	07.22	39.29	05.79	76.65	30.99	77.44	31.07
SrK	02.42	01.00	10.34	04.14	09.21	10.12	09.39	10.23
Matrix	Correction	ZAF						

