Supporting Information

Reduction of Dichloro(diaza-phospha)stibanes – **Isolation of a Donor-stabilized Distibenium Dication**

Alexander Hinz, Julia Rothe, Axel Schulz,* and Alexander Villinger

This file includes:

1. General Information	3
2. Syntheses	4
2.1. Synthesis of solvent-free Ter ₂ N ₂ PK	4
2.2. Synthesis of Ter ₂ N ₂ PSbCl ₂	4
2.3. Synthesis of [Ter ₂ N ₂ PSbCl][GaCl ₄]	6
2.4. Attempted Synthesis of Ter ₂ N ₂ PSb – Formation of [(TerN) ₂ P]MgCl·THF	7
2.5. Synthesis of [(Ter ₂ N ₂ PSb) ₂]	
3. Crystallographic Data	
3.1. Numbering scheme of 2	
3.2. Numbering scheme of 3	
3.3. Numbering scheme of 4	14
3.4. Numbering scheme of 5	
3.5. Numbering scheme of 6	
4. Computational Details	
4.1. NPN salts (1, 4) – charge transfer	
4.1.1. NBO analysis for K[P(NPh) ₂]	
4.1.2. Optimized geometry for K[P(NPh) ₂]	
4.1.3. NBO analysis for Li[P(NPh) ₂]	
4.1.4. Optimized geometry for Li[P(NPh) ₂]	
4.1.5. NBO analysis for MgCl[P(NPh) ₂]	
4.1.6. Optimized geometry for MgCl[P(NPh) ₂]·THF	
4.2. Isomers of 2	
4.2.1. Optimized geometry for 2	
4.2.2. Optimized geometry for Int1	

4.2.3. Optimized geometry for trans-[ClSb(µ-NTer) ₂ PCl]
4.2.4. Optimized geometry for cis-[ClSb(µ-NTer) ₂ PCl]
4.2.5. Optimized geometry for TS1
4.2.6. Optimized geometry for TS2
4.2.7. Optimized geometry for TS3
4.2.8. Optimized geometry for TS4
4.2.9. Optimized geometry for TS5
4.3. Phosphenium ion vs. stibenium ion (3)
4.3.1. Optimized geometry for [ClSb(μ-NTer) ₂ P] ⁺
4.3.2. Optimized geometry for [Sb(μ-NTer) ₂ PCl] ⁺
4.4. Biradical character of [P(μ-NPh) ₂ Sb]
4.4.1. Frontier orbitals of [P(μ-NPh) ₂ Sb]
4.4.2. CASSCF computations
4.4.3. Optimized geometry for [Sb(μ-NTer) ₂ P]38
4.5. Bonding situation in the distibenium dication (6)
4.5.1. NBO analysis for [Sb(μ-NPh) ₂ P] ₂ 42
4.5.2. Isomers of $[Sb(\mu-NPh)_2P]_2$ and $[P_4(NPh)_4]$
4.5.3. Geometry for [Sb(μ-NPh) ₂ P] ₂ 47
5. References

1. General Information

All manipulations were carried out under oxygen- and moisture free conditions using standard Schlenk and Drybox techniques. $[(TerN)_2P]K\cdot DME^{[1]}$ and $KC_8^{[2]}$ were prepared according to literature procedures. Fluorobenzene was dried over CaH₂, distilled and degassed prior to use. Diethyl ether, THF, toluene and benzene were dried over Na/benzophenone and freshly distilled prior to use. Dichloromethane was purified according to a literature procedure,^[3] consecutively dried over P₄O₁₀ and CaH₂ and freshly distilled prior to use. SbCl₃ was purified by sublimation.

NMR: ³¹P{¹H}, ¹³C{¹H} and ¹H NMR spectra were recorded on BRUKER spectrometers AVANCE 250, AVANCE 300 and AVANCE 500, respectively. The ¹H and ¹³C NMR chemical shifts were referenced to the solvent signals (CDHCl₂: δ (¹H) = 5.32; δ (¹³C) = 53.84).^[4] The ³¹P NMR chemical shifts are referred to H₃PO₄ (85%) respectively. CD₂Cl₂ was dried over P₄O₁₀ and was degassed prior to use. C₆D₆ was dried over Na and freshly distilled prior to use.

CHN analysis: Analysator Flash EA 1112 from Thermo Quest.

IR: Nicolet 380 FT-IR with a Smart Orbit ATR module.

RAMAN: LabRAM HR 800 Horiba Jobin YVON equipped with a High Stability BX40 Microscope (Focus 1 μ m) or an Olympus Mplan 50xNA 0.70 lens, the laser is variable and was chosen prior to the measurement.

DSC: DSC 823e from Mettler-Toledo (Heating rate 5 °C/min).

MS: Finnigan MAT 95-XP from Thermo Electron was used.

X-ray Structure Determination: X-ray quality crystals of all compounds were selected in Fomblin YR-1800 perfluoroether (Alfa Aesar) at ambient temperatures. The samples were cooled to 173(2) K during measurement. The data were collected on a Bruker Apex Kappa-II CCD diffractometer or on a Bruker-Nonius Apex X8 CCD diffractometer using graphite monochromated Mo K_a radiation ($\lambda = 0.71073$). The structures were solved by direct methods (*SHELXS-2013*)^[5] and refined by full-matrix least squares procedures (*SHELXL-2013*).^[6] Semi-empirical absorption corrections were applied (SADABS).^[7] All non-hydrogen atoms were refined anisotropically, hydrogen atoms were included in the refinement at calculated positions using a riding model.

2. Syntheses

2.1. Synthesis of solvent-free K[(TerN)₂P]

A suspension of TerNPN(H)Ter (6.173 g, 8.99 mmol) and potassium (0.703 g, 17.97 mmol) was refluxed in toluene (30 ml) for three days. The resulting brownish suspension was cooled to ambient temperature and filtered through a sintered glass frit. The filtrate was concentrated to incipient crystallization. Pale yellowish crystals of K[(TerN)₂P] were obtained in 65% yield (4.234 g, 5.84 mmol).

¹**H NMR** (298 K, C₆D₆, 250.1 MHz): 2.03 (s, 24 H, *o*-CH₃), 2.27 (s, 12 H, *p*-CH₃), 6.75 (s, 8 H, *m*-CH_{Mes}), 6.78-6.91 (m, 6 H, CH). ³¹**P NMR** (298 K, C₆D₆, 121.5 MHz): 323.6 (s).

2.2. Synthesis of Ter₂N₂PSbCl₂

sum formula: $C_{48}H_{50}N_2PSbCl_2$ mw: 878.56

188 mg K[(TerN)₂P] (0.259 mmol) were dissolved in 5 ml toluene. To the yellow solution, a solution of 60 mg SbCl₃ (0.263 mml) in 3 ml toluene was added. The solution became turbid after a frew minutes and was stirred for 3 hours to ensure completion of the reaction. The solution was filtered over a sinter padded with kieselguhr (Celite, G4) and the residue was washed with further 3 ml of toluene. The filtrate was concentrated to incipient crystallization (~ 1 ml) and left undisturbed overnight at 4 °C, resulting in the deposition of yellow crystals. The mother liquor was removed via syringe and the crystals were dried in vacuo, yielding 163 mg (0.186 mmol, 72%) of the product.

Mp: 215 °C (dec.). **EA** for $C_{48}H_{50}N_2PSbCl_2$ found (calc.): C 65.03 (65.62), H 5.78 (5.74), N 3.26 (3.19). ¹**H NMR** (298 K, C₆D₆, 250.1 MHz): 2.08 (s, 24 H, *o*-CH₃), 2.24 (s, 12 H, *p*-CH₃), 6.81 (s, 8 H, *m*-CH_{Mes}), 6.83-6.91 (m, 6 H, CH). ³¹**P NMR** (298 K, C₆D₆, 121.5 MHz): 331.5 (br s). **IR** (ATR, cm⁻¹): 2943 (w), 12914 (m), 2852 (w), 2731 (vw), 1610 (m), 1574 (w), 1481 (w), 1435 (m), 1404 (s), 1377 (m), 1288 (w), 1265 (vw), 1223 (vs), 1186 (w), 1159 (vw), 1099 (vw), 1080 (m), 1032 (w), 1009 (m), 964 (m), 941 (w), 895 (w), 847 (s), 827 (m), 796 (s), 777 (vw), 766 (w), 754 (s), 737 (m), 675 (m), 652 (vw), 625 (w), 598 (w), 565 (w), 548 (w), 538 (w). **Raman** (632 nm, cm⁻¹): 3048 (8), 3015 (7), 2917 (19), 2857 (5), 2734 (2), 1610 (12), 1579 (16), 1480 (5), 1413 (49), 1379 (9), 1342 (3), 1300 (37), 1288 (100), 1251 (6), 1185 (4), 1165 (4), 1159 (4), 1088 (13), 1009 (9), 969 (3), 943 (4), 825 (5), 795 (3), 787 (2), 757 (4), 739 (5), 674 (6), 595 (3), 576 (22), 556 (18), 538 (3), 522 (4), 515 (4), 485 (1), 475 (1), 419 (8), 396 (8), 380 (4), 336 (24), 308 (5), 279 (11), 269 (12), 244 (6), 232 (5), 220 (4). **MS** (CI, pos., *iso*-butane) m/z (%): 330 (70) [TerNH₃]⁺, 386 (17) [TerNH₂+C₄H₉]⁺, 687 (44) [Ter₂N₂PH]⁺, 705 (49) [M]⁺, 743 (11) [M]⁺, 823 (13) [M]⁺, 843 (100) [M-CI]⁺, 861 (41), 878 (16) [M]⁺.

Figure S1. ³¹P NMR spectra of **2** at various temperatures (top: 100 °C, bottom: -80 °C, 10 K steps, cf. computed NMR shifts: **2**+332, cis +242, trans +262 ppm).

2.3. Synthesis of [Ter₂N₂PSbCl][GaCl₄]

sum formula: $C_{48}H_{50}N_2PSbGaCl_5$ mw: 1054.65

To a solution of $[\text{Ter}_2\text{N}_2\text{PSbCl}_2]$ (191 mg, 0.217 mmol) in dichloromethane (4 ml), a solution of GaCl₃ (39 mg, 0.221 mmol) is added dropwise at -80 °C. The initially yellow solution immediately turns red and is stirred for further 15 minutes at the same temperature before being warmed to 20 °C. The solution is then concentrated until crystallization commences (~ 0.5 ml) and left undisturbed overnight, which leads to the formation of red needle-shaped crystals (168 mg, 0.159 mmol, 73%). Crystals suitable for X-ray structure elucidation were obtained by repeated recrystallization from dichloromethane between 25 °C and 4 °C.

Mp: 258 °C (dec.). **EA** for C₄₈H₅₀N₂PSbGaCl₅ found (calc.): C 54.53 (54.66), H 5.48 (4.78), N 2.93 (2.66). ¹**H NMR** (298 K, CD₂Cl₂, 250.1 MHz): 1.90 (s, 24 H, *o*-CH₃), 2.44 (s, 12 H, *p*-CH₃), 7.03 (d, ³J_{HH} = 7.7 Hz, 4 H, *m*-CH), 7.06 (s, 8 H, *m*-CH_{Mes}), 7.28 (t, ³J_{HH} = 7.7 Hz, 2 H, *p*-CH). ¹³C{¹**H**} **NMR** (298 K, CD₂Cl₂, 62.9 MHz): 20.62 (s, CH₃), 20.91 (s, CH₃), 21.65 (s, CH₃), 127.18 (s, CH), 131.05 (s, CH), 131.20 (s, CH), 131.48 (d, $J_{CP} = 4.4$ Hz), 131.54 (s, CH), 131.68 (s, CH), 133.89 3.3 (d, $J_{CP} = 3.3$ Hz), 133.93 (s), 134.74 (s), 138.59 (d, $J_{CP} = 2.7$ Hz), 139.26 (d, $J_{CP} = 2.8$ Hz), 142.08 (s). ³¹**P NMR** (298 K, CD₂Cl₂, 121.5 MHz): 374.0 (s). **IR** (ATR, cm⁻¹): 2949 (vw), 2920 (w), 2856 (w), 2731 (vw), 1608 (m), 1564 (vw), 1477 (w), 1441 (m), 1410 (s), 1377 (m), 1296 (w), 1269 (vw), 1227 (s), 1140 (m), 1076 (m), 1028 (w), 1014 (m), 991 (w), 960 (s), 941 (w), 852 (sh), 841 (s), 804 (s), 768 (w), 754 (s), 739 (vw), 681 (m), 658 (w), 648 (m), 590 (m), 575 (w), 565 (m), 557 (w), 549 (m), 534 (m), 526 (w). **Raman** (632, 473 nm, cm⁻¹): – decomposition/fluorescence. **MS** (CI, pos., *iso*-butane) m/z (%): 330 (100) [TerNH₃]⁺, 372 (10), 386 (24) [TerNH₂+C₄H₉]⁺, 687 (40) [Ter₂N₂PH₂]⁺, 705 (58), 761 (5), 823 (12), 843 (3) [Ter₂N₂PSbCl]⁺, 859 (34), 1029 (14).

2.4. Attempted Synthesis of Ter₂N₂PSb – Formation of [(TerN)₂P]MgCl·THF

[Ter₂N₂PSbCl₂] (200 mg, 0.228 mmol) and magnesium turnings (80 mg) were combined in a flask. To this mixture, 10 ml THF were added and the suspension was stirred overnight at ambient temperature with a glas stirring bar. Out of the initially yellow solution a black precipitate was formed. Volatiles were removed in vacuo and the residue was extracted with 10 ml benzene and washed with additional 3 ml benzene. The combined filtrate was concentrated to incipient crystallization (approx. 2 ml) and left undisturbed overnight, resulting in the deposition of light yellow crystals. The supernatant was removed via syringe and the crystals were dried in vacuo (130 mg, 0.159 mmol, 70%).

Mp: 110 °C (dec.). EA for C₅₂H₅₈N₂PMgClO found (calc.): C 75.92 (76.37), H 7.36 (7.15), N 3.14 (3.43). ¹H NMR (298 K, C₆D₆, 250.1 MHz): 1.21 (m, 4 H, OCH₂CH₂), 1.98 (s, 12 H, o-CH₃), 2.03 (s, 12 H, o-CH₃), 2.23 (s, 12 H, p-CH₃), 3.21 (m, 4 H, OCH₂CH₂), 6.80-6.89 (m, 6 H, *m*-/*p*-CH), 6.87 (s, 8 H, *m*-CH_{Mes}). ¹³C{¹H} NMR (298 K, C₆D₆, 62.9 MHz): 21.61 (s, CH₃), 21.66 (s, CH₃), 21.83 (s, CH₃), 25.22 (s, OCH₂CH₂), 70.47 (s, OCH₂CH₂), 122.69 (s, CH), 128.92 (s, CH), 129.18 (s, CH), 129.80 (s, CH), 130.22 (s), 134.15 (d, $J_{CP} = 6.6$ Hz), 137.30 (d, $J_{CP} = 13.7$ Hz), 137.47 (s), 138.17 (d, $J_{CP} = 1.6$ Hz), 143.84 (d, $J_{CP} = 9.9$ Hz). ³¹P **NMR** (298 K, C₆D₆, 121.5 MHz): 351.8 (s). **IR** (ATR, cm⁻¹): 540 (m), 549 (m), 555 (m), 567 (m), 601 (m), 630 (m), 649 (m), 676 (s), 738 (s), 756 (s), 773 (m), 800 (s), 837 (s), 846 (vs), 883 (m), 916 (m), 985 (vs), 1006 (s), 1029 (s), 1081 (s), 1182 (m), 1236 (vs), 1286 (w), 1373 (m), 1405 (s), 1434 (s), 1479 (m), 1579 (w), 1610 (m), 2728 (w), 2854 (m), 2914 (m), 2946 (m), 3025 (w). Raman (632, 473 nm, cm⁻¹): 153 (5), 205 (1), 233 (23), 265 (14), 335 (10), 374 (4), 383 (7), 392 (10), 415 (3), 449 (2), 476 (9), 492 (3), 503 (10), 509 (7), 521 (18), 538 (12), 557 (21), 573 (21), 593 (6), 602 (3), 630 (1), 651 (16), 675 (16), 691 (2), 737 (4), 755 (24), 782 (2), 788 (6), 800 (19), 836 (29), 883 (3), 911 (1), 916 (1), 943 (2), 961 (1), 985 (49), 1004 (19), 1086 (28), 1099 (5), 1165 (2), 1185 (2), 1248 (5), 1285 (100), 1299 (26), 1377 (7), 1381 (8), 1417 (53), 1479 (4), 1582 (17), 1610 (3), 2725 (1), 2852 (1), 2916 (1), 2946 (1), 3001 (1), 3041 (1).

2.5. Synthesis of [(Ter₂N₂PSb)₂]

 $[Ter_2N_2PSbCl_2]$ (215 mg, 0.245 mmol) were dissolved in 5 ml benzene while stirring with a glas stirring bar. To the solution, KC₈ (70 mg, 0.518 mmol) was added. The solution adopted a dark green colour after 5 minutes. To ensure completion of the reaction, the suspension was stirred for 3 hours at ambient temperature. The suspension was filtered over a sinter padded with kieselguhr (Celite) and the residue was washed with another 2 ml benzene. The combined filtrate was concentrated to incipient crystallization (approx. 1 ml) and left undisturbed overnight. Orange block-shaped crystals were obtained. The supernatant was removed via syringe and the crystals were dried in vacuo (43 mg, 0.027 mmol, 22%).

Mp: 110 °C (dec.). EA for C₉₆H₁₀₀N₄P₂Sb₂ found (calc.): C 70.80 (70.98), H 6.98 (6.76), N 3.48 (3.45). ¹H NMR (298 K, C₆D₆, 250.1 MHz): 2.03 (s, 48 H, o-CH₃), 2.25 (s, 24 H, p-CH₃), 6.72 (s, 16 H, m-CH_{Mes}), 6.80-6.93 (m, 12 H, m-/p-CH). $^{13}C{^{1}H}$ NMR (298 K, C₆D₆, 62.9 MHz): 21.39 (s, o-CH₃), 21.71 (s, p-CH₃), 119.77 (s, CH), 128.31 (s, CH), 128.92 (s, CH),129.56 (s, CH), 135.31 (s), 136.01 (s), 136.83 (s), 137.18 (s), 137.43 (s), 137.89 (s), 138.52 (s), 141.86 (s). ³¹**P** NMR (298 K, C_6D_6 , 121.5 MHz): 326.0 (s). IR (ATR, cm⁻¹): 551 (m), 559 (s), 599 (m), 624 (m), 649 (s), 657 (s), 675 (vs), 738 (s), 752 (s), 792 (vs), 813 (s), 842 (vs), 885 (m), 927 (m), 972 (m), 1006 (s), 1031 (m), 1085 (s), 1207 (s), 1263 (m), 1371 (s), 1400 (s), 1434 (s), 1479 (m), 1573 (w), 1610 (m), 2726 (w), 2852 (w), 2914 (m), 2946 (m), 2996 (w), 3033 (w). **Raman** (632 nm, cm⁻¹): 227 (64), 232 (64), 266 (61), 329 (12), 342 (7), 386 (24), 400 (18), 420 (35), 496 (7), 509 (17), 525 (19), 559 (80), 575 (64), 581 (48), 599 (10), 650 (8), 661 (9), 742 (49), 752 (5), 765 (4), 779 (5), 795 (6), 804 (4), 824 (3), 879 (3), 909 (4), 947 (10), 962 (4), 982 (31), 993 (33), 1004 (16), 1015 (5), 1031 (3), 1096 (61), 1158 (9), 1166 (10), 1184 (12), 1205 (67), 1237 (100), 1245 (81), 1266 (20), 1279 (38), 1297 (59), 1305 (94), 1372 (23), 1380 (24), 1402 (77), 1435 (14), 1444 (14), 1479 (17), 1577 (39), 1612 (51), 2727 (6), 2853 (17), 2913 (62), 2945 (19), 3016 (20), 3038 (20), 3061 (18).

2.6. Synthesis of [(Ter₂N₂PSb)(PhCCPh)]

[Ter₂N₂PSbCl₂] (180 mg, 0.205 mmol), diphenylacetylene (53 mg) and magnesium turnings (80 mg) were combined in a flask. To this mixture, 10 ml THF were added and the suspension was stirred overnight at ambient temperature with a glass stirring bar. The initially yellow solution quickly turned orange, but the formation of a black precipitate occurred as well. Volatiles were removed in vacuo. The residue was extracted with 5 ml benzene and washed with another 3 ml benzene. The extract was concentrated to incipient crystallization (approx. 1 ml) and left undisturbed overnight, affording orange crystals. The mother liquor was removed via syringe and the crystals were dried in vacuo (82 mg, 0.083 mmol, 40%).

Mp. 231 °C (dec.). EA for C₆₂H₆₀N₂PSb found (calc.): C 68.93 (69.39), H 6.00 (5.64), N 2.86 (2.61). ¹**H NMR** (298 K, C₆D₆, 250.1 MHz): 2.05 (s, 12 H, *o*-CH₃), 2.09 (s, 12 H, *o*-CH₃), 2.20 (s, 12 H, p-CH₃), 6.54 (s, 8 H, CH_{Mes}), 6.68 (s, 6 H, m-/p-CH), 6.82-7.23 (m, 10 H, CH_{Ph}). ¹³C{¹H} NMR (298 K, C₆D₆, 62.9 MHz): 21.76 (s, CH₃), 21.85 (s, CH₃), 21.96 (s, CH₃), 21.99 (s, CH₃), 118.47 (s, CH), 122.69 (s, CH), 124.29 (s), 127.02 (s, CH), 127.53 (s, CH), 129.09 (s, CH), 129.24 (s, CH), 139.65 (s, CH), 130.23 (s, CH), 131.04 (s, CH), 132.31 (s, CH), 134.15 (d, $J_{CP} = 54.5 \text{ Hz}$), 137.20 (s), 137.47 (s, CH), 138.04 (s), 138.27 (s, CH), 138.32 (s, CH), 138.69 (s), 141.29 (d, $J_{CP} = 54.5 \text{ Hz}$), 141.98 (d, $J_{CP} = 54.5 \text{ Hz}$), 180.83 (d, $J_{\rm CP} = 54.5$ Hz, PC), 183.95 (d, $J_{\rm CP} = 6.6$ Hz, SbC). ³¹P NMR (298 K, C₆D₆, 121.5 MHz): 219.0 (s). **IR** (ATR, cm⁻¹): 3061 (vw), 3053 (vw), 2968 (w), 2937 (w), 2912 (m), 2852 (w), 2725 (vw), 1610 (m), 1601 (m), 1579 (w), 1572 (w), 1497 (m), 1489 (m), 1441 (s), 1398 (s), 1373 (s), 1306 (w), 1289 (w), 1225 (s), 1180 (w), 1157 (vw), 1149 (vw), 1101 (vw), 1080 (m), 1070 (m), 1026 (m), 1007 (w), 985 (m), 955 (vw), 947 (vw), 916 (m), 881 (s), 845 (s), 810 (w), 800 (w), 791 (w), 773 (m), 750 (vs), 723 (m), 668 (vs), 665 (m), 646 (w), 627 (w), 609 (w), 604 (w), 590 (w), 571 (w), 550 (w), 536 (m). **Raman** (632 nm, cm⁻¹): 104 (10), 135 (8), 153 (36), 205 (10), 227 (12), 246 (24), 263 (8), 280 (6), 292 (11), 310 (8), 361 (7), 426 (33), 472 (2), 497 (3), 503 (3), 518 (4), 530 (10), 547 (12), 563 (26), 583 (39), 602 (14), 634 (4), 674 (4), 747 (9), 774 (4), 799 (3), 819 (2), 889 (4), 911 (7), 936 (9), 953 (6), 962 (4), 992 (5), 1006 (92), 1036 (18), 1099 (9), 1109 (9), 1157 (30), 1164 (29), 1188 (9), 1235 (17), 1243 (25), 1284 (19), 1312 (25), 1387 (16), 1407 (17), 1413 (18), 1445 (20), 1492 (7), 1529 (6), 1549 (100), 1594 (62), 2732 (24), 2737 (23), 2857 (4), 2920 (16), 2944 (6), 2977 (5), 3039 (8), 3063 (11), 3079 (5). **MS** (CI, pos., *iso*-butane) m/z (%): 330 (100) [TerNH₃]⁺2AsAs, 386 (17) $[\text{TerNH}_2+C_4H_9]^+$, 687 (46) $[(\text{TerNH}_2P]^+$, 705 (61) $[\text{TerNH}_3]^+$, 743 (16) $[\text{TerNH}_3]^+$, 806 (5) $[Ter_2N_2PSb]^+$, 987 (1) $[M+H]^+$.

3. Crystallographic Data

compound	1	2	3
sum formula	$C_{48}H_{50}N_2PK$	$C_{48}H_{50}N_2PSbCl_2$	$C_{48}H_{50}N_2PSbGaCl_5$
formular weight [g mol ⁻¹]	724.97	878.52	1054.59
colour	yellow	yellow	red
crystal system	monoclinic	monoclinic	monoclinic
space group	$P2_{1}/n$	$P2_{1}/n$	$P2_{1}/c$
a [Å]	13.9771(9)	12.0987(9)	31.5546(10)
b [Å]	20.921(1)	22.5405(18)	16.1500(5)
<i>c</i> [A]	14.604(1)	16.4923(14)	19.5721(6)
α [°]	90	90	90
β [°]	108.648(3)	106.879(3)	106.735(2)
γ[°]	90	90	90
V [Å ³]	4046.1(5)	4303.9(6)	9551.6(5)
Ζ	4	4	8
$\rho_{\text{calc.}} [\text{g cm}^{-3}]$	1.190	1.356	1.467
$\mu [\mathrm{mm}^{-1}]$	0.206	0.837	1.478
λ _{ΜοΚα} [Å]	0.71073	0.71073	0.71073
<i>T</i> [K]	173	173	173
measured reflexes	36804	56384	173701
independent reflexes	7525	8912	27774
reflexes $I > 2\sigma(I)$	3902	5362	17455
R _{int.}	0.1234	0.1256	0.0691
$2\Theta_{\text{max.}}$ [°]	51	53	60
<i>F</i> (000)	1544	1808	4272
$R_1 (R [F^2 > 2\sigma(F^2)])$	0.0572	0.0513	0.0565
w R_2 (all data)	0.1282	0.1354	0.1279
GooF	1.000	1.016	1.031
parameter	482	499	1096
CCDC #	1404259	1404260	1404261

 Table S1. Crystallographic data of 1, 2 and 3.

compound	4	5	6
sum formula	C52H58ClMgN2OP	$C_{62}H_{60}N_2PSb$	$C_{96}H_{100}N_4P_2Sb_2$
formular weight [g mol ⁻¹]	817.73	985.84	1615.23
colour	yellow	orange	yellow
crystal system	monoclinic	monoclinic	orthorhombic
space group	$P2_{1}/c$	Cc	Pnnn
<i>a</i> [Å]	12.8983(9)	18.1642(6)	15.3403(5)
b[A]	15.7209(11)	11.4249(4)	15.7088(7)
<i>c</i> [A]	22.3241(15)	23.9813(8)	16.8844(6)
α [°]	90	90	90
β [°]	95.003(4)	99.487(2)	90
γ[°]	90	90	90
V [Å ³]	4509.5(5)	4908.6(3)	4068.8(3)
Ζ	4	4	2
$\rho_{\text{calc.}} [\text{g cm}^{-3}]$	1.204	1.334	1.318
$\mu [\mathrm{mm}^{-1}]$	0.174	0.637	0.752
λ_{MoKa} [Å]	0.71073	0.71073	0.71073
<i>T</i> [K]	173	173	173
measured reflexes	43759	48308	37272
independent reflexes	8369	16881	6776
reflexes $I > 2\sigma(I)$	5311	14533	4081
R _{int.}	0.0633	0.0390	0.0670
$2\Theta_{\text{max.}}[^{\circ}]$	51	65	63
<i>F</i> (000)	1744	2048	1672
$R_1 (\mathbf{R} [F^2 > 2\sigma(F^2)])$	0.0523	0.0425	0.0419
w R_2 (all data)	0.1489	0.1008	0.1077
GooF	1.023	1.048	1.020
parameter	560	573	242
CCDC #	1404262	1404263	1404264

Table S2. Crystallographic data of 4, 5 and 6.

Sb1–N1	2.133(4)	N1-Sb1-N2	63.56(14)
Sb1–N2	2.392(4)	Cl1–Sb1–Cl2	88.21(5)
Sb1-Cl1	2.3582(15)	N2-P1-N1	96.0(2)
Sb1–Cl2	2.4509(14)	P1-N1-Sb1	105.12(19)
Sb1-P1	2.9978(15)	P1-N2-Sb1	95.33(18)
P1-N2	1.598(4)	N2-Sb1-Cl2	149.78(10)
P1-N1	1.623(4)	N2-P1-N1-Sb1	1.1(2)

3.2. Numbering scheme of **3**

Selected bond lengths [Å] and angles $[\circ]$ of **3**.

Sb1-N1	2.136(3)	N1-Sb1-N2	65.99(13)
Sb1–N2	2.171(3)	N1-Sb1-Cl1	100.97(9)
Sb1-Cl1	2.3417(11)	N2-P1-N1	91.74(17)
Sb1-P1	2.9430(11)	P1-N1-Sb1	101.52(16)
P1-N2	1.625(3)	N2-P1-N1-Sb1	-1.80(17)
P1-N1	1.643(4)	N1-P1-N2-Sb1	1.76(16)

3.3. Numbering scheme of **4**

Selected bond lengths [Å] and angles [°] of 4.

Cl1–Mg1	2.2685(11)	N2-P1-N1	98.26(11)
P1-N2	1.607(2)	O1–Mg1–N2	115.99(9)
P1-N1	1.615(2)	N2-Mg1-N1	71.12(8)
P1–Mg1	2.7576(12)	O1-Mg1-Cl1	102.94(7)
Mg101	1.997(2)	P1-N1-Mg1	94.86(9)
Mg1–N2	2.088(2)	N2-P1-N1-Mg1	2.14(11)
Mg1–N1	2.102(2)	N1-P1-N2-Mg1	-2.16(11)

3.4. Numbering scheme of **5**

Selected bond lengths [.	Å] and angles [°] of 5 .

Sb1A-N1	2.163(3)	N2–Sb1A–N1	67.06(10)
Sb1A–N2	2.135(3)	N2-Sb1A-C49A	83.51(18)
Sb1A-C49A	2.228(8)	C49A–Sb1A–P1A	65.46(14)
Sb1A-P1A	2.8038(19)	N1–P1A–N2	89.05(16)
P1A-N1	1.682(3)	C50A-P1A-Sb1A	73.54(18)
P1A–N2	1.703(3)	C50A-C49A-Sb1A	107.7(4)
P1A-C50A	1.947(8)	C49A-C50A-P1A	113.3(4)
C49A-C50A	1.337(6)	Sb1A-C49A-C50A-P1A	-2.1(7)

3.5. Numbering scheme of **6**

Selected bond lengths [Å] and angles [°] of 6.

Sb1–N1	2.372(2)	N1-Sb1-N1'	177.81(9)
Sb1-N1'	2.372(2)	N1'-Sb1-Sb1''	88.91(4)
Sb1-Sb1''	2.6438(4)	N1-P1-N1'''	104.61(14)
P1-N1	1.613(2)	N1'''-P1-N1-Sb1	-0.51(7)
P1-N1'''	1.613(2)	N1'''-P1-N1-C1	-169.4(2)

Symmetry code: (') 0.5-x, 0.5-y, z; ('') 0.5-x, y, 1.5-z; (''') x, 0.5-y, 1.5-z.

4. Computational Details

Utilizing the experimental structural data, all calculations were carried out with the Gaussian 09 package of molecular orbital programs.^[8] The wave functions for the crystal structures were optimized with a 6-31G(d,p) basis set on the pbe1pbe level of density functional theory and the optimized structures were checked to be a minimum on the energy hypersurface. For Sb a relativistic pseudopotential was used, Sb: ECP46MDF 4 46.

ELF^[9] and NBO/NRT^[10–12] analyses were carried out to study the bonding, hybridization and polarization effects. For the ELF computations a full DZP basis was used for antimony instead of the above mentioned pseudopotential.

For **5** and **6** the ³¹P NMR chemical shifts and coupling constants were calculated using the GIAO package implemented in Gaussian 09. The calculated absolute shifts (σ_{iso}) were referenced to the absolute chemical shift the standard (³¹P: H₃PO₄, σ_{ref} =374.0604; ¹H, ¹³C: SiMe₄, 31.665 and 196.4544 ppm, respectively), using the formula $\delta_{calc} = \sigma_{ref} - \sigma_{iso}$. Simulations of NMR spectra were performed with gNMR 5.06, which is obtainable free of charge from Peter H.M. Budzelaar via http://home.cc.umanitoba.ca/~budzelaa/gNMR/gNMR.html.

It should be emphasized that the computation was carried out for a single, isolated (gasphase) molecule.

4.1. NPN salts (1, 4) – charge transfer

4.1.1. NBO analysis for K[P(NPh)₂] Summary of Natural Population Analysis:

-		-	-	Na	tural Po	pulation		
Atom	No C	atural - harge 	Core		Valence	Rydberg	g Total	
N P K	1 -1 2 1 4 -1 22 0	.05614 .13767 .05614 .90675	1.9994 9.9980 1.9994 17.9950	9 7 9 1	6.04222 3.79444 6.04223 0.09661	0.01443 0.06982 0.01442 0.00164	8 8.05614 2 13.86233 2 8.05614 4 18.09325	
(Occupancy) Bond	orbital/ (Coeffi	cients/	Hybrids		
1.	(1.97852) (BD (1) 73.64%) 26.36%)	N 1 - P 0.8582* 0.5134*	2 N 1 P 2	s (30.7 -0.000 0.015 -0.024 s (15.7 0.000 -0.000 -0.017 0.038	8%)p 2.25 1 0.5548 0 -0.5426 5 -0.0007 6%)p 5.24 0 0.0004 3 -0.6880 4 0.0000 9 -0.0124	(69.12%)d 0.00(0.0031 -0.0032 0.0093 -0.1295 0.0036 -0.0057 (82.55%)d 0.11(0.3830 -0.1044 0.0523 0.0002 -0.1326 -0.0012 0.0212 -0.0577	0.10%) 0.6162 0.0056 -0.0188 1.68%) -0.0013 0.5758 -0.1067
4.	(1.98021) (BD (1) 26.42%)	P 2 - N 0.5140*	4 P 2	s(15.9 0.000 -0.000 0.017 -0.028	7%)p 5.16 0 -0.0005 2 -0.6574 5 0.0000 2 -0.0207	(82.47%)d 0.10(-0.3855 0.1052 0.0498 -0.0002 -0.2341 -0.0030 -0.0220 0.0588	1.56%) 0.0012 -0.5787 -0.1021
	(73.58%)	0.8578*	N 4	s(30.4 0.000 0.014 -0.024	1%)p 2.29 1 -0.5514 8 0.5315 5 0.0005	(69.49%)d 0.00(-0.0031 0.0033 -0.0096 -0.1907 0.0057 0.0054	0.10%) 0.6129 0.0048 0.0186
5.	(1.87383)	BD (2) 24.63%)	P 2 - N 0.4963*	4 P 2	s(0.2 0.000 -0.000 0.002 0 103	5%)p99.99 0 -0.0008 5 -0.2535 6 0.0008 2 0 0781	(97.91%)d 7.36(-0.0482 0.0135 0.0214 -0.0004 0.9541 0.0170 -0.0085 0.0139	1.84%) -0.0001 -0.0611 -0.0375
	(75.37%)	0.8681*	N 4	s(0.5 0.000 0.004 -0.002	5%)p99.99 2 -0.0743 3 0.1734 7 -0.0060	(99.33%)d 0.22(0.0009 -0.0003 0.0026 0.9776 -0.0336 0.0038	0.12%) 0.0869 0.0036 0.0030
62.	(1.89267)	LP (1)	N 1		s(29.1 0.000 -0.016 -0.011	2%)p 2.43 1 0.5396 8 0.7993 2 0.0029 8%)p 0 43	(70.82%)d 0.00(0.0031 0.0017 -0.0120 0.1045 -0.0027 0.0208 (30.26%)d 0.000	0.06%) 0.2406 -0.0021 0.0079
03.	(1.97210)		E Z		0.000 0.000 -0.028 -0.002	0 -0.0007 0 -0.0019 9 0.0000 9 0.0005	0.8343 0.0258 0.0001 -0.0004 0.0060 0.0001 -0.0065 0.0249	0.0005 -0.5493 -0.0003
64.	(1.89265)	LP (1)	N 4		s(28.9 0.000 0.016 0.011	4%)p 2.45 1 0.5379 9 0.8038 2 0.0028	(71.00%)d 0.00(0.0031 0.0017 -0.0119 -0.0805 0.0019 0.0210	0.06%) -0.2388 0.0023 0.0080
Second C 61. LF	order Pert	urbation 1	Theory And	alysis / 67	of Fock . LP*(Matrix in 1) K 22	n NBO Basis	3.32
61. LF	• (1) N	1		/ 68	. LP*(2) K 22		0.78
0.46 61. LF	• (1) N	1		/ 74	. LP*(8) K 22		0.08
0.56 61. LE 0.61	0.006 9 (1) N 0.006	1		/251	. RY*(2) K 22		0.08

61.	LP (1)	Ν	1	/253. RY*(4) K	22	0.09
0.77	0.008						
62.	LP (2)	Ν	1	/ 71. LP*(5) K	22	0.36
0.23	0.009						
62.	LP (2)	Ν	1	/ 73. LP*(7) K	22	0.14
0.50	0.008						
63.	LP (1)	P	2	/ 67. LP*(1) K	22	3.21
0.51	0.037						
63.	LP (1)	Ρ	2	/ 70. LP*(4) K	22	0.77
0.55	0.018						
63.	LP (1)	P	2	/ 74. LP*(8) K	22	0.05
0.65	0.005						
63.	LP (1)	Ρ	2	/251. RY*(2) K	22	0.11
0.70	0.008						
64.	LP*(2)	P	2	/ 73. LP*(7) K	22	0.16
0.42	0.012						
65.	LP (1)	Ν	4	/ 67. LP*(1) K	22	3.32
0.42	0.034						
65.	LP (1)	Ν	4	/ 68. LP*(2) K	22	0.78
0.46	0.017						
65.	LP (1)	Ν	4	/ 74. LP*(8) K	22	0.08
0.56	0.006						
65.	LP (1)	Ν	4	/251. RY*(2) K	22	0.08
0.61	0.006						
65.	LP (1)	Ν	4	/253. RY*(4) K	22	0.09
0.77	0.008				,		
66.	LP (2)	Ν	4	/ 71. LP*(5) K	22	0.36
0.23	0.009				- /		
66.	LP (2)	N	4	/ 73. LP*(7) K	22	0.14
0.50	0.008		-	,	., 10		J 1
0.00	÷••••						

4.1.2. Optimized geometry for K[P(NPh)₂]

	-		
N	-1.27230500	0.38415400	0.10758800
Р	0.0000100	-0.62032900	-0.00000300
С	-2.56981500	-0.10901100	0.02127900
Ν	1.27230400	0.38415100	-0.10764300
С	-3.57025400	0.45833300	0.83341800
С	-2.96291400	-1.12350300	-0.87380000
С	2.56981300	-0.10901100	-0.02130300
С	-4.88655900	0.02169700	0.77006000
С	-4.28102500	-1.56080900	-0.92875400
С	2.96291300	-1.12342600	0.87386100
С	3.57024800	0.45825900	-0.83349900
С	-5.25475800	-0.99419500	-0.11037800
С	4.28102400	-1.56073000	0.92884800
С	4.88655300	0.02162500	-0.77011000
С	5.25475400	-0.99419100	0.11041600
Н	-5.63271700	0.47718500	1.41642900
Н	-4.55117500	-2.34678900	-1.62950100
Н	-6.28519100	-1.33238000	-0.16303900
Н	4.55117500	-2.34664900	1.62966200
Н	5.63270800	0.47705300	-1.41652400
Н	6.28518600	-1.33237300	0.16310200
K	0.0000700	2.66561600	0.00000600
Н	2.21924200	-1.55114100	1.54121600
Н	3.28207100	1.23804800	-1.53461500
H	-2.21924200	-1.55127800	-1.54111500
Н	-3.28208000	1.23818400	1.53446700

4.1.3. NBO analysis for $Li[P(NPh)_2]$

Summary of Natural Population Analysis:

				Natural Pop	ulation	
		Natural				
Atom	No	Charge	Core	Valence	Rydberg	Total

<pre>(0ccupancy) Bond orbital/ Coefficients/ Hybrids 1. (1.96931) BD (1) N 1 - P 2 (73.93%) 0.8602* N 1 a(28.52%) p 2.50(71.38%) d 0.00(0 0.013%) -0.002 0.5340 0.0034 -0.0035 0.6634 -0.0027 -0.0034 0.2014 -0.0055 (26.01%) 0.5100* P 2 a(15.94%) p 5.17(82.45%) d 0.10(1 1.61%) -0.003 -0.003 -0.3465 0.2026 -0.0026 -0.0074 0.0088 0.0226 -0.0026 -0.0074 0.0088 -0.0226 -0.0026 -0.0003 -0.3455 0.0999 0.0005 -0.0003 -0.3455 0.0024 -0.1086 0.0002 -0.5334 0.0010 1.161%) -0.0003 -0.3557 0.0024 0.0026 -0.1066 -0.0258 0.0027 -0.001 0.0025 0.0047 0.0018 -0.0003 -0.3455 0.0024 0.0026 -0.0258 0.0027 -0.001 0.0029 0.2545 -0.0258 -0.0027 -0.0010 0.0029 0.2545 -0.0258 0.0027 -0.0010 0.0029 0.2545 -0.0003 0.0427 -0.0010 0.0029 0.2545 -0.0003 0.0427 -0.0010 0.0029 0.2545 -0.0003 0.0427 -0.0010 0.0029 0.2545 -0.0003 0.0027 -0.0010 0.0029 0.2545 -0.0003 0.0027 -0.0010 0.0029 0.2545 -0.0003 0.0000 0.0001 0.0002 0.0017 0.1185 -0.0003 0.0002 -0.0013 0.0029 0.2545 -0.0003 0.0000 0.0001 0.0002 -0.0013 -0.0025 -0.0003 0.0000 0.0001 0.0000 0.0001 -0.0000 0.0001 0.0000 0.0001 -0.0000 0.0001 0.0000 0.0001 -0.0000 0.0000 0.0001 0.0000 -0.0005 -0.0000 0.0000 0.0000 0.0001 -0.0000 0.0000 0.0001 0.0000 -0.0005 -0.0000 0.0000 0.0001 0.0000 -0.0005 -0.0000 0.0000 0.0000 0.0001 -0.0000 0.0000 0.0001 0.0000 -0.0005 -0.0000 0.0000 0.0000 0.0001 -0.0000 0.0000 0.0000 0.0000 0.0000 -0.0000 0.0000 0.0000 0.0000 -0.0000 0.0000 0.0000 0.0000 -0.0000 0.0000 0.0000 0.0000 -0.0000 0.0000 0.0000 0.0000 0.0000</pre>	N P N Li	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.08927 .18104 .08926 .82680	1.99948 9.99794 1.99948 1.99839	6.07676 3.75330 6.07676 0.17139	0.01303 0.06773 0.01302 0.00342	8.08927 13.81896 8.08926 2.17320	
1. (1.96931) BD (1) N 1 - P 2 (73.999) 0.6602* N 1 s (28.524) p 2.50(71.383) d 0.00(0.165) -0.0022 0.5340 0.0034 -0.0033 0.6034 0.0074 -0.5559 -0.0034 0.2014 0.2014 0.0027 -0.0034 0.2014 0.2014 0.2014 -0.0023 0.3028 -0.0027 -0.0011 -0.0045 -0.1183 0.0000 0.0086 0.0028 -0.1099 -0.0052 -0.003 0.3685 -0.0999 -0.0022 0.5739 -0.1033 0.0001 0.1135 0.0028 -0.1099 -0.003 -0.0030 0.3685 -0.1999 -0.0026 -0.003 -0.0030 0.3685 -0.1999 -0.0026 -0.003 -0.0028 -0.0022 0.5739 -0.003 -0.0028 -0.0028 -0.1002 -0.5739 -0.003 -0.0028 -0.0028 -0.1002 -0.003 -0.5627 0.0022 -0.5786 0.0074 0.0537 -0.0034 0.0028 -0.0028 -0.003 -0.6873 0.0028 -0.0022 -0.5786 0.0074 0.0537 -0.0034 0.0028 -0.0028 -0.0028 -0.003 -0.6873 0.0034 0.0028 -0.0028 -0.0028 -0.0028 -0.003 -0.6873 0.0034 0.0028 -0.0008 -0.0001 -0.0001 -0.0001 -0.0001 -0.0001 -0.0001 -0.0001 -0.0001 -0.0001 -0.0001 -0.0001 -0.0001 -0.0001 -0.0001 -0.0	(C)ccupancy)	Bond	orbital/ Coe	efficients/ Hy	ybrids		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1. ((1.96931) (BD (1) 73.99%)	N 1 - P 0.8602* N	2 1 s(28.528 -0.0002 0.0078 -0.0236	<pre>b)p 2.50(71 0.5340 0. -0.5559 -0. 0.0027 -0.</pre>	.38%)d 0.00(0034 -0.0030 0034 0.2014 0071 -0.0045	0.10%) 0.6034 0.0052 -0.0189
3. (1.9092) BD (1) P 2 - M 4 (26.01%) 0.5100* P (26.01%) 0.5100* P (26.01%) 0.5100* P (73.99%) 0.8602* M (73.99%) 0.122* M	2	(26.01%)	0.5100* P	2 s(15.949 0.0000 -0.0003 -0.0153 -0.0074	<pre>b) p 5.17(82 0.0003 0. -0.6871 0. 0.0001 0. 0.0088 0.</pre>	.45%)d 0.10(3865 -0.0999 0520 0.0002 1150 0.0028 0226 -0.0609	1.61%) -0.0005 0.5799 -0.1086
(73,99%) 0.8602* N 4 c(28.53%)p 2.50(71.37%)d 0.00(000.0.6034 0.0002 -0.5341 -0.0034 0.0035 0.6034 0.0078 0.5557 0.0034 0.2018 0.0052 -0.0236 -0.0027 -0.0071 0.0045 0.0189 -0.0001 0.5225 0.0086 -0.0122 0.0845 -0.0027 -0.0063 0.0027 -0.0016 0.0183 0.0047 54. (1.54274) LP (2) N 1 s(2.20%)p44.42 (97.70%)d 0.05(0.118) 0.0003 0.1483 0.0025 -0.0017 0.118) 0.0003 0.1483 0.0025 -0.0017 0.118) 0.0000 -0.0010 0.03841 0.0024 0.0075 -0.0065 -0.0060 0.0307 0.0013 -0.0055 55. (1.97186) LP (1) P 2 s(69.63%)p 0.44(30.30%)d 0.00(0.07%) 56. (0.73329) LP*(2) P 2 s(69.63%)p 0.44(30.30%)d 0.00(0.07%) 56. (0.73329) LP*(2) P 2 s(0.00%)p 1.00(1 0.0000 -0.0000 -0.0031 0.0000 -0.0001 0.0000 -0.0000 -0.0031 0.0000 -0.0001 0.0000 0.0000 -0.0031 0.0000 -0.0001 0.0000 0.0000 -0.0001 0.5224 0.0047 0.0029 -0.548 -0.0221 0.0000 0.08341 0.0000 -0.0001 0.0000 0.0000 0.0834 0.0000 -0.0001 -0.0001 0.5224 0.0047 0.0029 -0.548 -0.0001 0.5224 0.0047 0.0029 -0.548 -0.0001 0.5224 0.0047 0.0029 -0.548 -0.0001 0.5224 0.0047 0.0029 -0.2544 -0.0001 0.5224 0.0047 0.0029 -0.2544 -0.0021 58. (1.54272) LP (1) N 4 s(2.20%)P44.46 (97.70%)d 0.05 (0.11%) 59. (0.10939) LP*(1)L1 22 s(8.809%)p 0.12(10.68%)d 0.000(0.018) -0.0003 0.1482 0.0027 0.0015 0.0133 -0.0053 59. (0.10939) LP*(1)L1 22 s(8.90%)p 0.12(10.68%)d 0.000(0.018) -0.0003 0.1482 0.0022 -0.0033 -0.0003 -0.0003 -0.0029 -0.0003 -0.0003 -0.0003 -0.0029 -0.0003 -0.0001 -0.0000 0.0000 0.0029 -0.0003 -0.0001 -0.0000 0.0029 -0.0003 -0.0003 -0.0000 -0.3292 -0.0233 -0.0002 0.0000 -0.0000 -0.3292 -0.0233 -0.0002 0.0000 -0.0000 -0.3292 -0.0033 -0.0002 -0.0001 -0.0000 -0.3292 -0.0033 -0.0002 -0.0005 -0.0013 -0.0429 0.0000 -0.0033 -0.0029 -0.0003 -0.0003 -0.0029 -0.0003 -0.0003 -0.0001 -0.0000 -0.3292 -0.0033 -0.0002 -0.0005 -0.0013 -0.0429 0.0000 -0.003 -0.0003 -0.0001 -0.0000 -0.3292 -0.0033 -0.0002 -0.0005 -0.0003 -0.0029 -0.0003 -0.0003 -0.0001 -0.0000 -0.3292 -0.003 -0.0003 -0.0001 -0.0000 -0.3292 -0.003 -0.0003 -0.0001 -0.0000 -0.0000 -0.0000 -0.0000 -	3. ((1.96932) (BD (1) 26.01%)	P 2 - N 0.5100* P	4 2 s(15.94 0.0000 -0.0003 0.0152 0.0074	<pre>b)p 5.17(82 -0.0003 -0. -0.6873 0. 0.0001 0. 0.0088 -0.</pre>	.45%)d 0.10(3865 0.0999 0520 -0.0002 1150 0.0028 0227 0.0609	1.61%) 0.0005 -0.5796 -0.1086
53. (1.87325) LP (1) N 1 (2.7318) p 2.66 $(7.268)d$ 0.000 $(-0.048)-0.0001$ 0.5225 0.0047 0.0029 0.2546 -0.0258 0.8086 -0.0122 0.0845 $-0.0027-0.0063$ 0.0027 -0.016 0.0183 0.0047 54. (1.54274) LP (2) N 1 s (2.208) p44.42 $(97.708)d$ 0.05 $(-0.118)0.0003$ 0.1433 0.0025 -0.0017 0.1550 -0.0013 -0.0427 0.0042 -0.9752 $-0.030-0.0065$ -0.0060 0.0307 0.0013 $-0.005355.$ (1.97186) LP (1) P 2 s (6.638) p 0.44 $(-30.308)d$ 0.00 $(-0.78)0.0000$ -0.0001 0.0000 -0.0005 $-0.5498-0.02281$ 0.0000 -0.0001 0.0000 $-0.0005-0.0031$ 0.0000 -0.0001 0.0000 $-0.0005-0.0001$ 0.5224 0.0000 -0.0001 0.0000 -0.0000 0.1620 -0.0048 0.0000 $-0.00010.0000$ 0.0000 0.0000 0.0000 57. (1.87322) LP (-1) N 4 s (2.7308) p 2.66 (-72.66) d 0.01 $(-7.48)-0.0001$ 0.5224 0.0047 0.0029 $-0.25440.0258$ 0.8087 -0.0122 -0.0448 0.0027 -0.0063 0.0027 -0.0148 0.0000 $-0.0001-0.0001$ 0.5224 0.0047 0.0029 $-0.25440.0258$ 0.8087 -0.0122 -0.0484 0.0027 -0.0063 0.0027 -0.0160 0.0133 0.0047 58. (1.54272) LP (2) N 4 s (2.208) p44.46 (97.708) d 0.05 $(-0.118)0.0000$ -0.3029 -0.0023 $-0.0023-0.0003$ -0.0024 -0.017 $-0.15560.0013$ -0.0229 -0.0033 $-0.0021-0.0003$ -0.0022 -0.0033 $-0.0001-0.0000$ -0.3292 -0.0033 $-0.0021-0.0000$ -0.3292 -0.0033 -0.0022 $-0.0033-0.0000$ -0.0029 -0.0003 $-0.0001-0.0000$ -0.0029 -0.0003 $-0.0001-0.0000$ -0.0029 -0.0003 $-0.0001-0.0000$ -0.0029 -0.0003 $-0.0001-0.0000$ -0.0029 -0.0003 $-0.0001-0.0000$ -0.0022 -0.0003 $-0.0001-0.0000$ -0.0022 -0.0003 $-0.0001-0.0000$ -0.0022 -0.0003 $-0.0001-0.0000$ -0.0029 -0.0003 $-0.0001-0.0000$ -0.0029 -0.0003 $-0.0001-0.0000$ -0.0029 -0.0003 $-0.0001-0.0000$ -0.0029 -0.0003 $-0.0001-0.0000$ -0.0029 -0.0003 $-0.0001-0.0000$ -0.0029 -0.0003 $-0.0001-0.0000$ -0.0029 -0.0003 -0.0001		(73.99%)	0.8602* N	4 s(28.53 0.0002 0.0078 -0.0236	<pre>b) p 2.50(71 -0.5341 -0. 0.5557 0. -0.0027 -0.</pre>	.37%)d 0.00(0034 0.0030 0034 0.2018 0071 0.0045	0.10%) 0.6034 0.0052 0.0189
54. (1.54274) LP (2) N 1 s $(2.20\$)P44.42 (97.70\$)d 0.05(0.11\$)$ 0.0003 0.1483 0.0025 -0.0017 0.1550 -0.0013 -0.0427 0.0042 -0.9752 -0.0030 -0.0065 -0.0066 0.0307 0.0013 -0.0053 55. (1.97186) LP (1) P 2 s $(6.9.63\$)p 0.44(3 0.30\$)d 0.00(0 0.077\$)$ 0.0000 -0.0000 0.0000 -0.0005 -0.5498 -0.0281 0.0000 -0.0001 0.0000 0.0000 -0.0031 0.0000 -0.0001 0.0000 0.0000 -0.0031 0.0000 -0.0001 0.0000 0.0000 -0.0031 0.0000 0.0000 0.0000 -0.0031 0.0000 0.0000 0.0000 -0.0031 0.0000 0.0000 0.0000 -0.0031 0.0000 0.0000 0.0000 -0.0000 0.0000 0.0000 0.0000 -0.0000 0.0000 0.0000 0.0000 -0.0001 0.0000 0.0000 0.0000 -0.0031 0.0000 0.0000 0.0000 -0.0000 0.0000 0.0000 0.0000 -0.0001 0.0000 0.0000 0.0000 -0.0001 0.0000 0.0000 0.0000 -0.0001 0.5224 0.0047 0.0002 -0.2544 -0.0010 0.5224 0.0047 0.0002 -0.2544 -0.0010 0.5224 0.0047 0.0029 -0.2544 -0.0013 0.0027 0.0016 0.0183 0.0047 -0.0013 0.0026 -0.0017 -0.1556 -0.0013 -0.0026 -0.0017 -0.1550 -0.0013 -0.0053 0.0027 0.0016 0.0183 -0.0013 -0.0050 0.0027 0.0016 0.0183 -0.0003 0.1482 0.0026 -0.0017 -0.1550 -0.0013 -0.0029 -0.0029 -0.0003 -0.0001 -0.0000 0.9439 -0.0029 -0.0003 -0.0001 -0.0000 0.9439 -0.0029 -0.0003 -0.0001 -0.0000 0.9439 -0.0029 -0.0003 -0.0001 -0.0000 0.9439 -0.0029 -0.0003 -0.0001 -0.0000 0.0000 -0.3292 -0.0033 -0.0002 -0.0065 Second Order Perturbation Theory Analysis of Fock Matrix in NBO Basis 54. LP (2) N 1 / 56. LP*(2) P 2 138.75 -11 0.120 58. LP (2) N 4 / 73. RY*(1) P 2 1.001 -0.032 -0.0055 57. LP (1) N 1 / 59. LP*(1) Li 22 13.35 -52 0.075 57. LP (1) N 4 / 59. LP*(1) Li 22 13.34	53. ((1.87325)	LP (1)	N 1	s(27.319 -0.0001 -0.0258 -0.0063	<pre>b) p 2.66(72 0.5225 0. 0.8086 -0. 0.0027 -0.</pre>	.65%)d 0.00(0047 0.0029 0122 0.0845 0016 0.0183	0.04%) 0.2546 -0.0027 0.0047
55. (1.97186) LP (1) P 2 55. (1.97186) LP (1) P 2 56. (0.73329) LP*(2) P 2 56. (0.73329) LP*(2) P 2 56. (0.73329) LP*(2) P 2 57. (1.87322) LP (1) N 4 57. (1.87322) LP (1) N 4 58. (1.54272) LP (2) N 4 59. (0.10939) LP*(1) Li 22 59. (0.10939) LP*(1) Li 22 59. (0.10939) LP*(1) Li 22 50. LP*(2) N 4 50. LP*(2) N 4 51. LP (2) N 4 52. LP (2) N 4 53. LP (2) N 4 54. LP (2) N 4 55. (1.54272) LP (1) N 4 55. (1.54272) LP (1) Li 22 55. (1.54272) LP (1) Li 22 55. (1.54272) LP (1) Li 22 55. (1.54272) LP (2) N 4 55. (1.54272) LP (1) Li 22 55. (1.54272) LP (2) N 4 55. (1.54272) LP (1) Li 22 55. (1.54272) LP (1) Li 22 57. (1.10) LP*(1) Li 22 58. LP (2) N 4 59. (1.10) LP*(1) Li 22 50. LP*(1) N 1 59. LP*(1) Li 22 50. LP*(1) Li 22 50. LP*(1) Li 22 51. LP (2) N 4 55. LP*(1) Li 22 55. LP (2) N 4 55. LP*(1) Li 22 55. LP*(1) Li 2	54. ((1.54274)	LP (2)	N 1	s(2.209 0.0003 -0.0013 -0.0065	b)p44.42(97 0.1483 0. -0.0427 0. -0.0060 0.	.70%)d 0.05(0025 -0.0017 0042 -0.9752 0307 0.0013	0.11%) 0.1550 -0.0030 -0.0053
56. (0.73329) LP*(2) P 2 s(0.00% p 1.00(99.26% d 0.01(0.74%) 0.0000 0.0000 0.0001 0.0000 0.0001 0.0000 0.1620 -0.0048 0.0000 -0.0001 0.0000 0.0834 0.0000 0.0000 57. (1.87322) LP (1) N 4 s(27.30% p 2.66(72.66%)d 0.00(0.04%) -0.0011 0.5224 0.0047 0.0029 -0.2544 0.0258 0.8087 -0.0122 -0.0844 0.0027 0.0063 0.0027 0.0016 0.0183 0.0047 58. (1.54272) LP (2) N 4 s(2.20% p44.46(97.70\%)d 0.05(0.11\%) 0.0003 0.1482 0.0026 -0.0017 -0.1556 0.0013 -0.0429 0.0042 0.9751 0.0030 0.0065 -0.0060 -0.0307 0.0013 -0.0053 59. (0.10939) LP*(1)Li 22 s(89.09% p 0.12(10.89\%)d 0.00(0.01\%) 0.0000 -0.3292 -0.0233 -0.0002 0.0000 0.0000 -0.0092 0.0000 0.0022 -0.0065 Second Order Perturbation Theory Analysis of Fock Matrix in NEO Basis 54. LP (2) N 4 / 73. RY*(1) P 2 1.00 1.03 0.032 53. LP (1) N 1 / 59. LP*(1)Li 22 13.35 0.52 0.075 57. LP (1) N 4 / 59. LP*(1)Li 22 13.34 0.52 0.075	55. ((1.97186)	LP (1)	P 2	s(69.63 0.0000 -0.0281 -0.0031	<pre>b) p 0.44 (30 -0.0008 0. -0.0001 0. 0.0000 -0. 0.0000 -0.</pre>	.30%)d 0.00(8341 0.0244 0000 -0.0005 0001 0.0000 0061 0.0251	0.07%) 0.0002 -0.5498 0.0000
57. (1.87322) LP (1) N 4 57. (1.87322) LP (1) N 4 (2.730%) p 2.66 $(72.66%)$ d 0.00 $(0.04%)-0.0001$ 0.5224 0.0047 0.0029 $-0.25440.0258 0.8087 -0.0122 -0.0844 0.00270.0063 0.0027 0.0016 0.0183 0.004758. (1.54272) LP (2) N 4(2.20%)$ p44.46 $(97.70%)$ d 0.05 $(0.11%)0.0003 0.1482 0.0026 -0.0017 -0.15560.0013 -0.0429 0.0042 0.9751 0.00300.0005 -0.0060 -0.0037 0.0013 -0.005359. (0.10939) LP*(1) Li 22s(89.09%)$ p 0.12 $(10.89%)$ d 0.00 $(0.01%)0.0000 -0.3292 -0.0033 -0.00010.0000 -0.3292 -0.0033 -0.00010.0000 -0.0092 0.0000 0.0022 -0.0065Second Order Perturbation Theory Analysis of Fock Matrix in NBO Basis54. LP (2) N 1 / 56. LP*(2) P 2 138.750.11 0.12058. LP (2) N 4 / 73. RY*(1) P 2 1.001.03 0.03253. LP (1) N 1 / 59. LP*(1) Li 22 13.350.52 0.07557. LP (1) N 4 / 59. LP*(1) Li 22 13.340.52 0.075$	56. ((0.73329)	LP*(2)	P 2	s(0.009 0.0000 0.0000 0.0000 0.0000	<pre>b) p 1.00(99 0.0000 0. 0.1620 -0. 0.0000 0. 0.0834 0.</pre>	.26%)d 0.01(0001 0.0000 0048 0.0000 9828 0.0185 0000 0.0000	0.74%) 0.0000 -0.0001 0.0211
58. (1.54272) LP (2) N 4 s(2.20%)p44.46(97.70%)d 0.05(0.11%) 0.0003 0.1482 0.0026 -0.0017 -0.1556 0.0013 -0.0429 0.0042 0.9751 0.0030 59. (0.10939) LP*(1)Li 22 s(89.09%)p 0.12(10.89%)d 0.00(0.01%) 0.0000 -0.3292 -0.0023 -0.0002 0.0000 0.0000 -0.3292 -0.0233 -0.0002 0.0000 0.0000 -0.0092 0.0000 0.0022 -0.0065 Second Order Perturbation Theory Analysis of Fock Matrix in NBO Basis 54. LP (2) N 1 / 56. LP*(2) P 2 138.75 0.11 0.120 -1.00 -1.00 58. LP (2) N 4 / 73. RY*(1) P 2 1.00 1.03 0.032 -3. LP*(1) N 1 / 59. LP*(1) Li 22 13.35 0.52 0.075 -57. LP (1) N 4 / 59. LP*(1) Li 22 13.34	57. ((1.87322)	LP (1)	N 4	s(27.309 -0.0001 0.0258 0.0063	<pre>b) p 2.66(72 0.5224 0. 0.8087 -0. 0.0027 0.</pre>	.66%)d 0.00(0047 0.0029 0122 -0.0844 0016 0.0183	0.04%) -0.2544 0.0027 0.0047
59. (0.10939) LP*(1) L1 22 S(89.09%) p 0.12(10.89%) a 0.00(0.01%) 0.0000 0.9439 -0.0029 -0.0003 -0.0001 0.0000 -0.3292 -0.0233 -0.0002 0.0000 0.0000 -0.0092 0.0000 0.0022 -0.0065 Second Order Perturbation Theory Analysis of Fock Matrix in NBO Basis 54. LP (2) N 1 / 56. LP*(2) P 2 10.11 0.120 58. LP (2) N 4 / 73. RY*(1) P 2 53. LP (1) N 1 / 59. LP*(1)Li 22 54. LP (1) N 4 / 59. LP*(1)Li 22 55. LP (1) N 4 / 59. LP*(1)Li 22	58. ((1.54272)	LP (2)	N 4	s (2.209 0.0003 0.0013 0.0065	b)p44.46(97 0.1482 0. -0.0429 0. -0.0060 -0.	.70%)d 0.05(0026 -0.0017 0042 0.9751 0307 0.0013	0.11%) -0.1556 0.0030 -0.0053
Second Order Perturbation Theory Analysis of Fock Matrix in NBO Basis 138.75 54. LP (2) N 1 / 56. LP* (2) P 2 138.75 0.11 0.120 100 58. LP (2) N 4 / 73. RY* (1) P 2 1.00 1.03 0.032 100 53. LP (1) N 1 / 59. LP* (1) Li 22 13.35 0.52 0.075 100 57. LP (1) N 4 / 59. LP* (1) Li 22 13.34	59. ((0.10939)	TF. (1)	1 22	s (89.094 0.0000 0.0000 0.0000	0.9439 -0. -0.3292 -0. -0.0092 0.	.89%) a 0.00(0029 -0.0003 0233 -0.0002 0000 0.0022	-0.0001 0.0000 -0.0065
58. LP (2) N 4 / 73. RY* (1) P 2 1.00 1.03 0.032	Second Or 54. LP 0.11 C	rder Pertu (2) N).120	irbation 1	Theory Analy /	vsis of Fock N 756. LP*(2	Matrix in NB 2) P 2	O Basis	138.75
53. LP (1) N 1 / 59. LP*(1)Li 22 13.35 0.52 0.075 - 57. LP (1) N 4 / 59. LP*(1)Li 22 13.34 0.52 0.075 -	58. LP 1.03 C	(2) N 0.032	4	/	73. RY*(1	L) P 2		1.00
	53. LP 0.52 C 57. LP	(1) N 0.075 (1) N	1 4	/	59. LP*(1)	L)Li 22 L)Li 22		13.35 13.34

S20

4.1.4. Optimized geometry for Li[P(NPh)₂]

N	-1.24418800	0.66168600	0.07918700
P	0.0000700	-0.38901800	0.00022000
С	-2.57521000	0.25681900	0.00821000
N	1.24417700	0.66169500	-0.07902000
С	-3.54200800	0.98380600	0.72264100
С	-3.01161800	-0.83134500	-0.76825900
С	2.57520500	0.25682900	-0.00820000
С	-4.88230400	0.62339200	0.68295400
С	-4.35354200	-1.19114800	-0.79821000
С	3.01169600	-0.83127400	0.76830400
С	3.54192500	0.98376400	-0.72279400
С	-5.29900200	-0.46957700	-0.07425600
С	4.35362500	-1.19106800	0.79814100
С	4.88222600	0.62335900	-0.68322200
С	5.29900500	-0.46955400	0.07402600
Н	-5.60778900	1.20037500	1.25018400
Н	-4.66410200	-2.03656700	-1.40632900
Н	-6.34775100	-0.74831000	-0.10793600
Н	4.66425200	-2.03643800	1.40629300
Н	5.60765000	1.20030100	-1.25057300
Н	6.34775900	-0.74828300	0.10761400
Li	-0.00001000	2.12824400	0.00009300
Н	2.28865800	-1.38042100	1.36594600
Н	3.21411900	1.82632700	-1.32616700
Н	-2.28851600	-1.38054200	-1.36577600
Н	-3.21426700	1.82641200	1.32599000

4.1.5. NBO analysis for MgCl[P(NPh)₂]

Natural Population

Atom	No	Natural Charge	Core	Valence	Rydberg	Total
 		1 21701	0 00705	2 72100		12 70200
r Cl	1 2	-0 69614	9.99795	J./2199 7 60170	0.00303	17 69614
Ma	2	1 33015	9.99907	0 64661	0.00448	10 66085
N	4	-1 08417	1 99951	6 07029	0.01437	8 08417
N	5	-1.09810	1.99951	6.08448	0.01411	8.09810
11	0	1.00010	1.00001	0.00110	0.01111	0.09010

⁽Occupancy) Bond orbital/ Coefficients/ Hybrids

1. (1.97543)	BD (1) H	P 1 - N 4	
(25.86%)	0.5085* P	1 s(15.58%)p 5.31(82.80%)d 0.10(1.62%)
			0.0000 0.0000 -0.3831 0.0950 -0.0002
			-0.0003 -0.6294 0.0462 0.0000 -0.6291
			0.0241 0.0000 -0.1823 -0.0030 -0.1088
			-0 0269 -0 0247 0 0057 0 0549
(74 148)	0 8610* N	$4 \approx (29.15\%) \approx 2.43(70.76\%) = 0.00(0.10\%)$
(/ / /	0.0010 1	-3(29.198)p(2.49(70.708)a(0.00(-0.108)))
			0.0002 0.0007 0.0000 0.0002
			0.0081 0.0079 0.0082 0.0043 -0.0056
0 (1 00 000)	(1) -		-0.0217 -0.0032 -0.0079 0.0100 0.0181
2. (1.97623)	BD (1) H	2 I – N 5	
(25.78%)	0.5077* P	1 s(15.41%)p 5.38(82.97%)d 0.11(1.62%)
			0.0000 -0.0001 0.3810 -0.0945 0.0000
			-0.0003 -0.7511 0.0515 0.0000 0.4520
			-0.0099 0.0001 0.2418 -0.0052 -0.0949
			-0.0460 0.0262 0.0456 -0.0481
(74.22%)	0.8615* N	5 s(29.27%)p 2.41(70.63%)d 0.00(0.10%)
			-0.0002 0.5410 -0.0006 -0.0040 0.6555
			0.0111 -0.4992 -0.0048 -0.1652 0.0043
			-0.0222 -0.0098 0.0107 0.0018 -0.0159
80 (1 96595)	T.P (1) F	> 1	$s(70.24\%) \approx 0.42(.29.70\%) d = 0.00(0.06\%)$
00. (1.90090)	LL (1) 1	- <u>-</u>	0 0000 = 0 0009 0 8378 0 0227 0 0000
			0.0000 0.0582 0.0001 -0.0004 -0.5174
			0.0000 0.0002 0.00021 -0.0004 -0.0174
			-0.0236 -0.0002 -0.1586 -0.0119 -0.0019

81.	(0.72509)	LP*(2) P	1	0.0041 -0.0087 -0.0043 0.0216 s(0.12%)p99.99(99.13%)d 6.33(0.75%) 0.0000 0.0000 0.0343 0.0003 0.0007 0.0000 -0.0835 -0.0040 0.0000 0.3327
82.	(1,98531)	LP (1)Cl	2	-0.0016 0.0000 -0.9345 -0.0207 -0.0073 0.0044 -0.0685 -0.0233 -0.0466 s(61.10%)p 0.64(38.88%)d 0.00(0.02%)
	(1100001)	22 (2, 02	_	0.0000 -0.0002 0.7817 -0.0028 0.0007 0.0000 0.0274 0.0003 0.0000 0.3047 -0.0024 0.0000 0.5433 -0.0037 -0.0006 -0.0009 -0.0107 0.0031 -0.0086
83.	(1.95414)	LP (2)Cl	2	s(0.19%)p99.99(99.77%)d 0.19(0.04%) 0.0000 0.0000 0.0437 -0.0001 0.0001 0.0000 -0.1294 -0.0004 0.0000 0.8387 0.0020 0.0000 -0.5268 -0.0029 0.0001 0.0026 -0.0091 0.0081 0.0144
84.	(1.95144)	LP (3)Cl	2	s(0.00%)p 1.00(99.96%)d 0.00(0.04%) 0.0000 0.0000 0.0019 0.0008 0.0000 -0.0001 -0.9908 -0.0030 0.0000 -0.0912 -0.0006 0.0000 0.0984 0.0005 0.0094 0.0160 0.0007 -0.0001 -0.0029
85.	(1.80502)	LP (4)Cl	2	s(38.70%)p1.58(61.18%)d0.00(0.12%) 0.000000.00020.62210.0039-0.0009 0.0000-0.0223-0.00130.0001-0.4412 0.00360.0002-0.64550.00350.0012 0.00170.0276-0.00940.0182
86.	(0.30302)	LP*(1)Mg	3	s(97.90%)p 0.02(1.91%)d 0.00(0.19%) 0.0000 0.0000 0.9894 -0.0042 0.0007 0.0000 0.0256 -0.0027 0.0000 -0.0057 0.0261 0.0000 0.1297 0.0302 0.0005 0.0003 0.0396 -0.0119 0.0140
87.	(0.13791)	LP*(2)Mg	3	s(1.24%)p79.31(98.24%)d 0.42(0.52%) 0.0000 0.0000 0.0632 0.0912 -0.0084 0.0000 0.1339 0.0002 0.0000 -0.8329 0.0123 0.0000 -0.5199 -0.0137 0.0159 -0.0041 -0.0506 0.0472 -0.0135
88.	(0.11292)	LP*(3)Mg	3	s(0.15%)p99.99(99.48%)d 2.36(0.36%) 0.0000 0.0000 0.0280 0.0272 -0.0025 0.0000 -0.9873 0.0056 0.0000 -0.1395 0.0001 0.0000 -0.0221 0.0055 -0.0311 -0.0506 -0.0088 0.0022 -0.0021
89.	(0.09661)	LP*(4)Mg	3	s(1.41%)p69.63(98.27%)d 0.23(0.32%) 0.0000 0.0000 0.1149 0.0292 -0.0072 0.0000 -0.0516 0.0098 0.0000 0.5258 -0.0100 0.0000 -0.8386 -0.0084 0.0027 0.0014 0.0086 -0.0295 -0.0475
90.	(1.84251)	LP (1) N	4	s(28.45%)p 2.51(71.52%)d 0.00(0.02%) -0.0003 0.5333 0.0102 0.0030 -0.3715 0.0320 0.6873 -0.0124 0.3220 -0.0099 0.0079 -0.0004 -0.0054 0.0106 -0.0008
91.	(1.55352)	LP (2) N	4	s(0.73%)p99.99(99.18%)d 0.12(0.09%) 0.0001 0.0852 0.0028 -0.0017 -0.1760 -0.0008 0.2790 0.0072 -0.9396 -0.0066 0.0046 0.0051 0.0254 0.0089 0.0114
92.	(1.84333)	LP (1) N	5	s(28.71%)p 2.48(71.27%)d 0.00(0.02%) -0.0003 0.5357 0.0103 0.0032 0.2124 -0.0274 0.7626 -0.0203 0.2912 -0.0056 -0.0022 -0.0004 -0.0054 0.0129 -0.0012
93.	(1.56851)	LP (2) N	5	s(0.40%)p99.99(99.52%)d 0.21(0.08%) 0.0000 0.0629 0.0051 -0.0007 -0.0404 -0.0017 0.3267 0.0050 -0.9417 -0.0060 0.0039 -0.0090 0.0217 0.0081 0.0144
cond	Order Per	turbation Th	eory Analysi	s of Fock Matrix in NBO Basis

Second Order Perturbation Theory Analysis of Fock Matrix in NBO Basis 91. LP (2) N 4 / 81. LP*(2) P 1 143.40 0.10 0.115 93. LP (2) N 5 / 81. LP*(2) P 1 133.07 0.10 0.112

90.	LP (1)	Ν	4	/ 86.	LP*(1)Mq	3	28.02
0.47	0.106				,			
92.	LP (1)	Ν	5	/ 86.	LP*(1)Mg	3	27.23
0.47	0.105							
92.	LP (1)	Ν	5	/ 87.	LP*(2)Mg	3	11.42
0.57	0.073							
92.	LP (1)	Ν	5	/ 88.	LP*(3)Mg	3	12.59
0.52	0.073							
90.	LP (1)	Ν	4	/ 87.	LP* (2) Mg	3	13.57
0.57	0.079							
80.	LP (1)	P	1	/ 87.	LP* (2)Mg	3	11.46
0.67	0.080					_		

4.1.6. Optimized geometry for MgCl[P(NPh)₂]·THF

0 1			
P	0.43298800	-1.86518200	-0.13286400
Cl	0.21119400	2.02479300	2.63318700
Mg	0.13841100	0.73796200	0.77976000
N	1.52455100	-0.67793200	0.09911500
N	-0.90097500	-1.00933300	0.26456100
С	2.90147500	-0.80730800	-0.09334600
С	3.46239400	-1.66299300	-1.05472500
С	4.84101700	-1.75161700	-1.20143200
Н	5.25530100	-2.42014800	-1.95106400
С	5.68868700	-0.98096500	-0.40946400
Н	6.76528400	-1.04758300	-0.53265100
С	5.13951600	-0.11615400	0.53469000
Н	5.78815000	0.49309900	1.15777900
С	3.76256100	-0.02617800	0.69253400
С	-2.20698900	-1.49807200	0.21966000
С	-3.15451000	-0.96197700	1.10679600
С	-4.47177900	-1.40199700	1.08830300
Н	-5.18506200	-0.97748800	1.78924100
С	-4.87828600	-2.38285100	0.18623600
Н	-5.90870600	-2.72424400	0.17259900
С	-3.94858200	-2.91426500	-0.70415600
Н	-4.25330200	-3.67152600	-1.42129000
С	-2.63069300	-2.47397100	-0.69821500
0	-0.42995600	2.03924500	-0.70753900
С	-0.38071400	3.48488400	-0.55321600
Н	0.64304100	3.81525700	-0.74916500
Н	-0.62950600	3.70138100	0.48823600
С	-1.39303600	4.03964500	-1.55357000
Н	-1.93064400	4.90063200	-1.14999800
Н	-0.89222700	4.35731300	-2.47376200
С	-2.30275700	2.84348700	-1.83501600
Н	-2.82034500	2.91374600	-2.79468100
Н	-3.05253800	2.72642000	-1.04570400
С	-1.31899400	1.69244700	-1.78905000
Н	-1.75866500	0.72082600	-1.55565800
Н	-0.73633200	1.61645100	-2.71579900
Н	3.33227400	0.63445400	1.44126800
Н	2.80807800	-2.24481700	-1.69891800
Н	-2.83154700	-0.21380200	1.82665800
Н	-1.92055400	-2.87505700	-1.41704000

4.2. Isomers of 2

Figure S2. Observed ³¹P NMR spectra of **2** in $[D_8]$ -toluene at different temperatures (top: – 80, +20, +100 °C; bottom: from –80 °C to +100 °C in 10 K steps). Integral ratio at –80 °C: 18:1.

Figure S3. Observed ³¹P NMR data at different temperatures (δ vs T).

T [°C]	δ_1		δ_2	δ ₃
-80)	337.1	261.22	
_70) 3	336.88	261.3	;
-60) 3	336.59	261.43	;
-50) 3	336.33	261.51	
-40)	336.1	261.65	i
-30) 3	335.89		
-20) 3	335.69		
-10) 3	335.51		
() 3	335.28		
10)			
20)			
30)			
40)			
50)			
6)			
70)			
80)			327.45
90)			327.26
10)			327.22

Table S3. Temperature-va	riable NMR data of 2 .
----------------------------------	-------------------------------

To calculate the NMR shift of the coalesced signal the formula below was used. To compensate temperature dependent solvent effects, the values extrapolated to +100 °C were used.

$$\delta_3 = x_1 \delta_1 + x_2 \delta_2 = \frac{1}{19} 332.97 + \frac{18}{19} 260.99 = 327.2 \text{ ppm}$$

Approximation for the Gibbs activation energy in kJ mol⁻¹ (T_c : coalescence temperature in K, Δv : difference between both resonances in Hz):

$$\Delta G_c = -0.0191 \cdot T_c \left(10.32 + \log \frac{T_c}{\Delta v \cdot 2.22} \right) = 49.5 \text{ kJ mol}^{-1}$$

Figure S4. Van't Hoff plot (ln K vs 1/T). Only the values for -80, -70, and -60 °C were used, because at higher temperatures the integral of the resonance at 261 ppm is strongly influences by line broadening.

T [K]	Integral1	Integral2	K	1/T	ln K
193.15	16184620	307005376	18.9689579	0.00517732	2.94280385
203.15	19081684	287723744	15.07853	0.00492247	2.71327188
213.15	20185022	267673104	13.2609766	0.00469153	2.58482563
223.15	18916354	251695568	13.3057125	0.00448129	2.58819345
233.15	15240096	234753088	15.4036489	0.00428908	2.73460442

 Table S4. Temperature-variable NMR data of 2 for Van't Hoff plot.

Figure S5. Isomerization pathways for **2** at the model of $Ph_2N_2PSbCl_2$ (E in kJ mol⁻¹). Blue: self-isomerization $2 \rightarrow TS \rightarrow 2'$ (flipping of N–Sb bond). Green: Isomerisation $2 \rightarrow TS5 \rightarrow cis$. Black: Two-step rearrangement $2 \rightarrow TS1 \rightarrow Int1 \rightarrow TS2 \rightarrow trans$.

Table S5. Isomers	and	transition	states	for	Ph ₂	N	PSt	bCl ₂
-------------------	-----	------------	--------	-----	-----------------	---	-----	------------------

I ubic 55	. isomers and trank	stutes for		•	
	E [a.u.]	ΔE [a.u.]	$\Delta E [kJ mol^{-1}]$	$\delta(^{31}P)$ calc	$\delta(^{31}\text{P})$ obs. -80°C
trans	-1838.92678061	0.00004002	0.1	+262	+261.2
2	-1838.92682063	0.00000000	0.0	+333	+337.1
cis	-1838.92581966	0.00100097	2.6	+242	
Int1	-1838.91526687	0.01155376	30.3	+391	
TS1	-1838.91443786	0.01238277	32.5		
TS2	-1838.91378746	0.01303317	34.2		
TS3	-1838.88934306	0.03747757	98.4		
TS4	-1838.88832716	0.03849347	101.1		
TS5	-1838.88046570	0.04635493	121.7		

4.2.1. Optimized geometry for 2

N	1.48043400	0.56799400	0.00543700
N	-0.91308900	0.69263500	-0.20283200
Cl	-2.30981200	-2.18249400	-0.64785800
Cl	0.24354900	-1.85292900	1.78913100
С	2.86822600	0.71337200	-0.03092800
C	3 49280600	1 76724400	-0 71421100
C	2 65975900	0.24250400	0.62171100
C	3.658/5800	-0.24350400	0.621/1100
C	4.87818000	1.87455600	-0.71842600
Н	2.88437800	2.48507500	-1.25882900
С	5.04307300	-0.13066400	0.60558700
н	3,16839200	-1.04968700	1,15943900
C	5 65917100	0 92765600	-0.06015400
	5.05917100	0.92703000	1 2510010400
H	5.34958300	2.69543600	-1.25109100
Н	5.64500900	-0.87352100	1.12081800
Н	6.74173200	1.00899300	-0.07321000
С	-2.25701200	1.09006700	0.00620300
С	-3.17181600	1.07092400	-1.04964000
C	-2 66412000	1 52603600	1 27074400
C	4 47994600	1 40102200	1.27074400
	-4.4/884600	1.49193200	-0.83956400
H	-2.85081600	0.72278600	-2.02596300
С	-3.97129200	1.95766500	1.47007200
Н	-1.95511700	1.50376800	2.09374700
С	-4.88096300	1,94044700	0.41706500
U H	-5 18636400	1 47179300	-1 66297100
11	4.27062000	2 20722000	2 45426500
H	-4.2/968000	2.29/32900	2.45426500
Н	-5.90353900	2.26943400	0.5/555/00
Sb	-0.05801800	-1.22397500	-0.51203300
P	0.36289500	1.71698200	0.07275000
122 Optimized	competent for Int1		
4.2.2. Optimized	geometry for fifth		
0 1			
Sb	-0.0000300	0.87888900	0.94237500
Ν	1.18348600	-0.30983500	-0.38432300
N	1 10040000		0 20421000
IN	- 18349/00	-0 30983900	
N	-1.18349200	-0.30983900	-0.38431800
N C	-1.18349200 2.57618700	-0.30983900	-0.38431800
N C C	-1.18349200 2.57618700 3.15479700	-0.30983900 -0.46403200 -1.73661600	-0.38431800 -0.50261400 -0.48671000
к С С С	-1.18349200 2.57618700 3.15479700 3.38095200	-0.30983900 -0.46403200 -1.73661600 0.67367400	-0.38431800 -0.50261400 -0.48671000 -0.62573300
N C C C C	-1.18349200 2.57618700 3.15479700 3.38095200 4.53314500	-0.30983900 -0.46403200 -1.73661600 0.67367400 -1.86736000	-0.38431800 -0.50261400 -0.48671000 -0.62573300 -0.61830200
N C C C H	-1.18349200 2.57618700 3.15479700 3.38095200 4.53314500 2.52443200	-0.30983900 -0.46403200 -1.73661600 0.67367400 -1.86736000 -2.60873700	-0.38431800 -0.50261400 -0.48671000 -0.62573300 -0.61830200 -0.33913500
N C C C H C	-1.18349200 2.57618700 3.15479700 3.38095200 4.53314500 2.52443200 4.75823800	-0.30983900 -0.46403200 -1.73661600 0.67367400 -1.86736000 -2.60873700 0.52975500	-0.38431800 -0.50261400 -0.48671000 -0.62573300 -0.61830200 -0.33913500 -0.73873400
N C C C H C H	-1.18349200 2.57618700 3.15479700 3.38095200 4.53314500 2.52443200 4.75823800 2.91369200	-0.30983900 -0.46403200 -1.73661600 0.67367400 -1.86736000 -2.60873700 0.52975500 1.65404900	-0.38431800 -0.50261400 -0.48671000 -0.62573300 -0.61830200 -0.33913500 -0.73873400 -0.66671600
N C C C H C H C	-1.18349200 2.57618700 3.15479700 3.38095200 4.53314500 2.52443200 4.75823800 2.91369200 5.33783200	-0.30983900 -0.46403200 -1.73661600 0.67367400 -1.86736000 -2.60873700 0.52975500 1.65404900 -0.73801200	-0.38431800 -0.50261400 -0.48671000 -0.62573300 -0.61830200 -0.33913500 -0.73873400 -0.66671600 -0.74096800
N C C C H C H C	-1.18349200 2.57618700 3.15479700 3.38095200 4.53314500 2.52443200 4.75823800 2.91369200 5.33783200	-0.30983900 -0.46403200 -1.73661600 0.67367400 -1.86736000 -2.60873700 0.52975500 1.65404900 -0.73801200	-0.38431800 -0.50261400 -0.48671000 -0.62573300 -0.61830200 -0.33913500 -0.73873400 -0.66671600 -0.7404800
N C C C H C H C H	-1.18349200 2.57618700 3.15479700 3.38095200 4.53314500 2.52443200 4.75823800 2.91369200 5.33783200 4.97948000	-0.30983900 -0.46403200 -1.73661600 0.67367400 -1.86736000 -2.60873700 0.52975500 1.65404900 -0.73801200 -2.85712800	-0.38431800 -0.50261400 -0.48671000 -0.62573300 -0.61830200 -0.33913500 -0.73873400 -0.66671600 -0.74096800 -0.60444200
N C C C H C H C H H	-1.18349200 2.57618700 3.15479700 3.38095200 4.53314500 2.52443200 4.75823800 2.91369200 5.33783200 4.97948000 5.38063200	-0.30983900 -0.46403200 -1.73661600 0.67367400 -1.86736000 -2.60873700 0.52975500 1.65404900 -0.73801200 -2.85712800 1.41396700	-0.38431800 -0.50261400 -0.48671000 -0.62573300 -0.61830200 -0.33913500 -0.73873400 -0.66671600 -0.74096800 -0.60444200 -0.83800600
N С С С Н С Н С Н Н Н Н	-1.18349200 2.57618700 3.15479700 3.38095200 4.53314500 2.52443200 4.75823800 2.91369200 5.33783200 4.97948000 5.38063200 6.41449600	-0.30983900 -0.46403200 -1.73661600 0.67367400 -1.86736000 -2.60873700 0.52975500 1.65404900 -0.73801200 -2.85712800 1.41396700 -0.84416500	-0.38431800 -0.50261400 -0.48671000 -0.62573300 -0.61830200 -0.33913500 -0.73873400 -0.66671600 -0.74096800 -0.60444200 -0.83800600 -0.83138600
N С С С Н С Н С Н Н С	-1.18349200 2.57618700 3.15479700 3.38095200 4.53314500 2.52443200 4.75823800 2.91369200 5.33783200 4.97948000 5.38063200 6.41449600 -2.57619400	-0.30983900 -0.46403200 -1.73661600 0.67367400 -1.86736000 -2.60873700 0.52975500 1.65404900 -0.73801200 -2.85712800 1.41396700 -0.84416500 -0.46403400	-0.38431800 -0.50261400 -0.48671000 -0.62573300 -0.61830200 -0.33913500 -0.73873400 -0.66671600 -0.74096800 -0.60444200 -0.83800600 -0.83138600 -0.50260900
N С С С Н С Н С Н Н Н Н Н С С	-1.18349200 2.57618700 3.15479700 3.38095200 4.53314500 2.52443200 4.75823800 2.91369200 5.33783200 4.97948000 5.38063200 6.41449600 -2.57619400 -3.15480600	-0.30983900 -0.46403200 -1.73661600 0.67367400 -1.86736000 -2.60873700 0.52975500 1.65404900 -0.73801200 -2.85712800 1.41396700 -0.84416500 -0.46403400 -1.73661700	-0.38431800 -0.50261400 -0.48671000 -0.62573300 -0.61830200 -0.33913500 -0.73873400 -0.66671600 -0.74096800 -0.60444200 -0.83800600 -0.83138600 -0.50260900 -0.48669700
N С С С Н С Н С Н Н Н Н С С С С	-1.18349200 2.57618700 3.15479700 3.38095200 4.53314500 2.52443200 4.75823800 2.91369200 5.33783200 4.97948000 5.38063200 6.41449600 -2.57619400 -3.15480600 -3.38095700	-0.30983900 -0.46403200 -1.73661600 0.67367400 -1.86736000 -2.60873700 0.52975500 1.65404900 -0.73801200 -2.85712800 1.41396700 -0.84416500 -0.46403400 -1.73661700 0.67367200	-0.38431800 -0.50261400 -0.48671000 -0.62573300 -0.61830200 -0.33913500 -0.73873400 -0.66671600 -0.74096800 -0.60444200 -0.83800600 -0.83138600 -0.50260900 -0.48669700 -0.62573600
N C C C C H C H C H H H H C C C C C C C	-1.18349200 2.57618700 3.15479700 3.38095200 4.53314500 2.52443200 4.75823800 2.91369200 5.33783200 4.97948000 5.38063200 6.41449600 -2.57619400 -3.15480600 -3.38095700 -4.53315400	-0.30983900 -0.46403200 -1.73661600 0.67367400 -1.86736000 -2.60873700 0.52975500 1.65404900 -0.73801200 -2.85712800 1.41396700 -0.84416500 -0.46403400 -1.73661700 0.67367200 -1.86735900	-0.38431800 -0.50261400 -0.48671000 -0.62573300 -0.61830200 -0.33913500 -0.73873400 -0.66671600 -0.74096800 -0.60444200 -0.83138600 -0.83138600 -0.50260900 -0.48669700 -0.62573600 -0.61828800
N C C C C H C H C H H H H C C C C C C C	-1.18349200 2.57618700 3.15479700 3.38095200 4.53314500 2.52443200 4.75823800 2.91369200 5.33783200 4.97948000 5.38063200 6.41449600 -2.57619400 -3.15480600 -3.38095700 -4.53315400	-0.30983900 -0.46403200 -1.73661600 0.67367400 -1.86736000 -2.60873700 0.52975500 1.65404900 -0.73801200 -2.85712800 1.41396700 -0.84416500 -0.46403400 -1.73661700 0.67367200 -1.86735900 2.60873900	-0.38431800 -0.50261400 -0.48671000 -0.62573300 -0.61830200 -0.33913500 -0.73873400 -0.66671600 -0.74096800 -0.60444200 -0.83800600 -0.83138600 -0.50260900 -0.48669700 -0.62573600 -0.61828800 -0.61828800 -0.2011000
N C C C C H C H C H H H H C C C C C C H	-1.18349200 2.57618700 3.15479700 3.38095200 4.53314500 2.52443200 4.75823800 2.91369200 5.33783200 4.97948000 5.38063200 6.41449600 -2.57619400 -3.15480600 -3.38095700 -4.53315400 -2.52444200	-0.30983900 -0.46403200 -1.73661600 0.67367400 -1.86736000 -2.60873700 0.52975500 1.65404900 -0.73801200 -2.85712800 1.41396700 -0.84416500 -0.46403400 -1.73661700 0.67367200 -1.86735900 -2.60873800	-0.38431800 -0.50261400 -0.48671000 -0.62573300 -0.61830200 -0.33913500 -0.73873400 -0.66671600 -0.74096800 -0.60444200 -0.83800600 -0.83138600 -0.50260900 -0.48669700 -0.62573600 -0.61828800 -0.33911800
N C C C H C H C H H H C C C C C C C H C H C H C H C H C H C H C H C H C H C C C C H C	-1.18349200 2.57618700 3.15479700 3.38095200 4.53314500 2.52443200 4.75823800 2.91369200 5.33783200 4.97948000 5.38063200 6.41449600 -2.57619400 -3.15480600 -3.38095700 -4.53315400 -2.52444200 -4.75824200	-0.30983900 -0.46403200 -1.73661600 0.67367400 -1.86736000 -2.60873700 0.52975500 1.65404900 -0.73801200 -2.85712800 1.41396700 -0.84416500 -0.46403400 -1.73661700 0.67367200 -1.86735900 -2.60873800 0.52975500	-0.38431800 -0.50261400 -0.48671000 -0.62573300 -0.61830200 -0.33913500 -0.73873400 -0.66671600 -0.74096800 -0.60444200 -0.83138600 -0.83138600 -0.50260900 -0.48669700 -0.62573600 -0.61828800 -0.33911800 -0.73873500
N С С С С Н С Н С С С С С С С С Ц С Н Ц	-1.18349200 2.57618700 3.15479700 3.38095200 4.53314500 2.52443200 4.75823800 2.91369200 5.33783200 4.97948000 5.38063200 6.41449600 -2.57619400 -3.15480600 -3.38095700 -4.53315400 -2.52444200 -4.75824200 -2.91369400	-0.30983900 -0.46403200 -1.73661600 0.67367400 -1.86736000 -2.60873700 0.52975500 1.65404900 -0.73801200 -2.85712800 1.41396700 -0.84416500 -0.46403400 -1.73661700 0.67367200 -1.86735900 -2.60873800 0.52975500 1.65404700	-0.38431800 -0.50261400 -0.48671000 -0.62573300 -0.61830200 -0.33913500 -0.73873400 -0.66671600 -0.74096800 -0.60444200 -0.83138600 -0.50260900 -0.48669700 -0.62573600 -0.61828800 -0.33911800 -0.73873500 -0.66672400
N С С С С Н С Н С С С С С С С С С С С Н С С Н С	-1.18349200 2.57618700 3.15479700 3.38095200 4.53314500 2.52443200 4.75823800 2.91369200 5.33783200 4.97948000 5.38063200 6.41449600 -2.57619400 -3.15480600 -3.38095700 -4.53315400 -2.52444200 -4.75824200 -2.91369400 -5.33783900	-0.30983900 -0.46403200 -1.73661600 0.67367400 -1.86736000 -2.60873700 0.52975500 1.65404900 -0.73801200 -2.85712800 1.41396700 -0.84416500 -0.46403400 -1.73661700 0.67367200 -1.86735900 -2.60873800 0.52975500 1.65404700 -0.73801100	-0.38431800 -0.50261400 -0.48671000 -0.62573300 -0.61830200 -0.33913500 -0.73873400 -0.66671600 -0.74096800 -0.60444200 -0.83800600 -0.83138600 -0.50260900 -0.48669700 -0.62573600 -0.61828800 -0.33911800 -0.73873500 -0.66672400 -0.74096100
N С С С С Н С Н С С С С С С С С С С С Н С Н С Н С Н С Н С С Н С С Н С	-1.18349200 2.57618700 3.15479700 3.38095200 4.53314500 2.52443200 4.75823800 2.91369200 5.33783200 4.97948000 5.38063200 6.41449600 -2.57619400 -3.15480600 -3.15480600 -3.38095700 -4.53315400 -2.52444200 -4.75824200 -2.91369400 -5.33783900 -4.97949100	-0.30983900 -0.46403200 -1.73661600 0.67367400 -1.86736000 -2.60873700 0.52975500 1.65404900 -0.73801200 -2.85712800 1.41396700 -0.84416500 -0.46403400 -1.73661700 0.67367200 -1.86735900 -2.60873800 0.52975500 1.65404700 -0.73801100 -2.85712600	-0.38431800 -0.50261400 -0.48671000 -0.62573300 -0.61830200 -0.33913500 -0.73873400 -0.66671600 -0.74096800 -0.6044200 -0.83800600 -0.83138600 -0.50260900 -0.48669700 -0.62573600 -0.61828800 -0.33911800 -0.73873500 -0.66672400 -0.74096100 -0.60442200
N С С С С С Н С С С С С С С С С С С С Н С С Н С Н С С Н С	-1.18349200 2.57618700 3.15479700 3.38095200 4.53314500 2.52443200 4.75823800 2.91369200 5.33783200 4.97948000 5.38063200 6.41449600 -2.57619400 -3.15480600 -3.38095700 -4.53315400 -2.5244200 -4.75824200 -2.91369400 -5.33783900 -4.97949100 -5.38063400	-0.30983900 -0.46403200 -1.73661600 0.67367400 -1.86736000 -2.60873700 0.52975500 1.65404900 -0.73801200 -2.85712800 1.41396700 -0.46403400 -1.73661700 0.67367200 -1.86735900 -2.60873800 0.52975500 1.65404700 -0.73801100 -2.85712600 1.41396800	-0.38431800 -0.50261400 -0.48671000 -0.62573300 -0.61830200 -0.33913500 -0.73873400 -0.66671600 -0.74096800 -0.60444200 -0.83138600 -0.50260900 -0.48669700 -0.62573600 -0.61828800 -0.33911800 -0.73873500 -0.66672400 -0.74096100 -0.60442200 -0.83801300
N C C C C H C H C C C C C C C C H C C H H C H H H H C C H H C C H H C C C C H H C C H H C C H H C C H H C C H H C C H H H C C H H H C H	-1.18349200 2.57618700 3.15479700 3.38095200 4.53314500 2.52443200 4.75823800 2.91369200 5.33783200 4.97948000 5.38063200 6.41449600 -2.57619400 -3.15480600 -3.38095700 -4.53315400 -2.52444200 -4.75824200 -2.91369400 -5.33783900 -4.97949100 -5.38063400 -6.41450400	-0.30983900 -0.46403200 -1.73661600 0.67367400 -1.86736000 -2.60873700 0.52975500 1.65404900 -0.73801200 -2.85712800 1.41396700 -0.84416500 -0.46403400 -1.73661700 0.67367200 -1.86735900 -2.60873800 0.52975500 1.65404700 -0.73801100 -2.85712600 1.41396800 -0.84416200	-0.38431800 -0.50261400 -0.48671000 -0.62573300 -0.61830200 -0.33913500 -0.73873400 -0.66671600 -0.74096800 -0.60444200 -0.83138600 -0.50260900 -0.48669700 -0.62573600 -0.61828800 -0.33911800 -0.73873500 -0.66672400 -0.74096100 -0.60342200 -0.83801300 -0.83137800
N С С С С С С С С С С С С С С С С С С С	-1.18349200 2.57618700 3.15479700 3.38095200 4.53314500 2.52443200 4.75823800 2.91369200 5.33783200 4.97948000 5.38063200 6.41449600 -2.57619400 -3.15480600 -3.38095700 -4.53315400 -2.52444200 -4.75824200 -2.91369400 -5.33783900 -4.97949100 -5.38063400 -6.41450400 0.0000200	-0.30983900 -0.46403200 -1.73661600 0.67367400 -1.86736000 -2.60873700 0.52975500 1.65404900 -0.73801200 -2.85712800 1.41396700 -0.84416500 -0.46403400 -1.73661700 0.67367200 -1.86735900 -2.60873800 0.52975500 1.65404700 -0.73801100 -2.85712600 1.41396800 -0.84416200 1.41396800 -0.84416200	-0.38431800 -0.50261400 -0.48671000 -0.62573300 -0.61830200 -0.33913500 -0.73873400 -0.66671600 -0.74096800 -0.60444200 -0.83138600 -0.50260900 -0.48669700 -0.62573600 -0.61828800 -0.33911800 -0.73873500 -0.66672400 -0.74096100 -0.60442200 -0.83137800 -0.83
N C C C C H C H H H C C C C C C H C C H H C H H H H H C H H C C C C C C C H H C	-1.18349200 2.57618700 3.15479700 3.38095200 4.53314500 2.52443200 4.75823800 2.91369200 5.33783200 4.97948000 5.38063200 6.41449600 -2.57619400 -3.15480600 -3.38095700 -4.53315400 -2.52444200 -4.75824200 -2.91369400 -5.33783900 -4.97949100 -5.38063400 -6.41450400 -0.0000300	-0.30983900 -0.46403200 -1.73661600 0.67367400 -1.86736000 -2.60873700 0.52975500 1.65404900 -0.73801200 -2.85712800 1.41396700 -0.84416500 -0.46403400 -1.73661700 0.67367200 -1.86735900 -2.60873800 0.52975500 1.65404700 -0.73801100 -2.85712600 1.41396800 -0.84416200 -1.08432600	-0.38431800 -0.50261400 -0.48671000 -0.62573300 -0.61830200 -0.33913500 -0.73873400 -0.66671600 -0.74096800 -0.60444200 -0.83800600 -0.83138600 -0.50260900 -0.48669700 -0.62573600 -0.61828800 -0.33911800 -0.73873500 -0.66672400 -0.66672400 -0.60442200 -0.83801300 -0.83137800 -1.20602500
N C C C C H C H C C C C C C C C C C H C C H C H H C H H H H C H C L	-1.18349200 2.57618700 3.15479700 3.38095200 4.53314500 2.52443200 4.75823800 2.91369200 5.33783200 4.97948000 5.38063200 6.41449600 -2.57619400 -3.15480600 -3.38095700 -4.53315400 -2.52444200 -4.75824200 -2.91369400 -5.33783900 -4.97949100 -5.38063400 -6.41450400 -0.00000300 0.00000700	-0.30983900 -0.46403200 -1.73661600 0.67367400 -1.86736000 -2.60873700 0.52975500 1.65404900 -0.73801200 -2.85712800 1.41396700 -0.84416500 -0.46403400 -1.73661700 0.67367200 -1.86735900 -2.60873800 0.52975500 1.65404700 -0.73801100 -2.85712600 1.41396800 -0.84416200 -1.08432600 2.66625000	-0.38431800 -0.50261400 -0.48671000 -0.62573300 -0.61830200 -0.33913500 -0.73873400 -0.66671600 -0.74096800 -0.60444200 -0.83800600 -0.83138600 -0.50260900 -0.48669700 -0.62573600 -0.61828800 -0.33911800 -0.73873500 -0.66672400 -0.66672400 -0.66672400 -0.60442200 -0.83801300 -0.83137800 -1.20602500 -0.89373800
N C C C C H C H H C C C C C C C C C C H C C H H C H H H H C C H C C L C C C C	-1.18349200 2.57618700 3.15479700 3.38095200 4.53314500 2.52443200 4.75823800 2.91369200 5.33783200 4.97948000 5.38063200 6.41449600 -2.57619400 -3.15480600 -3.15480600 -3.38095700 -4.53315400 -2.52444200 -4.75824200 -2.91369400 -5.33783900 -4.97949100 -5.38063400 -6.41450400 -0.00000300 0.00002400	-0.30983900 -0.46403200 -1.73661600 0.67367400 -1.86736000 -2.60873700 0.52975500 1.65404900 -0.73801200 -2.85712800 1.41396700 -0.84416500 -0.46403400 -1.73661700 0.67367200 -1.86735900 -2.60873800 0.52975500 1.65404700 -0.73801100 -2.85712600 1.41396800 -0.84416200 -1.08432600 2.66625000 -1.16658000	-0.38431800 -0.50261400 -0.48671000 -0.62573300 -0.61830200 -0.33913500 -0.73873400 -0.66671600 -0.74096800 -0.60444200 -0.83800600 -0.83138600 -0.50260900 -0.48669700 -0.62573600 -0.61828800 -0.33911800 -0.33911800 -0.73873500 -0.66672400 -0.66672400 -0.66672400 -0.60442200 -0.83801300 -0.83137800 -1.20602500 -0.89373800 2.45406900
C C C C C C C H H C C H H C C C C C C C	-1.18349200 2.57618700 3.15479700 3.38095200 4.53314500 2.52443200 4.75823800 2.91369200 5.33783200 4.97948000 5.38063200 6.41449600 -2.57619400 -3.15480600 -3.38095700 -4.53315400 -2.52444200 -4.53315400 -2.52444200 -4.75824200 -2.91369400 -5.33783900 -4.97949100 -5.38063400 -6.41450400 -0.0000300 0.0000700 0.00002400	-0.30983900 -0.46403200 -1.73661600 0.67367400 -1.86736000 -2.60873700 0.52975500 1.65404900 -0.73801200 -2.85712800 1.41396700 -0.46403400 -1.73661700 0.67367200 -1.86735900 -2.60873800 0.52975500 1.65404700 -0.73801100 -2.85712600 1.41396800 -0.84416200 -1.08432600 2.66625000 -1.16658000	-0.38431800 -0.50261400 -0.48671000 -0.62573300 -0.33913500 -0.73873400 -0.66671600 -0.74096800 -0.6044200 -0.83800600 -0.83138600 -0.50260900 -0.48669700 -0.62573600 -0.61828800 -0.33911800 -0.73873500 -0.66672400 -0.74096100 -0.60442200 -0.83801300 -0.83137800 -1.20602500 -0.89373800 2.45406900
N C C C C C H H C H H C C C C C C C C C	-1.18349200 2.57618700 3.15479700 3.38095200 4.53314500 2.52443200 4.75823800 2.91369200 5.33783200 4.97948000 5.38063200 6.41449600 -2.57619400 -3.15480600 -3.15480600 -3.38095700 -4.53315400 -2.5244200 -4.75824200 -2.91369400 -5.33783900 -4.97949100 -5.38063400 -6.41450400 -0.0000300 0.00002400 geometry for trans	-0.30983900 -0.46403200 -1.73661600 0.67367400 -1.86736000 -2.60873700 0.52975500 1.65404900 -0.73801200 -2.85712800 1.41396700 -0.84416500 -0.46403400 -1.73661700 0.67367200 -1.86735900 -2.60873800 0.52975500 1.65404700 -0.73801100 -2.85712600 1.41396800 -0.84416200 -1.08432600 2.66625000 -1.16658000 S-[CISb(μ-NTer]	-0.38431800 -0.50261400 -0.48671000 -0.62573300 -0.61830200 -0.33913500 -0.73873400 -0.66671600 -0.74096800 -0.60444200 -0.83138600 -0.50260900 -0.48669700 -0.62573600 -0.61828800 -0.33911800 -0.73873500 -0.66672400 -0.74096100 -0.74096100 -0.60442200 -0.83801300 -0.83137800 -1.20602500 -0.89373800 2.45406900 D 2 PCL]
N C C C C H H C H H H H H C C C C C C C	-1.18349200 2.57618700 3.15479700 3.38095200 4.53314500 2.52443200 4.75823800 2.91369200 5.33783200 4.97948000 5.38063200 6.41449600 -2.57619400 -3.15480600 -3.38095700 -4.53315400 -2.52444200 -4.75824200 -2.91369400 -5.33783900 -4.97949100 -5.38063400 -6.41450400 -0.0000300 0.0000700 0.00002400 geometry for trans	-0.30983900 -0.46403200 -1.73661600 0.67367400 -1.86736000 -2.60873700 0.52975500 1.65404900 -0.73801200 -2.85712800 1.41396700 -0.84416500 -0.46403400 -1.73661700 0.67367200 -1.86735900 -2.60873800 0.52975500 1.65404700 -0.73801100 -2.85712600 1.41396800 -0.84416200 -1.08432600 2.66625000 -1.16658000 S-[CISb(μ-NTer]	-0.38431800 -0.50261400 -0.48671000 -0.62573300 -0.61830200 -0.33913500 -0.73873400 -0.66671600 -0.74096800 -0.60444200 -0.83138600 -0.50260900 -0.48669700 -0.62573600 -0.62573600 -0.61828800 -0.33911800 -0.73873500 -0.66672400 -0.74096100 -0.60442200 -0.83801300 -0.83137800 -1.20602500 -0.89373800 2.45406900 2.45406900
N C C C C H H C H H C C C C C C C C C C	-1.18349200 2.57618700 3.15479700 3.38095200 4.53314500 2.52443200 4.75823800 2.91369200 5.33783200 4.97948000 5.38063200 6.41449600 -2.57619400 -3.15480600 -3.38095700 -4.53315400 -2.52444200 -4.75824200 -2.91369400 -5.33783900 -4.97949100 -5.38063400 -6.41450400 -0.0000300 0.0000700 0.00002400 geometry for trans	-0.30983900 -0.46403200 -1.73661600 0.67367400 -1.86736000 -2.60873700 0.52975500 1.65404900 -0.73801200 -2.85712800 1.41396700 -0.84416500 -0.46403400 -1.73661700 0.67367200 -1.86735900 -2.60873800 0.52975500 1.65404700 -0.73801100 -2.85712600 1.41396800 -0.84416200 -1.08432600 2.66625000 -1.16658000 S-[CISb(μ-NTer]	-0.38431800 -0.50261400 -0.48671000 -0.62573300 -0.61830200 -0.33913500 -0.73873400 -0.66671600 -0.74096800 -0.60444200 -0.83138600 -0.50260900 -0.48669700 -0.62573600 -0.61828800 -0.33911800 -0.73873500 -0.66672400 -0.74096100 -0.60442200 -0.83801300 -0.83137800 -1.20602500 -0.89373800 2.45406900 2.45406900
N C C C C H H C H H C C C C C C C C C C	-1.18349200 2.57618700 3.15479700 3.38095200 4.53314500 2.52443200 4.75823800 2.91369200 5.33783200 4.97948000 5.38063200 6.41449600 -2.57619400 -3.15480600 -3.38095700 -4.53315400 -2.52444200 -4.75824200 -2.91369400 -5.33783900 -4.97949100 -5.38063400 -6.41450400 -0.00000300 0.00002400 geometry for trans 0.00007400 -1.17372000	-0.30983900 -0.46403200 -1.73661600 0.67367400 -1.86736000 -2.60873700 0.52975500 1.65404900 -0.73801200 -2.85712800 1.41396700 -0.84416500 -0.46403400 -1.73661700 0.67367200 -1.86735900 -2.60873800 0.52975500 1.65404700 -0.73801100 -2.85712600 1.41396800 -0.84416200 -1.08432600 2.66625000 -1.16658000 S-[CISb(μ-NTer] -1.28062500 0.32512600	-0.38431800 -0.50261400 -0.48671000 -0.62573300 -0.61830200 -0.33913500 -0.73873400 -0.66671600 -0.74096800 -0.60444200 -0.83138600 -0.50260900 -0.48669700 -0.62573600 -0.61828800 -0.62573600 -0.66672400 -0.74096100 -0.66672400 -0.60442200 -0.83801300 -0.83137800 -1.20602500 -0.89373800 2.45406900 -2PCI] 0.66514100 0.27406800
N C C C C H H C H H C C C C C C C C C C	-1.18349200 2.57618700 3.15479700 3.38095200 4.53314500 2.52443200 4.75823800 2.91369200 5.33783200 4.97948000 5.38063200 6.41449600 -2.57619400 -3.15480600 -3.38095700 -4.53315400 -2.52444200 -4.75824200 -2.91369400 -5.33783900 -4.97949100 -5.38063400 -6.41450400 -0.00000300 0.00007400 0.00007400 -1.17372000 1.17365600	-0.30983900 -0.46403200 -1.73661600 0.67367400 -1.86736000 -2.60873700 0.52975500 1.65404900 -0.73801200 -2.85712800 1.41396700 -0.84416500 -0.46403400 -1.73661700 0.67367200 -1.86735900 -2.60873800 0.52975500 1.65404700 -0.73801100 -2.85712600 1.41396800 -0.84416200 -1.08432600 2.66625000 -1.16658000 S-[CISb(μ-NTer] -1.28062500 0.32512600 0.32512600	-0.38431800 -0.50261400 -0.48671000 -0.62573300 -0.61830200 -0.33913500 -0.73873400 -0.66671600 -0.74096800 -0.60444200 -0.83138600 -0.83138600 -0.50260900 -0.48669700 -0.62573600 -0.61828800 -0.33911800 -0.73873500 -0.66672400 -0.74096100 -0.66672400 -0.83801300 -0.83137800 -1.20602500 -0.89373800 2.45406900 -0.27406800 0.27406800 0.27406800 0.27420800
С С С С С С С С С С С С С С С С С С С	-1.18349200 2.57618700 3.15479700 3.38095200 4.53314500 2.52443200 4.75823800 2.91369200 5.33783200 4.97948000 5.38063200 6.41449600 -2.57619400 -3.15480600 -3.15480600 -3.38095700 -4.53315400 -2.52444200 -2.91369400 -5.33783900 -4.97949100 -5.38063400 -6.41450400 -0.00000300 0.0000700 0.00002400 geometry for trans 0.00007400 -1.17372000 1.17365600 -2.56759300	-0.30983900 -0.46403200 -1.73661600 0.67367400 -1.86736000 -2.60873700 0.52975500 1.65404900 -0.73801200 -2.85712800 1.41396700 -0.84416500 -0.46403400 -1.73661700 0.67367200 -1.86735900 -2.60873800 0.52975500 1.65404700 -0.73801100 -2.85712600 1.41396800 -0.84416200 -1.08432600 2.66625000 -1.16658000 S-[CISb(μ-NTer] -1.28062500 0.32512600 0.32537800 0.46983300	-0.38431800 -0.50261400 -0.48671000 -0.62573300 -0.61830200 -0.33913500 -0.73873400 -0.66671600 -0.74096800 -0.60444200 -0.83800600 -0.83138600 -0.50260900 -0.48669700 -0.62573600 -0.61828800 -0.33911800 -0.6657400 -0.66672400 -0.66672400 -0.66672400 -0.66672400 -0.83801300 -0.83137800 -1.20602500 -0.89373800 2.45406900)2PCI] 0.66514100 0.27406800 0.27420800 0.26376700
N C C C C C H H C H H C C C C C C C C C	-1.18349200 2.57618700 3.15479700 3.38095200 4.53314500 2.52443200 4.75823800 2.91369200 5.33783200 4.97948000 5.38063200 6.41449600 -2.57619400 -3.15480600 -3.15480600 -3.38095700 -4.53315400 -2.52442200 -2.91369400 -5.33783900 -4.97949100 -5.38063400 -6.41450400 -0.0000300 0.0000700 0.00002400 geometry for trans 0.00007400 -1.17372000 1.17365600 -2.56759300 -3.17148000	-0.30983900 -0.46403200 -1.73661600 0.67367400 -1.86736000 -2.60873700 0.52975500 1.65404900 -0.73801200 -2.85712800 1.41396700 -0.84416500 -0.46403400 -1.73661700 0.67367200 -1.86735900 -2.60873800 0.52975500 1.65404700 -0.73801100 -2.85712600 1.41396800 -0.84416200 -1.08432600 2.66625000 -1.16658000 S-[CISb(μ-NTer] -1.28062500 0.32512600 0.32512600 0.32537800 0.46983300 1.6750200	-0.38431800 -0.50261400 -0.48671000 -0.62573300 -0.61830200 -0.33913500 -0.74096800 -0.66671600 -0.6044200 -0.83800600 -0.6044200 -0.83138600 -0.50260900 -0.48669700 -0.62573600 -0.62573600 -0.62573600 -0.66672400 -0.66672400 -0.74096100 -0.66672400 -0.83801300 -0.83137800 -1.20602500 -0.89373800 2.45406900 -0.27406800 0.27420800 0.26376700 0.664220800

C	-3 37500000	-0 60769400	-0 11706900
C C	4 55600000	1 70414000	0.62070200
C	-4.55009200	1.79414900	0.02970300
Н	-2.55257400	2.51206300	0.95421900
С	-4.76012000	-0.48628100	-0.10007300
Н	-2.91378500	-1.53010700	-0.46380200
C	-5 35898800	0 71487200	0 26882900
	5.55050000	0.71407200	0.20002000
H	-5.00994000	2./3/2/400	0.92034100
H	-5.37171400	-1.33307700	-0.39763900
Н	-6.44017200	0.81086500	0.27073000
C	2 56753900	0 46996700	0 26379300
° C	2 17140900	1 67525200	0.64262100
C	3.17149800	1.0/323300	0.04203100
C	3.37484100	-0.60742300	-0.11757400
С	4.55609300	1.79406700	0.63034500
Н	2,55255500	2,51184100	0.95517200
C	1 75998500	-0 18601300	-0 10063300
		1 50004000	0.10005500
н	2.91359600	-1.52968400	-0.46465/00
C	5.35890600	0.71490200	0.26878800
Н	5.01000700	2.73702900	0.92131200
н	5.37155700	-1.33270100	-0.39864800
ц	6 44010000	0 01000000	0 27061900
п	8.44010000	0.01000000	0.27001000
P	-0.00012000	1.55965000	0.02208600
Cl	0.00015100	-2.48929800	-1.43448500
Cl	-0.00007400	1.79776100	-2.07769700
			DOU
4.2.4. Optim	nized geometry for cis-[$CISb(\mu-NTer)_2$	PCI
0 1			
Sb	0.00007400	-1.28062500	0.66514100
N	-1 17372000	0 32512600	0 27406800
1	1 17265600	0.02512000	0.27100000
IN	1.1/365600	0.32537800	0.2/420800
C	-2.56759300	0.46983300	0.26376700
С	-3.17148000	1.67530200	0.64208000
С	-3.37500000	-0.60769400	-0.11706900
C	-4 55609200	1 79414900	0 62978300
C	4.55009200	1.79414900	0.02970300
Н	-2.5525/400	2.51206300	0.95421900
C	-4.76012000	-0.48628100	-0.10007300
Н	-2.91378500	-1.53010700	-0.46380200
C	-5 35898800	0 71487200	0 26882900
UI UI	5.00004000	0.72707400	0.020002300
п	-5.00994000	2.73727400	0.92034100
H	-5.37171400	-1.33307700	-0.39763900
Н	-6.44017200	0.81086500	0.27073000
С	2.56753900	0.46996700	0.26379300
C	3 17149800	1 67525300	0 64263100
C	2 27404100	1.07525500	0.04203100
C	3.3/484100	-0.60/42300	-0.11/5/400
C	4.55609300	1.79406700	0.63034500
Н	2.55255500	2.51184100	0.95517200
С	4.75998500	-0.48604300	-0.10063300
ц Ц	2 91359600	-1 52968400	-0 46465700
	2.91339000	1.32300400	0.2020000
L	5.35890600	0.71490200	0.268/8800
Н	5.01000700	2.73702900	0.92131200
Н	5.37155700	-1.33270100	-0.39864800
Н	6.44010000	0.81080000	0.27061800
P	-0 00012000	1 55965000	0 02208600
	0.00012000	1.0000000	1 42440500
CI	0.00015100	-2.48929800	-1.43448500
Cl	-0.00007400	1.79776100	-2.07769700
425 Ontim	nized geometry for TS1		
4.2.3. Opun	lized geometry for 151		
0 1			
Sb	0.11138900	1.03161200	0.76976700
N	1.29652400	-0.43074100	-0.28961300
Ν	-1.06498600	-0.36426400	-0.42468300
Ċ	2 60018000	-0 59265500	-0 36711700
C	2.07010900	1 05407000	0.0100000
C	3.2/63/500	-1.8540/900	-0.21695200
С	3.49861500	0.52886000	-0.58254400
С	4.65723600	-1.98996500	-0.30394500
Н	2 64732800	-2.71563000	-0.01097900
 C	1 0700000	0 2020C000	_0 64066300
C	4.8/928800	0.30300900	-0.04866300
Н	3.03638100	1.50204300	-0.72782800
С	5.46304000	-0.87404100	-0.51511400
Н	5.10509800	-2.97248200	-0.18860300
u	5 50024200	1 25046100	_0 81765500
11	J.JUUZ4ZUU	T.2040IUU	0.01/00000

Н	6.54164800	-0.98325100	-0.57068000
С	-2.45224700	-0.59184400	-0.51651400
C	-2.98849200	-1.82142800	-0.12122700
C	-3.29077900	0.42074500	-0.99533500
C	-4.35668800	-2.04484100	-0.23019600
H	-2.33269000	-2.5/48/400	0.30484600
U U	-4.65/70/00	1 26461200	-1.08511200
H C	-2.03022000	-1 0/102200	-1.31014700
Н	-4 76932000	-3 00011800	0.70900000
H	-5.30723200	0.97402400	-1.46082800
H	-6.26333500	-1.21511600	-0.78405500
P	0.11638300	-1.30227100	-1.02666200
Cl	-0.35482100	2.59156300	-1.18204000
Cl	-0.79213500	-0.43986400	2.61635600
4.2.6. Optimize	ed geometry for TS2		
0 1			0.0001000
Sb	-0.00000100	0.83292600	0.96231800
N	1.18638800	-0.10044500	-0.51589400
N C	-1.18638800	-0.10044800	-0.51589300
C	2.57650700	-0.33427800	-0.33030300
C	3 42257400	0 74459600	-0.84001600
C	4.48571000	-1.79738400	-0.40753100
H	2.44715500	-2.42161000	-0.05392400
С	4.79582700	0.54334100	-0.89692600
Н	2.98793500	1.72285400	-1.02536200
С	5.33051800	-0.72748800	-0.68798200
Н	4.89774900	-2.78603400	-0.22865100
H	5.45105300	1.38118900	-1.11590600
H	6.40433600	-0.88050600	-0./3/59500
C	-2.57630800	-0.33428000	-0.30196000
C	-3 42257400	-1.00024300	-0.33030300
C	-4.48571100	-1.79738600	-0.40753100
H	-2.44715600	-2.42161400	-0.05392500
С	-4.79582800	0.54333900	-0.89692500
Н	-2.98793500	1.72285200	-1.02536100
С	-5.33051800	-0.72748900	-0.68798100
Н	-4.89775000	-2.78603600	-0.22865000
H	-5.45105400	1.38118800	-1.11590500
H	-6.40433/00	-0.88050700	-0./3/59300
P Cl	-0.00000100	2 99867500	-0.22478200
Cl	0.00000600	-1.85362000	1.72336700
4.2.7. Optimize	ed geometry for TS3		
0 1	•		
N	-1.22232700	-0./5710100	0.03446000
N	1.1/1/4300	-0./9/14200	-0.13182500
Cl	0.02903500	1 30577100	1 97149500
C	-2.60291100	-0.98923300	-0.02513600
C	-3.15123600	-2.00188500	-0.82337900
С	-3.45345100	-0.17489800	0.73453700
С	-4.52511100	-2.21572800	-0.83181300
Н	-2.49816300	-2.60393000	-1.45021100
С	-4.82594100	-0.38459800	0.70450600
H	-3.02220500	0.59948300	1.36308900
C	-5.36/12600	-1.40/91100	-0.0/244000
п	-4.9394/600 -5 4761//00	-3.00349200 0 25111000	-1.43133100 1.2980/100
H	-6.44070300	-1.56764200	-0.09315600
C	2.54670800	-1.03771700	-0.08591700
C	3.41472300	-0.22553900	-0.82641400
С	3.08033900	-2.06382800	0.70652500
С	4.78616200	-0.44247900	-0.78192400
Н	3.00722500	0.56398200	-1.45369800
С	4.45181200	-2.28395900	0.73059600

Н	2.41751500	-2.66379400	1.32422200
С	5.31125800	-1.47630500	-0.01031300
Ч	5 44628200	0 19811400	-1 35895400
11 U	4 85197800	-3 08058200	1 35087100
п	4.03197000	-3.00050200	1.33087100
П Ql-	0.30319300	-1.04337400	0.02203300
SD	-0.00861100	1.09438100	-0.40344700
P	-0.04182100	-1.88921600	-0.04505300
4.2.8. Optin	nized geometry for TS4		
0 1	8		
Ν	-1.22232700	-0.75710100	0.03446000
Ν	1.17174300	-0.79714200	-0.13182500
Cl	0.02963500	3.66959900	-0.44980700
Cl	0.18799500	1.30577100	1,97149500
C	-2.60291100	-0.98923300	-0.02513600
C	-3.15123600	-2.00188500	-0.82337900
C	-3,45345100	-0.17489800	0.73453700
C	-4.52511100	-2.21572800	-0.83181300
H	-2.49816300	-2.60393000	-1.45021100
C	-4 82594100	-0 38459800	0 70450600
н	-3 02220500	0 59948300	1 36308900
C	-5 36712600	-1 40791100	-0 07244000
н	-4 93947600	-3 00549200	-1 45153100
11 U	-5 47614400	0 25111800	1 2080/100
11 U	-6 44070300	-1 56764200	_0 09315600
II C	2 54670800	_1 03771700	-0.09513000
C	3 41472300	-0 22553900	-0.82641400
C	3 08033800	-2 06382800	0.02041400
C	4 78616200	-0 44247900	-0.701022000
L L	4.78010200	-0.44247900	-0.78192400
п	4 45191200	-2 28385800	-1.43309000
U	4.45181200	-2.20393900	1 22422200
H C	2.41/31300	-2.003/9400	1.32422200
C	5.31123800	-1.4/030300	-0.01031300
H	5.44628200	0.19811400	-1.35895400
H	4.85197800	-3.08058200	1.3508/100
H	6.38319300	-1.6435/400	0.02283300
SD	-0.00861100	1.09438100	-0.40344700
P	-0.04182100	-1.00921000	-0.04303300
4.2.9. Optin	nized geometry for TS5		
0 1			
Ν	-1.22232700	-0.75710100	0.03446000
N	1.17174300	-0.79714200	-0.13182500
Cl	0.02963500	3.66959900	-0.44980700
Cl	0.18799500	1.30577100	1.97149500
С	-2.60291100	-0.98923300	-0.02513600
С	-3.15123600	-2.00188500	-0.82337900
С	-3.45345100	-0.17489800	0.73453700
С	-4.52511100	-2.21572800	-0.83181300
Н	-2.49816300	-2.60393000	-1.45021100
С	-4.82594100	-0.38459800	0.70450600
H	-3.02220500	0.59948300	1.36308900
С	-5.36712600	-1.40791100	-0.07244000
Н	-4.93947600	-3.00549200	-1.45153100
Н	-5.47614400	0.25111800	1.29804100
Н	-6.44070300	-1.56764200	-0.09315600
С	2.54670800	-1.03771700	-0.08591700
С	3.41472300	-0.22553900	-0.82641400
С	3.08033900	-2.06382800	0.70652500
С	4.78616200	-0.44247900	-0.78192400
Н	3.00722500	0.56398200	-1.45369800
С	4.45181200	-2.28395900	0.73059600
Н	2.41751500	-2.66379400	1.32422200
С		1 47620500	0 01021200
	5.31125800	-1.4/630300	-0.01031300
Н	5.31125800 5.44628200	0.19811400	-1.35895400
H H	5.31125800 5.44628200 4.85197800	-1.47830300 0.19811400 -3.08058200	-1.35895400 1.35087100
H H H	5.31125800 5.44628200 4.85197800 6.38319300	-1.47630500 0.19811400 -3.08058200 -1.64357400	-0.01031300 -1.35895400 1.35087100 0.02283300
H H H Sb	5.31125800 5.44628200 4.85197800 6.38319300 -0.00861100	-1.47630500 0.19811400 -3.08058200 -1.64357400 1.09438100	-0.01031300 -1.35895400 1.35087100 0.02283300 -0.40344700

4.3. Phosphenium ion vs. stibenium ion (3)

	Č,		
	E [a.u.]	ΔE [a.u.]	$\Delta E [kJ mol^{-1}]$
\mathbf{P}^+	-2773.07009115	0.0	0.0
\mathbf{Sb}^+	-2773.04749254	+0.02259861	+59.3

 Table S6. Relative Energy of the isomers of 3.

4.3.1. Optimized geometry for $\left[ClSb(\mu\text{-}NTer)_2P\right]^+$

1 1			
Sb	-1.58986300	0.22119000	0.13095400
Cl	-1.99394400	0.68547800	-2.18310200
Р	1.32937000	-0.18785900	-0.22931100
Ν	0.00816000	-1.18782900	-0.03325300
Ν	0.35562400	1.14483600	-0.10448000
С	0.00345400	-2.56051900	0.27742500
C	-1 13022400	-3 32698500	-0 05436900
C	-1 15436600	-4 68546800	0.26530700
U U	-2 03263000	-5 26648000	-0 00173000
II C	2.05205000	5.20040000	0.001/3000
	-0.08505200	-3.20002000	1 15251000
п	-0.11176000	-0.34012300	1.15251000
C II	1.01614400	-4.51693300	1.2/181200
Н	1.84495100	-4.96534800	1.81243200
С	1.07760900	-3.15416200	0.97537500
С	-2.32387500	-2.71878700	-0.70784000
С	-2.43418500	-2.71137300	-2.11553200
С	-3.61256200	-2.25528700	-2.69468500
Н	-3.69707300	-2.25549700	-3.77898700
С	-4.68462200	-1.77999400	-1.93033300
С	-4.55824100	-1.78888000	-0.54501900
Н	-5.38762600	-1.44580000	0.06990000
С	-3.40312800	-2.27085000	0.08782100
С	-1.29504900	-3.17948200	-2.97414000
H	-1.57381400	-3.17768300	-4.02996600
н	-0 97453400	-4 19025700	-2 70373100
н	-0 42464100	-2 52383500	-2 85570200
C	-5 92448100	-1 26331200	-2 59953700
U U	-6 73117000	_1 00600000	_1 00164000
п	-0.75117000	-1.09090800	2 2505104000
п	-0.20440700	-1.96330600	-3.33931200
н	-5.72239000	-0.31308000	-3.10660/00
C	-3.38228500	-2.40281500	1.58891800
H	-4.0/469400	-1.69626800	2.05493100
Н	-2.38594900	-2.24805500	2.0148/400
Н	-3.69097100	-3.41179700	1.88549600
С	2.24551600	-2.36554100	1.45996500
С	3.49694400	-2.48070300	0.82435000
С	4.58596400	-1.78887700	1.35300200
Н	5.55317800	-1.88454800	0.86459200
С	4.47492600	-0.98585000	2.48855900
С	3.22387600	-0.87843900	3.09880700
Н	3.11978900	-0.27046700	3.99534100
С	2.11045700	-1.56744000	2.61791200
С	3.66270000	-3.31475000	-0.41509500
Н	2.94818600	-3.02088300	-1.19255400
Н	3.49149200	-4.37764300	-0.21682300
Н	4.66918700	-3.20746800	-0.82566400
C	5.67447000	-0.29255400	3.06820100
н	6 45628100	-0 14435000	2 31844000
н	6 11064500	-0 88848300	3 87828000
н Н	5 A12AA600	0 68225600	3 48044000
 C	0 70012500	-1 17726300	3 31101000
U U	0.00000000	-1.4//20300	J.J44042UU A 26670100
п	0.89980500	-0.90008900	4.200/01UU
н	0.41649100	-2.4/0/8500	3.601/4400
н	0.02532200	-0.99333200	2./3206600
С	0.62442200	2.51149500	-0.27811400

C		1.75502800	2.96660900	-0.98842000
C		1.93708700	4.33928900	-1.15571700
H	Ι	2.80829900	4.67999700	-1.70820000
C		1.03574300	5.25974500	-0.63202600
F	1	1.19/89500	6.3239/100	-0.76990200
С т	Ţ	-0.07065900	4.80591/00	0.0/488300
F	1	-0.77602000	2.44126000	0.30132600
	,	-0.2910/400	3.44126800	0.26253400
	·	2.73214200	2.00722400	-2 90259400
	· ·	2.54900900	1.42000400	-2.00230400
E E	7	3 32229900	0.40004900	-4 24174400
	<u>.</u>	4 61742700	0 15231500	-2 53055700
C		4.81373200	0.77643100	-1.29897200
H	I	5.70454300	0.54268500	-0.72045200
C		3.90161000	1.69804600	-0.78415900
C	2	1.37535200	1.80805800	-3.65606900
H	I	1.38883700	2.88134200	-3.87417100
H	I	0.41952200	1.59721200	-3.16618000
H	I	1.39065300	1.27120100	-4.60737000
C	2	5.62514900	-0.81771500	-3.07855400
H	I	5.13991000	-1.65865600	-3.58272500
F	I	6.27053900	-1.21560300	-2.29091200
F	Ι	6.27260800	-0.32955000	-3.81598500
C	-	4.14798400	2.33623100	0.55516800
H	1	4.17067900	3.42805300	0.48339400
F.	1	5.09985700	2.00380500	0.9/492/00
F	1	3.36028300	2.08288800	1.2/493100
	· · · · · · · · · · · · · · · · · · ·	-2 780/8100	2.9/014000	1.04030000
	· ·	-3 86243200	2 63155900	1 26545100
F	I	-4.86300400	2.71488100	0.84705700
C	- 1	-3.69937900	2.08268700	2,53653800
C		-2.40483000	2.01640000	3.06382500
H	I	-2.26150900	1.62531400	4.06877200
C	2	-1.29190200	2.46314800	2.35226400
C	2	-3.04014100	3.76173200	-0.81508700
H	I	-3.97881900	3.40878600	-1.24807600
H	I	-2.23897200	3.58239900	-1.53417300
F	I	-3.12466000	4.84688600	-0.68479400
C		-4.88204600	1.62756400	3.34145300
H	I	-5.25670700	2.44655900	3.96625900
F	1	-4.620/9600	0.80363200	4.01094/00
F	1	-5.70609200	1.305/9800	2.6994/300
Ľ	, I	0.06923000	2.42972900	2.90037300
L. L.	1	0.33182900	1 71474800	2 19511100
F	I	-0 00355700	2 15073900	4 04209200
4	2 2 Ontinuinad and	an atms for [Ch	$(\dots \mathbf{NT}_{\mathbf{r}\mathbf{r}}) \mathbf{DC}\mathbf{l}\mathbf{l}^+$	1.01209200
4.	5.2. Optimized get		$(\mu - N I e I)_2 P C I$	0 00072000
E		-1.26600300	0.21973200	-1 94504000
	,⊥ Sh	1 61601000	-0 28962000	-0.22139400
N	I.	-0 23629400	-1 17280000	-0 16774500
N	1	0.23025300	1.16471400	-0.02579500
C	•	-0.58836500	-2.46605100	0.27911300
C	2	-1.85558900	-3.02952200	0.02077200
C	2	-2.14471200	-4.29933100	0.53251300
H	I	-3.12351300	-4.71990900	0.31959100
C	2	-1.22022600	-5.02635000	1.26910000
F	I	-1.46858100	-6.01373700	1.64484000
C	2	0.03225300	-4.47526200	1.50899100
F	I	0.77446800	-5.02238500	2.08390400
C	2	0.35417700	-3.20761000	1.02806200
C		-2.90565700	-2.36317300	-0.80030600
C]	-2.84208000	-2.45560000	-2.20414600
C		-3.88766500	-1.93681900	-2.96288200
H	1	-3.83950500	-2.01494400	-4.04/01000
C	<i>,</i>	-4.99223600	-1.32134200	-2.3/205/00

-5.04029500	-1.25283900	-0.98096700
-5.90165800	-0.79305400	-0.50115300
-4.02565000	-1.77682200	-0.17877100
-1.66640000	-3.09991200	-2.88296100
-1.82744800	-3.16993900	-3.96127200
-1.48041800	-4.10888600	-2.50015800
-6.08823600	-2.51055400	-3 21436300
-7.03697200	-0.69976200	-2.67215800
-6.24021800	-1.30977600	-4.13157200
-5.84260700	0.29240400	-3.51193700
-4.15895900	-1.72620500	1.31942400
-5.07183400	-1.19878500	1.60615900
-3.31466000	-1.20614800	1.78510100
-4.20083400	-2.73000600	1.75514300
1.69818600	-2.64/52600	1.32922100
2.83374900	-3.08/86/00	0.01345700
4.00011300	-2.55696500	0.93939800
4.25274200	-1.60519600	1.94677400
3.11946900	-1.18113200	2.64754100
3.22980000	-0.45988300	3.45440100
1.84577500	-1.69885600	2.37716500
2.71168700	-4.11738000	-0.47506400
1.84718400	-3.93113100	-1.11904500
2.56976200	-5.11658500	-0.04957000
3.61180800	-4.14384400	-1.09355600
5.61550800	-1.08850600	2.3055/500
6 04525300	-1.68198900	3 12068300
5.57681800	-0.05088900	2.64839800
0.66956000	-1.30452800	3.22364200
0.95914500	-0.57522800	3.98280000
0.25549300	-2.18430600	3.72697900
-0.14601000	-0.87555000	2.63100100
0.33069200	2.55966100	-0.14823800
1.46219500	3.10851900	-0.79340900
1.56105100	4.48662800	-0.9/05/200
2.43546400	4.00902200	-0.50967500
0.64166800	6.40769200	-0.65489600
-0.52853500	4.79784100	0.16370600
-1.29736400	5.45206800	0.56430900
-0.66152900	3.42264700	0.37016700
2.57371800	2.22259500	-1.23332000
2.53394100	1.58395500	-2.49709700
3.57974300	0.72155200	-2.84883900
3.54616600	U.ZZ94/IUU 0 51675700	-3.8183U4UU -2 01755400
4.00504500	1 18976200	-0 79586000
5.58370000	1.05830900	-0.14415900
3.68749900	2.03477800	-0.38167000
1.42072000	1.86303100	-3.46411300
1.44043200	2.91567600	-3.76596800
0.43543200	1.68016000	-3.02584800
1.51831500	1.25012500	-4.36275200
5.82103400	-0.36393700	-2.45129300
5.48204400	-1.15683000 -0.82502200	-3.12303200 -1 59593700
0.32212200 6 57354900	0.22118000	-2.99218600
3,77926500	2.74887600	0.93884900
3.94611900	3.82062000	0.78839500
4.60723100	2.36166500	1.53711700
2.85574900	2.66031300	1.51965300
-1.80850400	2.91396700	1.17251300
-3.12246200	2.96834300	0.67143000
-4.16403300	2.47242700	1.46220900
-5.17646100	2.49825800	1.06500800
-3.94880600	1.96430900	2.13912900

Сносннноннноннносоносносннательносонононососностосточносноснительнососносности

С	-2.64188300	1.97178700	3.23770700
Н	-2.45750500	1.61667500	4.24991800
С	-1.57259300	2.44329700	2.48485000
С	-3.44679600	3.57118000	-0.66761100
Н	-4.33917200	3.10693900	-1.09500900
Н	-2.62994300	3.46109300	-1.38282900
Н	-3.65356400	4.64361300	-0.56763100
С	-5.08342200	1.45247800	3.57969400
Н	-5.20399400	2.05584600	4.48599400
Н	-4.90544700	0.42100300	3.90207200
Н	-6.03007500	1.47792000	3.03444600
С	-0.19499400	2.47895300	3.08839500
Н	0.24659200	3.47825500	3.01344600
Н	0.48826900	1.78685600	2.58181100
Н	-0.22891700	2.20343000	4.14547300

4.4. Biradical character of [P(µ-NPh)₂Sb]

4.4.1. Frontier orbitals of $[P(\mu-NPh)_2Sb]$

Figure S6. Frontier orbitals of [P(µ-NTer)₂Sb].

Computed UVvis excitations:

The state of a		1		1	0001 - 17	< > > > >		F 0 01F0	<pre><q++0> 0 000</q++0></pre>
Exclued a	state	⊥:	Singlet-A	1.	9991 ev	620.20		1=0.0150	<5^^2>=0.000
159	->18/		-0.01032						
1/6	->187		0.01261						
1//	->188		-0.010/8						
186	->187		-0.38628						
186	->188		0.58475						
186	->190		0.08259						
186	->192		-0.02954						
186	->196		0.04673						
186	->199		0.03102						
186	->206		-0.01583						
186	<-187		0.05615						
186	<-188		-0.02544						
186	<-190		-0.01399						
186	<-200		0.01495						
This sta	ate for	optim	ization and/o	secon	d-order	correct	cion.		
Total Er	nergy, E	C(TD-H	F/TD-KS) = -2	2313.10	432843				
Copying	the exc	cited	state density	for th	is state	as the	e 1-pa	article Rh	noCI density.
December	Ctata	2.		2	1057	- E00 (5-0 0400	2
Exciled	Slale	2:	Singlet-A	Z	.1057 ev	200.0	51 IIII	1=0.0460	J
<5^^2>=0.	.000		0 01050						
149	->188		0.01250						
158	->188		0.01604						
159	->188		-0.01257						
171	->188		0.01298						
173	->189		0.01057						
173	->201		-0.01832						
176	->187		-0.01875						
177	->187		0.01264						

$\begin{array}{rrrr} 179 & ->187 \\ 184 & ->189 \\ 184 & ->201 \\ 185 & ->201 \\ 186 & ->187 \\ 186 & ->188 \\ 186 & ->190 \\ 186 & ->192 \\ 186 & ->199 \\ 186 & ->200 \\ 186 & ->203 \\ 186 & ->203 \\ 186 & ->235 \\ 186 & <-187 \\ 186 & <-188 \\ 186 & <-192 \\ 186 & <-192 \\ 186 & <-200 \\ 186 & <-200 \\ 186 & <-200 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & <-203 \\ 186 & $		0.01992 -0.01167 0.01233 0.01589 0.59510 0.37663 0.07901 0.02128 0.02963 -0.03467 0.03065 0.01292 -0.01226 -0.09771 -0.02241 0.01264 -0.01185 -0.02124 0.01586			
Excited State <\$**2>=0.000 184 ->187 185 ->187 186 ->189 186 ->191 186 ->193 186 ->195 186 ->197 186 ->198 186 ->201 186 ->205	3:	Singlet-A -0.01275 0.03085 0.68798 0.15052 -0.03002 -0.01065 -0.01411 -0.01023 -0.02578 -0.01316	2.8472 eV	435.47 nm	f=0.0004
Excited State <s**2>=0.000 186 ->187 186 ->188 186 ->190 186 ->192 186 ->194 186 ->196 186 ->199 186 ->204 186 <-188</s**2>	4:	Singlet-A -0.02519 -0.11326 0.67572 0.13508 0.03667 0.08339 0.04410 0.02320 -0.01036	3.0952 eV	400.56 nm	f=0.0073
Excited State <s**2>=0.000 173 ->187 184 ->187 185 ->187 186 ->199 186 ->193 186 ->193 186 ->195 186 ->197 186 ->198 186 ->201 186 ->202 186 ->205 185 <-187</s**2>	5:	Singlet-A 0.01463 -0.04514 -0.33159 -0.10903 0.58303 0.16914 -0.02574 -0.04701 -0.04754 -0.01110 -0.01579 -0.01156 0.01464	3.2057 eV	386.76 nm	f=0.0125

4.4.2. CASSCF computations

Configurations 1 10 2 01 EIGENVALUES AND EIGENVECTORS OF CI MATRIX (1) 0.9714936 (2)-0.1990032

UL			
Р	-1.29409200	-0.00025500	-0.00031400
N	-0 09261500	-1 17311200	0 07120000
N	-0 09303900	1 17307000	-0 07151700
C	-0 25453700	2 54632500	-0 27617900
C	0.23433700	2.34032300	0.27017500
C	0.73626600	3.42/02/00	0.16947500
C	-1.38168800	3.08502200	-0.94382600
С	0.61736600	4.80273500	-0.02072700
С	-1.48365500	4.46793800	-1.11084400
С	-0.50109100	5.33420700	-0.64932000
Н	1.40681900	5.45634800	0.34119200
Н	-2.35460600	4.85602000	-1.63292700
Н	-0.59975600	6.40639800	-0.78928200
С	-0.25378700	-2.54640300	0.27595500
C	-1.38079400	-3.08526600	0.94371400
C	0 75916100	-3 42754700	-0 16972300
C	-1 /8253500	-1 16819600	1 11077200
C	0 61943700	-1 90267000	0.02049000
C	0.01843700	-4.00207900	0.02040000
C	-0.49988900	-5.33432100	0.64915800
Н	-2.35337800	-4.85639800	1.63294300
Н	1.40796500	-5.45617500	-0.34149700
Н	-0.59838500	-6.40652900	0.78912200
Sb	1.69024300	0.00034800	0.00001700
С	1.99625100	-2.93921100	-0.84432100
С	1.97365600	-2.62770700	-2.22242400
С	3.21407300	-2.89799900	-0.13501300
С	3.16067000	-2.27870500	-2.85888900
С	4.37603100	-2.50958200	-0.80931600
C	4 37038600	-2 19689300	-2 16656700
U U	3 13787800	-2 04412600	-3 92117900
11 U	5 21126000	-2 46105900	-0 25523600
п	2.45122500	-2.40193000	-0.23323000
	-2.45132500	-2.23394400	1.53869600
C	-2.21433300	-1.58//9600	2.76902100
С	-3.70822700	-2.12350400	0.91736900
С	-3.23388100	-0.83327600	3.34541800
С	-4.70042400	-1.35681700	1.52955200
С	-4.48372300	-0.69998400	2.73925900
Н	-3.04781300	-0.33900900	4.29726600
Н	-5.66935000	-1.26798200	1.04190500
С	-2.45211400	2.23351300	-1.53871700
С	-2.21522800	1.58762400	-2.76918100
С	-3.70884500	2.12261700	-0.91710200
С	-3.23469900	0.83287600	-3.34544400
C	-4 70095000	1 35571600	-1 52913800
C	-4 48433600	0 69910400	-2 73899400
U U	-3 04970600	0.0000000	-4 20740400
11	5.04070000	1 26652100	1 04126400
н а	-3.86972800	1.20032100	-1.04126400
C	1.99540400	2.93944300	0.84414800
С	1.97266800	2.62799800	2.22229400
С	3.21335300	2.89845000	0.13504600
С	3.15963500	2.27927300	2.85896000
С	4.37528200	2.51025700	0.80956300
С	4.36947000	2.19760900	2.16681000
Н	3.13673200	2.04475000	3.92126000
Н	5.31070700	2.46273200	0.25562100
С	-5.55718400	0.14508500	3.36652000
Н	-5.54472800	0.06307100	4.45767200
	-5 41791700	1 20459100	3 11966500
	0.11/J1/00	T. 20 10 J TOO	J. T. T. J. O. J. O. O. O. O. O. O. O. O. D. O. D.

4.4.3. Optimized geometry for [Sb(μ-NTer)₂P]

-6.55155800	-0.14506400	3.01557800
-3.97808800	-2.76641200	-0.41507500
-3.72594100	-3.83063900	-0.42025400
-5.03106000	-2.66113400	-0.68996900
-3.37794500	-2.29018800	-1.20014000
-0.87456300	-1.68523800	3.44298600
-0.10059300	-1.17434600	2.85542400
-0.90180700	-1.22656400	4.43495300
-0.55488900	-2.72663500	3.55307100
3.29055400	-3.29166700	1.31609700
3.27479600	-4.38189300	1.42965200
4.21480700	-2.92203400	1.76792200
2.44736600	-2.89661300	1.88905100
0.68476000	-2.66800800	-2.99130400
0.00139800	-1.88935900	-2.63307100
0.85938700	-2.50262400	-4.05739300
0.17262900	-3.62754300	-2.86685300
5.62624300	-1.76181800	-2.86789000
6.51984600	-2.05680800	-2.31103900
5.69207000	-2.19206600	-3.87199200
5.65099300	-0.67157700	-2.98011300
5.62526100	1.76257500	2.86827200
6.51890800	2.05724000	2.31132800
5.69117700	2.19305300	3.87227000
5.64977200	0.67235300	2.98076700
0.68364400	2.66809200	2.99097200
0.85813300	2.50266300	4.05707700
0.17142200	3.62757600	2.86650100
0.00042700	1.88938400	2.63259300
3.29021900	3.29235500	-1.31597000
3.27866500	4.38271600	-1.42894500
4.21274100	2.91940800	-1.76862500
2.44512700	2.90090500	-1.88852200
-3.97855300	2.76528500	0.41548800
-3.72705300	3.82966800	0.42061800
-5.03134800	2.65934700	0.69080400
-3.3//80600	2.28938700	1.20028600
-5.55/68300	-0.14628800	-3.36601300
-6.55222300	0.14490400	-3.01639200
-5.54418500	-0.00508100	-4.43/20500
-5.41923000	-1.20550500	-3.11/45000
-U.8/565400	1.0055/200	-3.44346300
-0.1013/600	1.22701400	-2.83616000
-0.90299700	1.22/01400	-4.4354/900
-0.55634200	2.12/08800	-3.00300200

н С н н н С н н н С н н н С н н н С н н н С н н н С н н н С н н н С н н н С н н н С н н н С н н н С н н н С н н н

4.5. Bonding situation in the distibunium dication (6)

Figure S7. Frontier orbitals of [P(µ-NTer)₂Sb]₂.

ELF at 0.75

Figure S8. ELF representations of $[P(\mu-NTer)_2Sb]_2$.

4.5.1. NBO analysis for $[Sb(\mu-NPh)_2P]_2$ Summary of Natural Population Analysis:

	-		Noturol	-	Natural	l Popul	Lation	
At	com	No	Charge	Core	Valer	nce	Rydberg	Total
Sb	1	0.5	4271	46.00000	4.44002	0.01	L727	50.45729
Ν	2	-1.0	4470	1.99945	6.02984	0.01	L541	8.04470
N	3	-1.0	4470	1.99945	6.02984	0.01	L541	8.04470
Sb	4	0.5	4271	46.00000	4.44002	0.01	L727	50.45729
P	5	1.2	3775	9.99811	3.69185	0.07	7230	13.76225
Ν	6	-1.0	4470	1.99945	6.02984	0.01	L541	8.04470
Ν	13	-1.0	4470	1.99945	6.02984	0.01	L541	8.04470
P	15	1.2	3775	9.99811	3.69185	0.07	7230	13.76225

Wiberg bond index matrix in the NAO basis:

Ż	Atom	1	2	3	4	5	6	7	8	9
1	sh	0 0000	0 3510	0 3510	 1 7535	0 0516	0 0239	0 0072	0 0093	0 0114
2.	N	0.3510	0.0000	0.0272	0.0239	0.0050	0.0058	0.0013	0.0011	0.0012
З.	Ν	0.3510	0.0272	0.0000	0.0239	1.1700	0.0922	1.0392	0.0286	0.0287
4.	Sb	1.7535	0.0239	0.0239	0.0000	0.0516	0.3510	0.0020	0.0027	0.0042
5.	Ρ	0.0516	0.0050	1.1700	0.0516	0.0000	1.1700	0.0136	0.0189	0.0176
6.	Ν	0.0239	0.0058	0.0922	0.3510	1.1700	0.0000	0.0064	0.0058	0.0043
7.	С	0.0072	0.0013	1.0392	0.0020	0.0136	0.0064	0.0000	1.3861	1.3639
8.	С	0.0093	0.0011	0.0286	0.0027	0.0189	0.0058	1.3861	0.0000	0.0118
9.	С	0.0114	0.0012	0.0287	0.0042	0.0176	0.0043	1.3639	0.0118	0.0000
10.	С	0.0015	0.0001	0.0078	0.0013	0.0018	0.0007	0.0127	0.1081	1.4436
11.	С	0.0035	0.0006	0.0084	0.0018	0.0060	0.0023	0.0999	0.0122	0.0122
12.	С	0.0013	0.0002	0.0090	0.0013	0.0012	0.0006	0.0130	1.4237	0.1095
13.	Ν	0.0239	0. 0922	0.0058	0.3510	0.0050	0.0272	0.0002	0.0004	0.0003
14.	С	0.0020	0.0002	0.0064	0.0072	0.0136	1.0392	0.0008	0.0001	0.0002
15.	Ρ	0.0516	1.1700	0.0050	0.0516	0.0045	0.0050	0.0003	0.0003	0.0003

(Occupancy) Bond orbital/ Coefficients/ Hybrids

1.	(1.98721) BD (1)Sb	1-Sb 4		
	(50.00%)	0.7071*Sb	1	s(11.48%)p 7.71(88.52%)
				-0.3339 0.0552 -0.0157 -0.0033 0.0000
				0.0000 0.0000 0.0000 0.9399 -0.0422
				0.0018 -0.0005 0.0000 0.0000 0.0000
				0.0000
	(50.00%)	0.7071*Sb	4	s(11.48%)p 7.71(88.52%)
				-0.3339 0.0552 -0.0157 -0.0033 0.0000
				0.0000 0.0000 0.0000 -0.9399 0.0422
				-0.0018 0.0005 0.0000 0.0000 0.0000
				0.0000
2.	(1.93061) BD (2)Sb	1-Sb 4		
	(50.00%)	0.7071*Sb	1	s(0.00%)p 1.00(100.00%)
				0.0000 0.0000 0.0000 0.0000 0.9999
				0.0079 0.0016 -0.0030 0.0000 0.0000
				0.0000 0.0000 0.0062 -0.0007 0.0026
				0.0000
	(50.00%)	0.7071*Sb	4	s(0.00%)p 1.00(100.00%)
				0.0000 0.0000 0.0000 0.0000 0.9999
				0.0079 0.0016 -0.0030 0.0000 0.0000
				0.0000 0.0000 -0.0062 0.0007 -0.0026
				0.0000
З.	(1.97462) BD (1) N	2- P 15		
	(75.25%)	0.8675* N	2	s(28.64%)p 2.49(71.17%)d 0.01(0.19%)
				-0.0002 0.5351 0.0015 0.0353 -0.0085
				-0.6499 -0.0185 0.5362 -0.0138 -0.0017
				0.0054 -0.0355 -0.0211 0.0130
	(24.75%)	0.4975* P	15	s(16.71%)p 4.87(81.46%)d 0.11(1.84%)
				0.0000 0.0005 0.3919 -0.1163 -0.0001

0.0545 0.0112 0.0004 0.6931 -0.0537 -0.0003 -0.5724 0.0219 0.0033 -0.0023 -0.1165 -0.0675 0.0145 5. (1.97463) BD (1) N 3- P 5 (75.25%) 0.8675* N 3 s(28.64%)p 2.49(71.17%)d 0.01(0.19%) -0.0002 0.5351 0.0015 -0.0353 0.0085 -0.6499 -0.0185 -0.5362 0.0138 0.0017 0.0054 0.0355 -0.0211 0.0130 (24.75%) 0.4975* P 5 s(16.71%)p 4.87(81.46%)d 0.11(1.84%) 0.0000 0.0005 0.3919 -0.1163 0.0001 -0.0545 -0.0112 0.0004 0.6931 -0.0537 0.0003 0.5724 -0.0219 -0.0033 -0.0023 0.1165 -0.0675 0.0145 7. (1.97463) BD (1) P 5- N 6 (24.75%) 0.4975* P 5 s(16.71%)p 4.87(81.46%)d 0.11(1.84%) 0.0000 0.0005 0.3919 -0.1163 -0.0001 0.0545 0.0112 -0.0004 -0.6931 0.0537 0.0003 0.5724 -0.0219 -0.0033 0.0023 -0.1165 -0.0675 0.0145 (75.25%) 0.8675* N 6 s(28.64%)p 2.49(71.17%)d 0.01(0.19%) -0.0002 0.5351 0.0015 0.0353 -0.0085 0.6499 0.0185 -0.5362 0.0138 0.0017 -0.0054 -0.0355 -0.0211 0.0130 23. (1.97462) BD (1) N 13- P 15 (75.25%) 0.8675* N 13 s(28.64%)p 2.49(71.17%)d 0.01(0.19%) -0.0002 0.5351 0.0015 -0.0353 0.0085 0.6499 0.0185 0.5362 -0.0138 -0.0017 -0.0054 0.0355 -0.0211 0.0130 (24.75%) 0.4975* P 15 s(16.71%)p 4.87(81.46%)d 0.11(1.84%) 0.0000 0.0005 0.3919 -0.1163 0.0001 -0.0545 -0.0112 -0.0004 -0.6931 0.0537 -0.0003 -0.5724 0.0219 0.0033 0.0023 0.1165 -0.0675 0.0145 105. (1.98007) LP (1)Sb 1 s(88.75%)p 0.13(11.25%) 0.9420 0.0099 -0.0026 -0.0006 0.0000 0.0000 0.0000 0.0000 0.3349 0.0178 -0.0052 -0.0007 0.0000 0.0000 0.0000 0.0000 106. (1.74936) LP (1) N 2 s(33.92%)p 1.95(66.05%)d 0.00(0.03%) 0.0005 0.5824 -0.0047 -0.1984 -0.0009 -0.1666 0.0019 -0.7700 0.0205 0.0023 -0.0088 -0.0077 -0.0072 -0.0123 107. (1.57532) LP (2) N 2 s(0.12%)p99.99(99.78%)d 0.84(0.10%) 0.0000 0.0342 -0.0045 0.9734 0.0045 -0.0889 0.0004 -0.2059 0.0032 -0.0101 0.0286 -0.0020 0.0031 -0.0082 s(33.92%)p 1.95(66.05%)d 0.00(0.03%) 0.0005 0.5824 -0.0047 0.1984 0.0009 108. (1.74935) LP (1) N 3 -0.1666 0.0019 0.7700 -0.0205 -0.0023 -0.0088 0.0077 -0.0072 -0.0123 s(0.12%)p99.99(99.78%)d 0.84(0.10%) 109. (1.57532) LP (2) N 3 0.0000 0.0342 -0.0045 -0.9734 -0.0045 -0.0889 0.0004 0.2059 -0.0032 0.0101 0.0286 0.0020 0.0031 -0.0082 s(88.75%)p 0.13(11.25%) 110. (1.98007) LP (1)Sb 4 0.9420 0.0099 -0.0026 -0.0006 0.0000 0.0000 0.0000 0.0000 -0.3349 -0.0178 0.0052 0.0007 0.0000 0.0000 0.0000 0.0000 111. (1.96703) LP (1) P 5 s(68.65%)p 0.46(31.27%)d 0.00(0.08%) 0.0000 -0.0007 0.8280 0.0296 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0005 -0.5585 -0.0275 -0.0009 0.0000 0.0000 0.0268 -0.0109 112. (1.74935) LP (1) N 6 s(33.92%)p 1.95(66.05%)d 0.00(0.03%) 0.0005 0.5824 -0.0047 -0.1984 -0.0009 0.1666 -0.0019 0.7700 -0.0205 -0.0023 0.0088 -0.0077 -0.0072 -0.0123 113. (1.57532) LP (2) N 6 s(0.12%)p99.99(99.78%)d 0.84(0.10%)

				0.0000 0.0889 - -0.0286 -	0.0342 -0.0004 -0.0020	-0.0045 0.2059 0.0031	0.9734 -0.0032 -0.0082	0.0045 0.0101
114.	(1.74936)	LP (1) N	13	s(33.92 0.0005 0.1666 - 0.0088	2%)p 1.9 0.5824 -0.0019 0.0077	5(66.05 -0.0047 -0.7700 -0.0072	5%)d 0.00 0.1984 0.0205 -0.0123	(0.03%) 0.0009 0.0023
115.	(1.57532)	LP (2) N	13	s(0.12 0.0000 0.0889 - -0.0286	2%)p99.9 0.0342 -0.0004 0.0020	9(99.78 -0.0045 -0.2059 0.0031	3%)d 0.84 -0.9734 0.0032 -0.0082	(0.10%) -0.0045 -0.0101
116.	(1.96703)	LP (1) P	15	s(68.65 0.0000 - 0.0000 0.0005 0.0000	5%)p 0.4 -0.0007 0.0000 0.5585 0.0268	6(31.27 0.8280 0.0000 0.0275 -0.0109	7%)d 0.00 0.0296 0.0000 0.0009	(0.08%) 0.0000 0.0000 0.0000
117.	(0.40556)	LP*(2)Sb	1	s(0.00 0.0000 -0.0064 - 0.0000 0.0096	0%)p 1.0 0.0000 -0.0041 0.0000	0(100.00 0.0000 -0.0004 0.9993	0.0000 0.0000 0.0352	-0.0061 0.0000 -0.0079
118.	(0.40556)	LP*(2)Sb	4	s(0.00 0.0000 0.0064 0.0000 0.0096	0%)p 1.0 0.0000 0.0041 0.0000	0(100.00 0.0000 0.0004 0.9993	0%) 0.0000 0.0000 0.0352	0.0061 0.0000 -0.0079
119.	(0.73358)	LP*(2) P	5	s(0.00 0.0000 0.9937 0.0000 0.0082	0%)p 1.0 0.0000 0.0217 0.0000 0.0000	0(99.39 0.0000 0.0000 0.0000 0.0000	9%)d 0.01 0.0000 0.0762 0.0000	(0.61%) 0.0000 -0.0158 0.0778
120.	(0.73358)	LP*(2) P	15	s(0.00 0.0000 0.9937 0.0000 0.0082	0%)p 1.0 0.0000 0.0217 0.0000 0.0000	0 (99.39 0.0000 0.0000 0.0000 0.0000	9%)d 0.01 0.0000 -0.0762 0.0000	(0.61%) 0.0000 0.0158 -0.0778

SECOND ORDER	PERTURBATION	THEORY ANALYSIS OF	FOCK MATRIX IN NBO	BASIS	
106. LP (1)	N 2	117. LP*(2)Sb 1	69.29	0.38	0.150
114. LP (1)	N13	118. LP*(2)Sb 4	69.29	0.38	0.150
107. LP (2)	N 2	120. LP*(2) P15	118.36	0.11	0.112
115. LP (2)	N13	120. LP*(2) P15	118.36	0.11	0.112
108. LP (1)	N 3	117. LP*(2)Sb 1	69.29	0.38	0.150
112. LP (1)	N 6	118. LP*(2)Sb 4	69.29	0.38	0.150
109. LP (2)	N 3	119. LP*(2) P 5	118.36	0.11	0.112
113. LP (2)	N 6	119. LP*(2) P 5	118.36	0.11	0.112

4.5.2. Isomers of $[Sb(\mu\text{-}NPh)_2P]_2$ and $[P_4(NPh)_4]$

	E	G	ΔE	ΔG
alpha 1	-1837.64632	-1837.32287	-51.9	-50.6
alpha 2	-1837.63964	-1837.31707	-34.4	-35.4
beta 1	-1837.64787	-1837.32257	-56.0	-49.8
beta 2	-1837.65935	-1837.33363	-86.1	-78.9
beta 3	-1837.65398	-1837.32906	-72.0	-66.9
chain	-1837.60244	-1837.28266	63.3	55.0
dication	-1837.62654	-1837.30359	0.0	0.0

Table S7. Isomers of $[Sb(\mu-NPh)_2P]_2$ (relative energies referenced to the dication).

Table S8. Isomers of $[P_4(NPh)_4]$ (relative energies referenced to the dication).

	Е	G	ΔΕ	ΔG
alpha 1	-2509.18891	-2508.8742	-453.3	-222.9
beta 1	-2509.00602	-2508.88682	26.9	-256.1
chain	-2509.00639	-2508.7949	25.9	-14.7
dication	-2509.01627	-2508.78928	0.0	0.0

Figure S9. Computed isomers of 6 and [P₄(NPh)₄].

4.5.3. Geometry for [Sb(μ-NPh)₂P]₂

UI			
Sb	0.0000000	1.32188000	-0.00000300
N	-0 01587000	1 27663000	2 37145700
N	0.01597000	1 27662000	2 27145200
IN CI	0.01387000	1.27003000	-2.3/143300
Sb	0.0000000	-1.32188000	-0.00000300
P	0.0000000	0.00000000	-3.35799300
N	-0.01587000	-1.27663000	-2.37145300
С	-0.19495000	2.59446000	-2.89072300
С	-1.38834000	2,92809000	-3.55634300
C	0 76926000	3 60077000	-2 64773300
C	0.70920000	4 01750000	2.04773300
C a	0.46498000	4.91/58000	-2.98261300
C	-0.74146000	5.25814000	-3.55894300
С	-1.64911000	4.26905000	-3.85808300
N	0.01587000	-1.27663000	2.37145700
С	0.19495000	-2.59446000	-2.89072300
P	0.0000000	0.0000000	3.35799700
С	-0.19495000	-2.59446000	2.89072700
С	-0.76926000	-3.60077000	-2.64773300
C	1 38834000	-2 92809000	-3 55634300
C	1.30034000	2.52005000	2 64772700
C	0.76928000	-3.60077000	2.04//3/00
C	-1.38834000	-2.92809000	3.55634700
C	-0.46498000	-4.91/58000	-2.98261300
С	1.64911000	-4.26905000	-3.85808300
С	0.19495000	2.59446000	2.89072700
С	0.46498000	-4.91758000	2.98261700
С	-1.64911000	-4.26905000	3.85808700
С	0.74146000	-5.25814000	-3.55894300
C	-0.76926000	3.60077000	2.64773700
C	1 38834000	2 92809000	3 55634700
C	0.74146000	5 25914000	2 55004700
C	-0./4148000	-3.23814000	3.55694700
C	-0.46498000	4.91/58000	2.98261700
С	1.64911000	4.26905000	3.85808/00
С	0.74146000	5.25814000	3.55894700
H	1.10433000	5.59887000	-2.81034300
Н	-0.94253000	6.16787000	-3.74610300
Н	-2.46942000	4.50138000	-4.27840300
Н	-1.10433000	-5.59887000	-2.81034300
Н	2,46942000	-4.50138000	-4.27840300
н	1 10433000	-5 59887000	2 81034700
и и	-2 46942000	-4 50138000	1 278/1700
11	2.40942000	4.30130000	2 74610200
H	0.94253000	-6.16/8/000	-3.74610300
Н	-0.94253000	-6.16/8/000	3./4610/00
Н	-1.10433000	5.59887000	2.81034700
Н	2.46942000	4.50138000	4.27841700
Н	0.94253000	6.16787000	3.74610700
Н	-2.08804700	2.16571000	-3.82853200
Н	1.71589800	3.35424000	-2.21414500
Н	2.08804700	-2.16571000	-3.82853200
н	-1 71589800	-3 35424000	-2 21414500
ц.	_1 7150000	3 35/2/000	2 21/1/000
11	-1./100000	3.33424000 2.16571000	2.21414000
н	2.08804700	2.105/1000	3.82853500
Н	1./1589800	-3.35424000	2.21414800
Н	-2.08804700	-2.16571000	3.82853500

5. References

- [1] A. Hinz, A. Schulz, A. Villinger, Angew. Chem. Int. Ed. 2014, 54, 668–672.
- [2] D. Savoia, C. Trombini, A. Umani-Ronchi, Pure Appl. Chem. 1985, 57, 1887–1896.
- [3] C. B. Fischer, S. Xu, H. Zipse, *Chem. Eur. J.* **2006**, *12*, 5779–5784.
- [4] G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, K. I. Goldberg, *Organometallics* **2010**, *29*, 2176–2179.
- [5] G. M. Sheldrick, **2013**, SHELXS–2013.
- [6] G. M. Sheldrick, **2013**, SHELXL–2013.
- [7] G. M. Sheldrick, **2004**, SADABS 2.
- [8] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, *Gaussian, Inc., Wallingford CT, 2009.*
- [9] T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580–592.
- [10] E. D. Glendening, C. R. Landis, F. Weinhold, J. Comput. Chem. 2013, 34, 1429–1437.
- [11] E. D. Glendening, F. Weinhold, J. Comput. Chem. 1998, 19, 593-609.
- [12] E. D. Glendening, F. Weinhold, J. Comput. Chem. 1998, 19, 610–627.