Supporting Information.

Polyphosphazenes for the Stille reaction: A new type of recyclable stannyl reagents.

Sheila Martínez-Arranz, David Presa Soto, Gabino A. Carriedo,* Alejandro Presa Soto,* Ana C. Albéniz.*

- 1- Additional Stille-coupling experiments and data
- 2- NMR spectra of polyphosphazenes.
- 3- NMR spectra of cross-coupling products.

1- Additional Stille-coupling experiments.

Entry	[Pd]	Solvent	Time (h)	Conversion /Yield (%) ^b	
1	$[Dd(DDh_1)]$	Toluono	5	62/47	
1	[ru(rrii3)4]	Toluelle	ent Time (h) Conve 5 ene 18 5 5 5 5 5 5 5 5 5 5 5 5 5	71/50	
2	[PdC]2dppf]c	Toluene	5	32/21	
Z	լ սելչսիրդ-	Toluelle	18	43/27	
3	$[PdCl_2{P(o-Me-C_6H_4)_3}_2]^d$	Toluene	5	23/23	
		Ioluelle	18	33/23	
	[Dd(DDha).]	DMA	5	95/68	
40	נרטנררווז)4]	DWA	18	95/68	
5e	[Pd(PPh ₃) ₄]	CD₂CN	5 31/25		
		CD3CN	18	33/27	

Table S1. Stille coupling of C₆H₅I and 3 with different catalysts and reaction conditions.^a

a) The reactions were carried out at 100 °C unless otherwise noted. The molar ratio of reagents used was $3:C_6H_3|:[Pd]=25:20:1.$ b) Conversions and crude yields were determined by integration of ¹H NMR signals. c) Catalyst prepared as reported before: T. Hayashi, M. Konishi, Y. Kobori, M. Kumada, T. Higuchi, K. Hirotsa. J. Am. Chem. Soc. 1984, **106**, 158. d) Catalyst prepared as reported before: J. Chatt, F. G. Mann, J. Chem. Soc. 1939, 1622. e) Reaction temperature 90 °C.

Entry	R ¹ X	PP (PP: R ¹ X) ^b	Time (h)	Conv. (%)¢	R1-An (%)°	R1- R1 (%)c	R1-H (%)°
1	PhI	3 (1.25:1)	18	87	68	12	7
2	p-CHOC ₆ H ₄ I	3 (1.25:1)	18	100	93	7	
3d,e	C_6F_5I	3 (1.25:1)	5	50	40	-	10
4 ^d	p-F3CC6H4I	3 (1.25:1)	5	87	75	9	4
5 ^d	p-MeOC ₆ H ₄ I	3 (1.25:1)	5	86	86	-	-
6 ^f	CH ₂ =CHCH ₂ Cl	3 (1.1:1)	5	100	100	-	-
7	PhI	6 (2:1)	48	87	68	19	-
8	p-F ₃ CC ₆ H ₄ I	6 (2:1)	44	100	91	5	4
9 f	CH ₂ =CHCH ₂ Cl	6 (2:1)	5	100	100	-	-

Table S2. Stille reactions using polymers 3 or 6 as reagents.^a

a) The reactions were carried out in DMA at 90 °C, using $[Pd(PPh_3)_a]$ as catalyst (5% mol Pd) unless otherwise noted. b) Molar ratio. c) Conversions and crude mol-based yields were determined by integration of ¹H or ¹⁹F NMR signals. The experiments where the spectra showed some signal overlap for the reaction mixtures (entries 1, 5 and 7) were repeated using an internal standard (1,3,5-(CF₃)C₆H₃) and led to similar yield values (75%, 87% and 72% for entries 1, 5, and 7 respectively).d) [PdBrPf(AsPh_3)₂] was used as catalyst. e) Dioxane as solvent and 100 °C. The yield did not improve upon increasing the reaction time. f) The reaction was carried out in THF at 50 °C, using $[Pd(\mu-Cl)(\eta^3-C_3H_5)]_2$ as catalyst (1% mol Pd) and benzoquinone (1% mol).

Cycle	Conv. (%) ^b	Recovered PP-SnBu2X (yield %)	R ¹ -R ² (crude yield, %) ^b	R ¹ - H ^b	R ¹ - R ^{1 b}	R ¹ -R ² (isolated yield, %)
1	76	71	64	5	7	41
2	64	74	40	12	12	35
3	66	82	45	10	11	31
4 ^d	81	87	55	14	12	40
5	100	91	50	34	16	37
6	100	92	66	28	6	37
7e	84	91	79	3	2	63
8e	64	90	47	8	9	43
9f	70	98	54	9	7	48

Table S3. Recycling experiments for the Stille coupling of C₆H₅I and polymer 3.^a

a) The reactions were carried out in DMA at 90 °C for 24 h using $[Pd(PPh_3)_4]$ as catalyst. The molar ratio of reagents used was **3**:C₆H₅I:[Pd]=25:20:1. b) Conversions and mol-based crude yields were determined by integration of ¹H NMR signals. c) Determined by ICP-MS on samples of the coupling product obtained by evaporation of the solvents and filtration through silica (see Experimental part). d) The molar ratio of reagents was changed to **3**:C₆H₅I:[Pd]=40:20:1. e) No catalyst added. f) The amount of catalyst used is 0.5% mol.

Cycle	R1- Conve (crude y 24 h	R² ersion ield %)⁵ ≥ 48 h	Recovered PP-SnBu2X (Yield %)	R ¹ - H ^b	R ¹ - R ^{1 b}	R ¹ -R ² (Isolated yield, %)	Sn in R1-R2 % weight¢
1	100(81)	-	78	10	9	69	0.0002
2	100(82)	-	82	9	9	65	0.00061
3	100(77)	-	94	9	14	60	0.00024
4	77(58)	80(60)	92	5/6	14/14	42	0.00067
5	32(17)	48(22) ^d	89	-/-	15/26	-	0.0089
6	30(25)	64(40) ^e	88	-/7	5/17	-	0.0066
7	35(18)	43(19) ^e	86	-/-	17/24	-	0.0219

Table S4. Recycling experiments for the Stille coupling of p-CF₃C₆H₄I and polymer **6**.^a

a) The reactions were carried out in DMA at 90° C using $[Pd(PPh_3)_4]$ as catalyst. The molar ratio of reagents used was **6**:p-CF₃C₆H₄!:[Pd]=40:20:1. b) Conversions and mol-based crude yields were determined by integration of ¹⁹F NMR signals. c) Determined by ICP-MS on samples of the coupling product obtained by evaporation of the solvents and filtration through silica (see Experimental part). d) Reaction time 4 days. e) Reaction time 3 days.

¹H NMR spectrum of the isolated p-CF₃C₆H₄-C₆H₄p-OMe (Entry 1, Table 3) in CDCl₃

 $^{19}{\rm F}$ NMR spectrum of the isolated $p\text{-}{\rm CF_3C_6H_4}\text{-}{\rm C_6H_4}p\text{-}{\rm OMe}$ (Entry 1, Table 3) in ${\rm CDCl_3}$

* Only the signals used for quantification are labeled

* Only the signals used for quantification are shown

* Only the signals used for quantification are labeled

 $^{19}\mathsf{F}\,\mathsf{NMR}\,$ spectrum of the crude mixture in DMA (acetone-d_6 capillary): Entry 4, Table 1

 ^1H NMR spectrum of the crude mixture in DMA (acetone-d_6 capillary): Entry 5, Table 1*

^{*} Only the signals used for quantification are labeled

 1 H NMR spectrum of the crude mixture in DMA (acetone-d₆ capillary): Entry 7, Table 1*

* Only the signals used for quantification are labeled

 19 F NMR spectrum of the crude mixture in DMA (acetone-d₆ capillary): Entry 8, Table 1

* Only the signals used for quantification are labeled