	10 mM	25 mM	500 mM	1000 mM		
	% of Total Copper					
Cu ^I	16	4	0	0		
Cu ^I (MeCN)	68	43	2	1		
Cu ^I (MeCN) ₂	16	51	56	40		
Cu ^I (MeCN) ₃	0	2	42	59		
Average CN [‡]	1.0	1.5	2.4	2.6		

Table S1. Distribution of Cu⁺-MeCN complexes at various concentrations of acetonitrile, based on stability constants reported by Kamau and Jordan.¹

[‡]CN = coordination number

Table S2. Average best fits of the experimental ITC data for BCA/ Cu^+ titrations in 25 mM Tris pH 8.0 and 25 mM MeCN to a one-site model.

_						
	[NaCl]	[NaNO ₃]	n	$\Delta \mathrm{H}$	K	
_	(mM)	(mM)		(kJ mol ⁻¹)	$(x \ 10^6)$	
	100	0	2.02 ± 0.01	-27.0 ± 0.2	2.0 ± 0.3	
	75	25	1.91 ± 0.04	-27.9 ± 0.7	4.9 ± 0.9	
	50	50	2.14 ± 0.06	-27.4 ± 0.5	3.6 ± 0.3	
	25	75	1.91 ± 0.04	-27.9 ± 0.7	4.9 ± 0.9	
	0‡	100	1.98 ± 0.03	-28.0 ± 0.4	3 ± 1	

[‡]Although care was taken to eliminate all chloride sources, residual chloride (equimolar to $Cu^+ \approx 100 \ \mu\text{M}$, but diluted during the titration) is present from the CuCl₂ salt used in the comproportionation reaction.

Table S3. Sequential and overall thermodynamic parameters for ligands binding to Cu⁺ in 25 mM MeCN, 100 mM NaCl and 25 mM Tris at pH 8.0 and 25 °C. Values are in kJ mol⁻¹.

	Site 1 Cu ^I + L ≓ Cu ^I L			Site 2 $Cu^{I}L + L \rightleftharpoons Cu^{I}L_{2}$			Overall Cu ^I + 2L ≓ Cu ^I L ₂		
	ΔG	ΔH	-TΔS	ΔG	ΔH	-TΔS	ΔG	ΔH	-TΔS
BCA	-36.0 ± 0.2	-27.0 ± 0.2	-9.0 ± 0.3	-36.0 ± 0.2	-27.0 ± 0.2	-2.19 ± 0.04	-71.9 ± 0.4	-54.0 ± 0.3	-17.9 ± 0.4
BCS	-47 ± 1	-33 ± 1	- 14 ± 1	-43.39 ± 0.06	-42 ± 2	-1 ± 2	- 90 ± 1	-75 ± 1	-15 ± 2
GSH*	-34.90 ± 0.01	$-79.9 \pm 0.7^{\ddagger}$	45.0 ± 0.7		-	-	-	-	-

*GSH data in Tris at pH 8.0 showed no evidence of a 2nd binding event.

[‡]The heat of Tris protonation is subtracted from the enthalpy term.

Figure S1. Representative ITC titration of 250 μ M Cu⁺ into 60 μ M BCA in 25 mM HEPES, 100 mM NaCl and 25 mM MeCN at pH 7.0 and 25 °C on a TA Instruments Nano ITC. The red line indicates the best fit using a one-site binding model (n = 0.51 ± 0.01, K = 1.5 ± 0.4 x 10⁶, Δ H = -72 ± 2 kJ mol⁻¹. The right panel shows the data fit using the 2 symmetric sites model (A + B + B < --> AB + B < --> ABB) in SEDPHAT² with the direction set to A into B. K₁ = 1.45 x10⁶, Δ H₁ = -35.3 kJ mol⁻¹, K₂ = 6.08 x10⁵, Δ H₂ = -35.8 kJ mol⁻¹.

Sample Equilibrium Calculation: BCS \rightarrow Cu^I(Me₆Trien)⁺

Relevant Conditions:

pH 7.4 $[H^+] = 3.98 \times 10^{-8} \text{ M}$ $[Me_6 \text{Trien}]_{\text{total}} = 5 \text{ mM} = 0.005 \text{ M}$ $pKa_1 = 9.19 \qquad K_1 = 10^{9.19} = 1.55 \times 10^9 \text{ (K}_1 = \text{acid Association, not dissociation } H + L \Rightarrow HL)$ $pKa_2 = 8.38 \qquad K_2 = 10^{8.38} = 2.40 \times 10^8 \text{ (K}_2 = \text{acid Association, not dissociation } H + HL \Rightarrow H_2L)$ $\beta_2 = K_1 K_2 = 3.715 \times 10^{17} \qquad (2H + L \Rightarrow H_2L)$ $K'_{\text{ITC}} = 1.53 \times 10^5 \text{ (From data in Figure 7A) - this is for each binding event. } K_{\text{ITC}} \text{ for the overall}$ $process = K'_{\text{ITC}}^2 \qquad K_{\text{ITC}} = (1.53 \times 10^5)^2 = 2.89 \times 10^{10}$

 $K_{Cu-BCA} = 3.16 \times 10^{17}$ (Literature Value³)

Calculating proton competition (α):

$$\alpha = \sum_{n=0}^{l} \left(\beta_n [X]^n \right)$$

 $\alpha = 1 + 1.55x10^{9} [3.98x10^{-8}] + 3.715x10^{17} [3.98x10^{-8}]^{2}$

 $\alpha = 1 + 61.66 + 588.84 = 651.5$

Calculating [Me₆Trien] (this is the fully deprotonated form that binds to Cu^+) – this approach can be used for any ligand (e.g. the pH-dependent calculation for GSH)

$$[Me_{6}Trien]_{total} = [Me_{6}Trien] + [H_{1}Me_{6}Trien] + [H_{2}Me_{6}Trien]$$
$$[Me_{6}Trien]_{total} = [Me_{6}Trien](1 + K_{1}[H^{+}] + \beta_{2}[H^{+}]^{2}) = [Me_{6}Trien] \times \alpha$$
$$[Me_{6}Trien]_{total} = 0.005$$

$$[Me_6Trien] = \frac{[Me_6Trien]_{total}}{\alpha} = \frac{0.005}{651.5} = 7.67x10^{-6}M$$

$$K_{Cu-BCA} = K_{ITC} \left(1 + \frac{[Me_6 Trien]_{total}}{\alpha} K_{CuMe_6 Trien} \right)$$

$$3.16x10^{17} = 2.89x10^{10} \left(1 + \frac{0.005}{651.5} K_{CuMe_6Trien} \right)$$
$$1.09x10^7 = 1 + \frac{0.005}{651.5} K_{CuMe_6Trien}$$
$$K_{CuMe_6Trien} = 1.43x10^{12}$$

The condition-dependent K can be calculated from this:

$$K_{pH\,7.4} = \frac{K_{CuMe_6Trien}}{\alpha_{pH\,7.4}} = \frac{1.43x10^{12}}{651.5} = 2.19x10^9$$

When Considering the MeCN/Cl- competition determined in this study (Q = 65000), the apparent K_{ITC} for $Cu^+ \rightarrow Me_6$ Trien in 25 mM MeCN and 100 mM Cl⁻ would be:

$$K_{expected} = \frac{K_{pH7.4}}{Q_{MeCN/Cl}} = \frac{2.19x10^9}{65000} = 3.4x10^4$$

This value is at the very bottom of the measurable window for ITC (and well below the recommended range).⁴ This is consistent with our observation of no clear evidence for binding in the Cu \rightarrow Me₆Trien titration data.

$$c = nK[Macromolecule] = 1 \times 3.4 \times 10^4 \times 5 \times 10^{-5} = 1.6$$

Calculating ΔH for Cu^I(MeCN)_x \rightarrow Me₆Trien from Cu^IMe₆Trien \rightarrow BCA

Thermodynamic Cycle:

	Reaction (contribution to measured heat)	n	∆H (kJ mol⁻¹)	n∆H (kJ mol⁻¹)
1	Cu'Me6Trien + xMeCN ≓ Cu'(MeCN) _x + Me₀Trien	1	Х	Х
2	Me₅Trien + H⁺ ≓ Me₅Trien-H (pKa 9.19)	0.984	-28.03	-27.584
3	Me ₆ Trien-H + H⁺ ≓ Me ₆ Trien-2H (pKa 8.38)	0.805	-30.125	-27.2629
4	$HEPES\text{-}H \ \rightleftharpoons \ HEPES\text{+}H^{+}$	1.889	21.422	+40.467
5	$Cu^{I}(MeCN)_{x} + 2 BCA \rightleftharpoons Cu(BCA)_{2} + xMeCN$	2	-27	-54
Net	Net Reaction (ΔH_{ITC} from Table 4)	1.92	-30	-57.6

 $\mathsf{X} = -57.6 \text{-} (-54 \text{+} 40.467 \text{-} 27.263 \text{-} 27.584) = 10.78$

 $\Delta H_{CulMe6Trien}$ = -X = -10.78 kJ mol⁻¹

From BCS data – only line 5 and Net change:

	Reaction (contribution to measured heat)	n	∆H (kJ mol⁻¹)	n∆H (kJ mol⁻¹)
1	Cu ⁱ Me6Trien + xMeCN ⇒ Cu ⁱ (MeCN) _x + Me ₆ Trien	1	Х	Х
2	Me₅Trien + H⁺ ≓ Me₅Trien-H (pKa 9.19)	0.984	-28.03	-27.584
3	Me ₆ Trien-H + H⁺ ≓ Me ₆ Trien-2H (pKa 8.38)	0.805	-30.125	-27.2629
4	$HEPES\text{-}H \ \rightleftharpoons \ HEPES + H^{+}$	1.889	21.422	+40.467
5	$Cu^{I}(MeCN)_{x} + 2 BCS \rightleftharpoons Cu(BCS)_{2} + xMeCN$	2	-37	-74
Net	Net Reaction (ΔH_{ITC} from Table 4)	2.12	-31	-65.72

X = -65.72 - (-74 + 40.467 - 27.263 - 27.584) = 22.66

 $\Delta H_{CulMe6Trien}$ = -X = -22.66 kJ mol⁻¹

- (1) Kamau, P.; Jordan, R. B. *Inorganic Chemistry* **2001**, *40*, 3879.
- (2) Zhao, H.; Piszczek, G.; Schuck, P. *Methods* **2015**, *76*, 137.

(3) Bagchi, P.; Morgan, M. T.; Bacsa, J.; Fahrni, C. J. *Journal of the American Chemical Society* **2013**, *135*, 18549.

(4) Hansen, L. D.; Fellingham, G. W.; Russell, D. J. Analytical Biochemistry **2011**, 409, 220.