Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2015

Supplementary Information

Vanadium (V) complexes of a tripodal ligand, their characterisation and biological implications

M.R. Maurya, B. Uprety, F. Avecilla, P. Adão, and J. Costa Pessoa

Compound	–OH	–NH	<i>-tert</i> -butyl	-NCH ₂ CH ₂ -	-CH ₂ N-	Aromatic
H ₂ L ¹ I	9.648(s, 2H)		1.377(s, 18H), 1.399(s, 18H)	2.913(s, 2H), 3.217(s, 2H)	4.850(s,4H)	8.795(Py, s, 1H), 7.677(d, 1H), 7.648-7.662(m, 4H), 7.319-7.26 (m, 1H), 7.172- 9.989(m, 2H)
[V ^v O(acac)(L ¹)] 1			1.31(s, 18H) 1.57(s, 18H)	2-2.05(d, 2H), 2.25(s, 2H)	3.44- 3.41(d,2H) 2.92(s, 2H)	8.44-8.42 (d, 1H Py), 7.51- 7.47(m,1H), 7.31-7.30(d, 2H), 7.06-7.05(m, 3H), 6.87-6.85(d, 1H)
$[{V^{V}O(L^{1})}_{2}\mu-O]$ 3			0.86(s, 36H), 1.24(s, 36H)	2.80(s, 4H), 2.51(s, 4H)	6.03-6.00(d, 4H) 3.24- 3.21(d, 4H)	9.83 (s,2H Py), 7.36-7.33 (t, 2H), 7.02-6.99(t, 2H), 6.96(s 4H), 6.86(s, 4H) 6.70-6.68(d, 2H)
$[{V^{v}O(L^{2})}_{2}\mu - (OH)_{2}]$ 5		4.20 (br s, 1H), 4.13 (br s, 1 H)	1.41-1.42(d, 36 H), 1.28-1.31(d, 36H)		4.01-3.98(d, 3H), 3.47- 3.42(t, 3H), 3.23(s, 1H), 3.06(s, 1H)	7.31(s, 1H), 7.27(s, 2H), 7.05(s, 4H), 7.00(s, 1H)
$[{V^{v}O(L^{2})}_{2}\mu$ -O] 6		4.58 (br s, 1H), 4.19 (br s, 1 H)	1.41-1.43(d, 36H), 1.31-1.32(d, 36H)		4.00-3.98 (d, 4 H),3.47-3.42 (m, 2 H), 3.21(s, 1H) 2.97 (s, 1H)	7.28 (s, 4H), 7.05(s, 2H), 7.00(s, 2H)

Table S1. ¹H NMR spectral data

Fig. S1 IR Spectrum of the compound formulated as $H[V^VO_2(L^2)]$ 4

Fig. S2 IR Spectrum of $[{V^VO(L^2)}_2\mu(OH)_2]$ 5

Fig. S3 IR Spectrum of $[{V^VO(L^2)}_2\mu$ -O] 6

Fig. S4 ⁵¹V NMR spectrum of 1in CD₂Cl₂. The peak at $\delta = 0$ ppm corresponds to external neat V^VOCl₃.

Fig. S5 ⁵¹V NMR spectrum of 3 in CD₂Cl₂. The peak at $\delta = 0$ ppm corresponds to external neat V^VOCl₃.

Fig. S6 ⁵¹V NMR spectrum of **6** in CD₂Cl₂. The peak at $\delta = 0$ ppm corresponds to external neat V^VOCl₃.

Fig. S7 ⁵¹V NMR spectrum of **1** (0.61 mM) in a 3:2 mixture of CH₃OH/CD₃OD (a) and after addition of 1 equivalent of H_2O_2 (b).

Fig. S8 51 V NMR spectrum of 1 (0.62 mM) in a 3:2 mixture of CH₃CN/CD₃CN (a) and after addition of 8 equivalents of H₂O₂ (b).

Fig. S9 ESI-MS spectrum of the reaction mixture containing 10 mL of a 1.0×10^{-1} M catechol solution mixed with 5.0 mL of a 4.0×10^{-4} M solution of $[V^VO(OMe)(MeOH)(L^1)]$ (2) in an atmosphere of air.

Fig. 10 Spectral changes observed during the reaction of 3,5-di-tert-butylcatechol with $[V^{V}O(OMe)(MeOH)(L^{1})]$ **2**. Reaction Conditions for (a) and (b): 3,5-di-tert-butylcatechol solution (10.0 mL, 1.0×10^{-2} M) mixed with 5.0 mL solution of $[V^{V}O(OMe)(MeOH)(L^{1})]$ (4.0×10⁻⁴ M) in an atmosphere of air. The spectra were recorded at every six min intervals. For (c) and (d): 3,5-di-tert-butylcatechol solution (10.0 mL, 1.0×10^{-2} M) mixed with 5.0 mL (4.0×10⁻⁵ M) solution of $[V^{V}O(OMe)(MeOH)(L^{1})]$ in an atmosphere of air. The spectra were recorded at every 12 min intervals.