SUPPLEMENTARY INFORMATION

Cytotoxicity and preliminary mode of action studies of novel 2-aryl-4-thiopyronebased organometallics

Melanie Schmidlehner,^[a] Lea S. Flocke,^[a] Alexander Roller,^[a] Michaela Hejl,^[a] Michael A. Jakupec,^[a,b] Wolfgang Kandioller,^[a,b] and Bernhard K. Keppler,^[a,b]

^a Institute of Inorganic Chemistry, University of Vienna, Faculty of Chemistry, Waehringer Str. 42, A-1090 Vienna, Austria
^b University of Vienna, Research Platform Translational Cancer Therapy Research, Waehringer Str. 42, A-1090 Vienna, Austria

Table of Contents

Syntheses of the ligands	2
Solubility determination	5
Overview of synthesized complexes	5
Crystallographic parameters	6
Crystal structures	8
Stability ¹ H NMR measurements of 7c and 8c	10

Syntheses of the ligands

2-Bromo-3-hydroxy-6-methyl-4H-pyran-4-one (2).

Allomaltol (1.00 g, 7.90 mmol) and ammonium acetate (0.07 g, 0.87 mmol) were dissolved in acetonitrile (50 mL), NBS (1.55 g, 8.70 mmol) was added and the reaction mixture was stirred for 4 hours at room temperature. The solvent was evaporated and the residue extracted with a mixture of water/dichloromethane. The organic layer was separated, dried over anhydrous Na₂SO₄, filtered and the solvent was removed under reduced pressure. The obtained solid was dried in vacuo and used without further purification for the next step. Yield 1.15 g, 5.61 mmol, 71%. ¹H NMR (DMSO-*d*₆, 500.10 MHz, 25 °C): δ = 2.27 (s, 3 H, -CH₃), 6.30 (s, 1 H, H5), 9.79 (br s, 1 H, -OH) ppm. ¹³C NMR (DMSO-*d₆*, 125.75 MHz, 25 °C): 172.25(C4), 166.2 (C6), 143.8 (C3), 128.9 (C2) 111.6 (C5), 19.0 (C7). Elemental anal. calc for C₆H₅BrO₃: C, 35.15; H, 2.45; Found: C, 34.79; H, 2.27 %. ESI-MS⁻ m/z: 204.8 [M-H]⁻. 3-(Benzyloxy)-2-bromo-6-methyl-4H-pyran-4-one (3). Bromoallomaltol 2 (1.25 g, 6.10 mmol) was dissolved in dichloromethane (20 mL). Benzylbromide (0.94 mL, 7.91 mmol) and 18-crown-6 ether (0.11 mg, 0.42 mmol), dissolved in dichloromethane (10 mL) were added. KOH solution (15%, 10 mL) was added and the mixture was vigorously stirred overnight. The phases were separated, the water phase was extracted with dichloromethane, the organic layers were combined, dried over anhydrous Na₂SO₄, filtered and the solvent was removed under reduced pressure. Purification by column chromatography (*n*-hexane/ethyl acetate = 1/1) yielded the product as yellow oil. Yield: 1.21 g, 4.09 mmol, 62%. ¹H NMR (DMSO- d_6 , 500.10 MHz, 25 °C): δ = 2.27 (s, 3 H, -CH₃), 5.10 (s, 2 H, -OCH₂-), 6.35 (s, 1 H, H5), 7.32 - 7.44 (m, 5 H, -C₆H₅) ppm. ¹³C NMR (DMSO-d₆, 125.75 MHz, 25 °C): 173.4 (C4), 166.4 (C6), 144.0 (C3), 139.6 (C_{Ar}), 136.3 (C2), 128.5 (C_{Ar}), 128.27 (C_{Ar}), 114.2 (C5), 73.1 (-OCH₂-), 18.7 (C7) ppm. HR-ESI-MS⁺ m/z calc.: 295.1286; found: 294.9963 [M-H]⁺.

General procedure for Suzuki-Miyaura coupling reactions.

Benzylated bromoallomaltol **3** (1.50 g, 5.08 mmol, 1 eq), phenylboronic acid (6.10 mmol, 1.20 eq.) and potassium phosphate (4.00 g, 15.20 mmol, 3 eq.) were dissolved in acetonitrile/water (2:1, 40 mL). Tetrakis(triphenylphosphine)palladium(0) (10 mol%) was added and the mixture was stirred overnight at 75 °C under an argon atmosphere. After cooling to room temperature, the phases were separated, the water phase was extracted with acetonitrile, the combined organic layers were dried over anhydrous Na_2SO_4 , filtered and the solvent was removed under reduced pressure. Purification by column chromatography (*n*-hexane/ethyl acetate = 1/1) yielded the respective product.

3-(Benzyloxy)-6-methyl-2-phenyl-4H-pyran-4-one (4a).

The synthesis was performed according to the general procedure using phenylboronic acid (0.85 g). Yield: 1.28 g, 4.38 mmol, 86%. ¹H NMR (DMSO- d_6 , 500.10 MHz, 25 °C): δ = 2.34 (s, 3 H, -CH₃), 5.08 (s, 2 H, -OCH₂-), 6.34 (s, 1 H, H5), 7.27 (br s, 5 H, -C₆H₅), 7.29 – 7.34 (m, 2 H, H_{Ar}), 7.85 – 7.90 (m, 2 H, H_{Ar}) ppm. ¹³C NMR (DMSO- d_6 , 125.75 MHz, 25 °C): δ = 175.4 (C4), 165.0 (C6), 155.0 (C2), 142.2 (C3),136.7 (C_{Ar}), 130.3 (C4'), 130.1 (C1'), 128.4 (C2', C6'), 128.3 (C_{Ar}), 128.1 (C_{Ar}), 128.0 (C_{Ar}), 127.9 (C3', C5'), 113.9 (C5), 72.6 (-OCH₂-), 19.1 (C7) ppm. ESI-MS⁺ m/z: 315.31 [M+Na]⁺.

3-(Benzyloxy)-2-(4-fluorophenyl)-6-methyl-4H-pyran-4-one (4b).

The synthesis was performed according to the general procedure using 4-fluorophenylboronic acid (0.74 g). Yield: 1.32 g, 4.57 mmol, 84%. ¹H NMR (DMSO- d_6 , 500.10 MHz, 25 °C): δ = 2.33 (s, 3 H, -CH₃), 5.08 (s, 2 H, -OCH₂-), 6.34 (s, 1 H, H5), 7.28 (br s, 5 H, -C₆H₅), 7.28 – 7.34 (m, 2 H, H_{Ar}), 7.85 – 7.89 (m, 2 H, H_{Ar}) ppm. ¹³C NMR (DMSO- d_6 , 125.75 MHz, 25 °C): δ = 175.3 (C4), 165.0 (C6), 162.9 (d, ¹J_{C,F} = 249 Hz, C4'), 154.1 (C2), 141.9 (C3),136.5 (C_Ar), 130.5 (d, ³J_{C,F} = 8 Hz, C2', C6'), 128.4 (C_Ar), 128.0 (C_Ar), 126.6 5 (d, ⁴J_{C,F} = 3 Hz, C1'), 115.4 (d, ²J_{C,F} = 22 Hz, C3', C5'), 113.9 (C5), 72.6 (-OCH₂-), 19.0 (C7) ppm. ESI-MS⁺ m/z: 333.29 [M+Na]⁺.

3-(Benzyloxy)-6-methyl-2-(p-tolyl)-4H-pyran-4-one (4c).

The synthesis was performed according to the general procedure using 4-methylphenylboronic acid (0.83 g). Yield: 1.23 g, 4.03 mmol, 79%. ¹H NMR (DMSO- d_{6} , 500.10 MHz, 25 °C): δ = 2.33 (s, 3 H, -CH₃), 2.36 (s, 3 H, -CH₃) 5.06 (s, 2 H, -OCH₂-), 6.32 (s, 1 H, H5), 7.26 - 7.31 (m, 7 H, -C₆H₅, H_{Ar}), 7.73 - 7.76 (m, 2 H, H_{Ar}) ppm. ¹³C NMR (DMSO- d_{6} , 125.75 MHz, 25 °C): δ = 175.4 (C4), 164.9 (C6), 155.0 (C2), 142.0 (C3), 140.3 (C4'), 136.7 (C_{Ar}), 129.0 (C3', C5'), 128.3 (C_{Ar}), 128.2 (C_{Ar}), 128.0 (C_{Ar}), 127.8 (C2', C6'), 127.3 (C1'), 113.8 (C5), 72.5 (-OCH₂-), 21.0 (-CH₃), 19.1 (C7) ppm. ESI-MS⁺ m/z: 307.29 [M+H]⁺, 329.27 [M+Na]⁺

3-(Benzyloxy)-6-methyl-2-(4-methoxyphenyl)-4H-pyran-4-one (4d).

The synthesis was performed according to the general procedure using 4-methoxyphenylboronic acid (0.93 g). Yield: 1.40 g, 4.33 mmol, 85%. ¹H NMR (DMSO- d_6 , 500.10 MHz, 25 °C): δ = 2.33 (s, 3 H, -CH₃), 3.82 (s, 3 H, -OCH₃) 5.06 (s, 2 H, -OCH₂-), 6.30 (s, 1 H, H5), 7.03 (d, 2 H, ³J_{H,H} = 8 Hz, H_{Ar}), 7.30 (br s, 5 H, -C₆H₅), 7.83 (d, 2 H, ³J_{H,H} = 8 Hz, H_{Ar}) ppm. ¹³C NMR (DMSO- d_6 , 125.75 MHz, 25 °C): δ = 175.3 (C4), 164.6 (C6), 160.7 (C4'), 154.9 (C2), 141.4 (C3), 136.7 (C_{Ar}), 128.2 (C_{Ar}), 128.1 (C_{Ar}), 128.0 (C_{Ar}), 129.5 (C2', C6'), 122.3 (C1'), 113.8 (C5), 113.7 (C3', C5'), 72.4 (-OCH₂-), 55.3 (-OCH₃), 19.0 (C7) ppm. ESI-MS⁺ m/z: 323.36 [M+H]⁺, 345.31 [M+Na]⁺.

General procedure for cleavage of the benzyl group.

The respective protected pyrone **4a–d** (4.00 mmol) was suspended in acetic acid (10 mL), HCl conc. (15 mL) was slowly added and the mixture was refluxed for 3 hours. If not other stated, the solvent was removed after cooling to room temperature, the residue suspended in acetone, filtered, washed with acetone and dried *in vacuo*.

3-Hydroxy-6-methyl-2-phenyl-4H-pyran-4-one (5a).

The synthesis was performed according to the general procedure using 3-(benzyloxy)-6-methyl-2-phenyl-4H-pyran-4-one **4a** (1.17 g, 4.00 mmol). The solvent was removed and the residue was taken up in 20 mL dichloromethane and washed with water (3x 20 mL). The organic phase was separated, dried over anhydrous Na₂SO₄, filtered and the solvent was evaporated. Yield: 0.86 g, 3.92 mmol, 98%. ¹H NMR (DMSO-*d*₆, 500.10 MHz, 25 °C): δ = 2.37 (s, 3 H, -CH₃), 6.33 (s, 1 H, H5), 7.42 – 7.46 (m, 1 H, H_{Ar}), 7.49 – 7.53 (m, 2 H, H_{Ar}), 8.00 – 8.03 (m, 2 H, H_{Ar}) 9.41 (br s, 1 H, -OH) ppm. ¹³C NMR (DMSO-*d*₆, 125.75 MHz, 25 °C): δ = 174.1 (C4), 164.9 (C6), 144.3 (C2), 141.9 (C3), 131.0 (C1'), 129.2 (C4'), 128.4 (C2', C6'), 126.72 (C3', C5'), 110.4 (C5), 19.3 (C7) ppm. HR-ESI-MS⁺ m/z calc. 202.0630; found: 203.0702 [M+H]⁺, 225.0521 [M+Na]⁺.

3-Hydroxy-2-(4-fluorophenyl)-6-methyl-4H-pyran-4-one (5b).

The synthesis was performed according to the general procedure using 3-(benzyloxy)-2-(4-fluorophenyl)-6-methyl-4H-pyran-4one **4b** (1.14 g, 4.00 mmol). Yield: 0.81 g, 3.69 mmol, 92%. ¹H NMR (DMSO- d_6 , 500.10 MHz, 25 °C): δ = 2.37 (s, 3 H, -CH₃), 6.32 (s, 1 H, H5), 7.33 – 7.38 (m, 2 H, H_{Ar}), 8.04 – 8.09 (m, 2 H, H_{Ar}) 9.50 (br s, 1 H, -OH) ppm. ¹³C NMR (DMSO- d_6 , 125.75 MHz, 25 °C): δ = 174.0 (C4), 164.8 (C6), 162.2 (d, ¹J_{C,F} = 248 Hz, C4'), 143.6 (C2), 141.7 (C3), 129.1 (d, ³J_{C,F} = 8 Hz, C2', C6'), 127.5 (d, ⁴J_{C,F} = 3 Hz, C1'), 115.5 (d, ²J_{C,F} = 22 Hz, C3', C5'), 110.4 (C5), 19.3 (C7) ppm. HR-ESI-MS⁺ m/z calc.: 220.0536; found: 221.0607 [M+H]⁺, 243.0427 [M+Na]⁺.

3-Hydroxy-6-methyl-2-(p-tolyl)-4H-pyran-4-one (5c).

The synthesis was performed according to the general procedure utilizing 3-(benzyloxy)-6-methyl-2-(*p*-tolyl)-4H-pyran-4-one **4c** (1.23 g, 4.00 mmol). The solvent was removed and the product was taken up in 20 mL dichloromethane and washed with water (3x 20 mL). The organic phase was separated, dried over anhydrous Na₂SO₄, filtered and the solvent was evaporated. Yield: 0.85 g, 3.92 mmol, 98%. ¹H NMR (DMSO-*d₆*, 500.10 MHz, 25 °C): δ = 2.36 (s, 3 H, -CH₃), 2.36 (s, 3 H, -CH₃), 6.30 (s, 1 H, H5), 7.31 (d, 2 H, ³J_{*H*,*H*} = 8 Hz, H_{Ar}), 7.91 (d, 2 H, ³J_{*H*,*H*} = 8 Hz, H_{Ar}), 9.33 (br s, 1 H, -OH) ppm. ¹³C NMR (DMSO-*d₆*, 125.75 MHz, 25 °C): δ = 174.0 (C4), 164.7 (C6), 144.6 (C2), 141.5 (C3), 139.0 (C4'), 129.1 (C3', C5'), 128.2 (C1'), 126.7 (C2', C6'), 110.4 (C5), 20.9 (-CH₃), 19.3 (C7) ppm. HR-ESI-MS⁺ m/z calc.: 216.0786; found: 217.0857 [M+H]⁺, 239.0676 [M+Na]⁺.

3-Hydroxy-2-(4-methoxyphenyl)-6-methyl-4H-pyran-4-one (5d).

The synthesis was performed according to the general procedure utilizing 3-(benzyloxy)-6-methyl-2-(4-methoxyphenyl)-4Hpyran-4-one **4d** (1.29 g, 4.00 mmol). Yield: 0.90 g, 3.88 mmol, 97%. ¹H NMR (DMSO- d_6 , 500.10 MHz, 25 °C): δ = 2.35 (s, 3 H, -CH₃), 3.82 (s, 3 H, -OCH₃), 6.28 (s, 1 H, H5), 7.07 (d, 2 H, ³J_{H,H} = 8 Hz, H_{Ar}), 7.97 (d, 2 H, ³J_{H,H} = 8 Hz, H_{Ar}), 9.21 (br s, 1 H, -OH) ppm. ¹³C NMR (DMSO- d_6 , 125.75 MHz, 25 °C): δ = 173.9 (C4), 164.4 (C6), 159.9 (C4'), 144.8 (C2), 141.0 (C3), 128.4 (C2', C6'), 123.4 (C1'), 114.0 (C3', C5'), 110.3 (C5), 55.3 (-OCH₃), 19.3 (C7) ppm. HR-ESI-MS⁺ m/z calc.: 232.0736; found: 233.0808 [M+H]⁺.

General synthesis for the thiopyrones

Pyrone **5a–d** (5.00 mmol, 1 eq) and Lawesson's reagent (1.01 g, 2.49 mmol, 1 eq) were suspended in dry THF (30 mL, dried over molecular sieves 3 Å) and were refluxed under inert conditions for 6 hours. The solvent was removed and the pure product was obtained by recrystallization from ethanol.

3-Hydroxy-6-methyl-2-phenyl-4H-pyran-4-thione (6a).

The synthesis was performed according to the general procedure utilizing 3-hydroxy-6-methyl-2-phenyl-4H-pyran-4-one **5a** (1.01 g, 5.00 mmol). Yield: 0.57 g, 2.61 mmol, 52%. ¹H NMR (DMSO- d_6 , 500.10 MHz, 25 °C): δ = 2.45 (s, 3 H, -CH₃), 7.41 (s, 1 H, H5), 7.51 – 7.59 (m, 3 H, H_{Ar}), 8.10 – 8.13 (m, 2 H, H_{Ar}) 8.83 (br s, 1 H, -OH) ppm. ¹³C NMR (DMSO- d_6 , 125.75 MHz, 25 °C): δ = 187.2 (C4), 159.5 (C6), 147.3 (C3), 141.6 (C2), 130.4 (C4'), 130.1 (C1'), 128.8 (C3', C5'), 127.6 (C2', C6'), 122.4 (C5), 18.7 (C7) ppm. Elemental anal. calc for C₁₂H₁₀O₂S·: C, 66.03; H, 4.62; S, 14.69; Found: C, 65.74; H, 4.67; S, 14.66 %. ESI-MS⁺ m/z: 218.96 [M+H]⁺.

3-Hydroxy-2-(4-fluorophenyl)-6-methyl-4H-pyran-4-thione (6b).

The synthesis was performed according to the general procedure utilizing 3-hydroxy-2-(4-fluorophenyl)-6-methyl-4H-pyran-4one **5b** (1.10 g, 5.00 mmol). Yield: 0.78 g, 3.30 mmol, 66%. ¹H NMR (DMSO- d_6 , 500.10 MHz, 25 °C): δ = 2.44 (s, 3 H, -CH₃), 7.39 – 7.45 (m, 3 H, H_{Ar}, H5), 8.15 – 8.20 (m, 2 H, H_{Ar}) 8.86 (s, 1 H, -OH) ppm. ¹³C NMR (DMSO- d_6 , 125.75 MHz, 25 °C): δ = 187.6 (C4), 162.9 (d, ¹J_{C,F} = 250 Hz, C4'), 159.4 (C6), 147.1 (C3), 141.0 (C2), 130.2 (d, ³J_{C,F} = 9 Hz, C2', C6), 126.6 (d, ⁴J_{C,F} = 3 Hz, C1'), 122.4 (C5), 115.9 (d, ²J_{C,F} = 22 Hz, C3', C5'), 18.7 (C7) ppm. Elemental anal. calc for C₁₂H₉FO₂S: C, 61.00; H, 3.84; S, 13.57 Found: C, 61.09; H, 3.76; S, 13.50 %. ESI-MS⁺ m/z: 236.93 [M+H]⁺.

3-Hydroxy-6-methyl-2-(*p*-tolyl)-4H-pyran-4-thione (6c).

The synthesis was performed according to the general procedure utilizing 3-hydroxy-6-methyl-2-(*p*-tolyl)-4H-pyran-4-one **5c** (1.08 g, 5.00 mmol). Yield: 0.91 g, 3.90 mmol, 78%. ¹H NMR (DMSO- d_6 , 500.10 MHz, 25 °C): δ = 2.38 (s, 3 H, -CH₃), 2.44 (s, 3 H, -CH₃), 7.36 – 7.40 (m, 3 H, H5, H_{Ar}) 8.02 (d, 2 H, ³J_{H,H} = 8 Hz, H_{Ar}), 8.79 (br s, 1 H, -OH) ppm. ¹³C NMR (DMSO- d_6 , 125.75 MHz, 25 °C): δ = 186.7 (C4), 159.2 (C6), 147.1 (C3), 142.0 (C2), 140.5 (C4'), 129.4 (C3', C5'), 127.5 (C2', C6'), 127.2 (C1'), 122.1. (C5), 21.1 (-CH₃), 18.7 (C7) ppm. Elemental anal. calc for C₁₃H₁₂O₂S: C, 67.21; H, 5.21; S, 13.80 Found: C, 67.10; H, 5.31; S, 13.74 %. HR-ESI-MS⁺ m/z calc.: 232.0558; found: 233.0625 [M+H]⁺, 255.0445 [M+Na]⁺.

3-Hydroxy-2-(4-methoxyphenyl)-6-methyl-4H-pyran-4-thione (6d).

The synthesis was performed according to the general procedure utilizing 3-hydroxy-6-methyl-2-(4-methoxyphenyl)-4H-pyran-4one **5d** (1.16 g, 5.00 mmol). Yield: 1.07 g, 4.30 mmol, 86%. ¹H NMR (DMSO- d_6 , 500.10 MHz, 25 °C): δ = 2.43 (s, 3 H, -CH₃), 3.84 (s, 3 H, -OCH₃), 7.12 (d, 2 H, ${}^{3}J_{H,H}$ = 8 Hz, H_{Ar}), 7.35 (s, 1 H, H5), 8.08 (d, 2 H, ${}^{3}J_{H,H}$ = 8 Hz, H_{Ar}), 8.75 (br s, 1 H, -OH) ppm. ¹³C NMR (DMSO- d_6 , 125.75 MHz, 25 °C): δ = 186.0 (C4), 160.9 (C6), 158.9 (C4'), 146.6 (C3), 142.2 (C2), 129.4 (C2', C6'), 122.2 (C1'), 121.8 (C5), 114.3 (C3', C5'), 55.4 (-OCH₃), 18.7 (C7) ppm. Elemental anal. calc for C₁₃H₁₂O₃S·0.1H₂O: C, 62.43; H, 4.92; S, 12.82 Found: C, 62.46; H, 4.90; S, 12.84 %. ESI-MS⁺ m/z: 248.97 [M+H]⁺.

Solubility determination

The solubility of all ligands and complexes was determined in 1% v/v DMSO/H₂O. A stock solution in DMSO was prepared and diluted with water to an overall concentration of 1% v/v DMSO. The solubility refers to the highest concentration of compound without observation of precipitation for at least 18 h. Same solubilities were observed for the system 1% v/v DMSO/PBS

Overview of synthesized complexes

Table S1: Overview of synthesized complexes with corresponding yields.

	,		
	metal	-R	yield
7a	Ru	-H	66%
7b	Ru	-F	62%
7c	Ru	-CH3	64%
7d	Ru	-OCH3	67%
8a	Rh	-H	71%
8b	Rh	-F	66%
8c	Rh	-CH3	66%
8d	Rh	-OCH3	68%

Crystallographic parameters

	6c	8b
Empirical formula	$C_{13}H_{12}O_2S$	$C_{22}H_{23}CIFO_2RhS$
Formula weight [g/mol]	232.06	508.82
Temperature/K	100(2)	90(2)
Wavelength/Å	0.71073	0.71073
Crystal size/mm	0.016x0.136x0.255	0.009x0.039x0.223
Crystal system	monoclinic	orthorhombic
Space group	P21/c	P2 ₁ 2 ₁ 2 ₁
<i>a</i> [Å]	11.1036(4)	8.0870(5)
b [Å]	6.9087(2	8.4811(4)
<i>c</i> [Å]	14.7366(5)	30.4205(17)
α [deg]	90	90
β [deg]	101.072(13)	90
γ [deg]	90	90
Volume [ų]	1109.42(6)	2086.4(2)
Z	4	4
Calculated density/mg/m ³	1.391	1.62
Absorption coefficient/mm ⁻¹	0.272	1.071
F(000)	488	1032
Θ range for data collection[°]	1.78-30.09	1.34-25.45
Index ranges	-15<=h<=15	-9<=h<=9
	-9<=k<=9	-10<=k<=10
	-20<=l<=20	-36<=I<=36
Reflections collected/unique	52010/3261	67109/3862
Data/restraints/parameters	3261/0/151	3862/6/332
R(Int)	0.0443	0.0616
Final R indices $[I > 2\sigma(I)]$	2854	3473
R ₁ ^a	0.0331	0.0254
wR ₂ ^b	0.0965	0.0553
GOF ^c	1.038	1.093

Table S2. Crystallographic parameters for structures 6c and 8b.

 $\label{eq:rescaled} \begin{array}{l} ^{a} \; \mathsf{R}_{1} = \Sigma \left| \; \left| \; \mathsf{Fo} \right| \; - \; \left| \; \mathsf{Fc} \right| \; \left| \; \Sigma \right| \; \mathsf{Fo} \right| . \\ ^{b} \; \mathsf{wR}_{2} = \{ \Sigma [\mathsf{w}(\mathsf{Fo2} - \mathsf{Fc2})2] / \Sigma [\mathsf{w}(\mathsf{Fo2})2] \} 1 / 2 . \end{array}$

^c GOF = $\sum[w(Fo2 - Fc2)2]/(n - p)$ 1/2, where n is the number of reflections and p is the total number of parameters refined.

Table S3. Selected bond lengths for structures 7c, 7d, 8b and 8b.

bond	7c	7d	8b	8d
M1-S1	2.3560(8)	2.3537(6)	2.3517(13)	2.3619(5)
M1-02	2.082(2)	2.0904(15)	2.085(3)	2.0765(12)
M1-Cl1	2.4140(7)	2.6164(6)	2.359(16)	2.4288(4)
M1-Ar	2.183(3)	2.179(2)	2.143(11)	2.1486(18)
S1-M1-O2	82.17(6)	82.15(5)	82.71(9)	82.72(4)
S1-M1-Cl1	88.02(3)	86.82(2)	84.1(9)	88.531(16)
02-M1-Cl1	86.31(6)	85.14(5)	79.2(11)	86.18(4)

Crystal structures

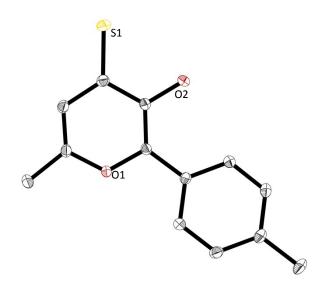


Figure S1: Molecular structure of 6c drawn at 50% probability level.

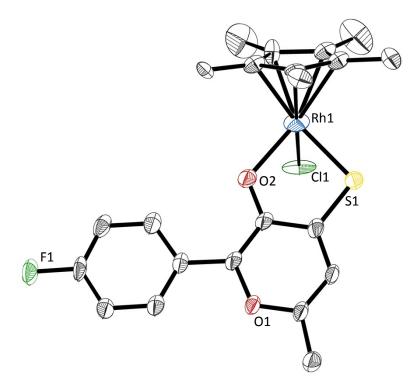
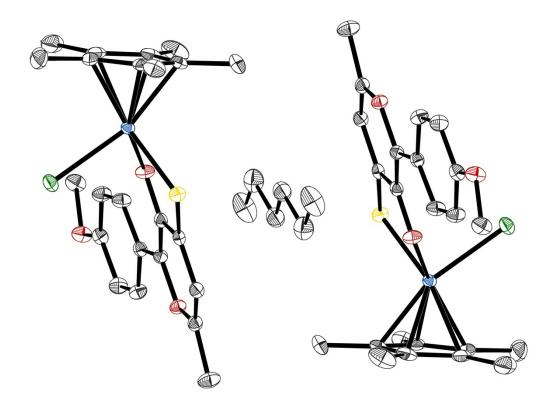
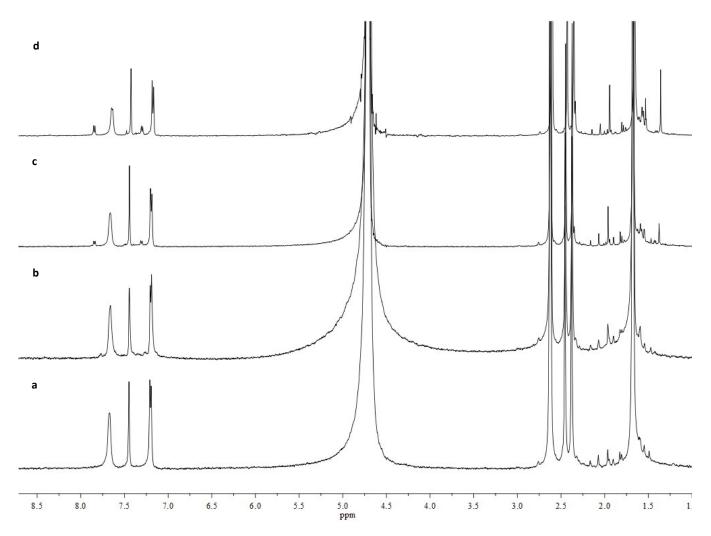
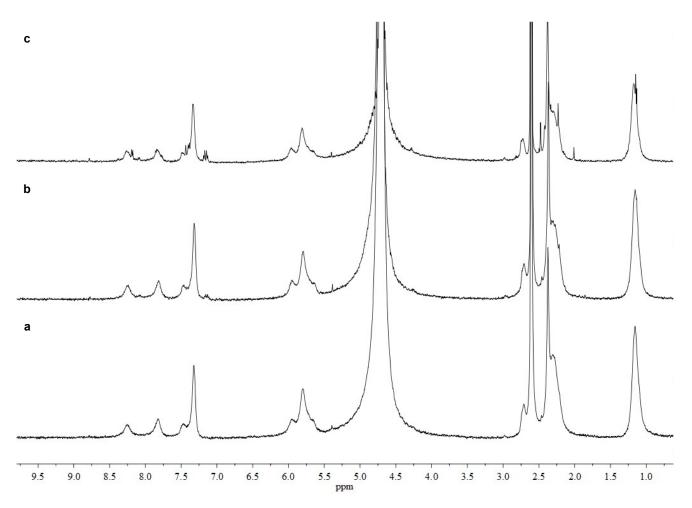


Figure S2: Molecular structure of 8b drawn at 50% probability level.




Figure S3: Molecular structure of 8d drawn at 50% probability level.

Stability ¹H NMR measurements of 7c


Figure S3. Full ¹H NMR spectra of **7c** in D₂O after **a**) 5 minutes, **b**) 5 hours, **c**) 24 hours and **d**) 7 days. ¹H NMR (D₂O, 500.10 MHz, 25 °C): δ = 1.23 (br s, 6 H, -CH₃_{cym-f}), 2.38 (br s, 6 H, -CH₃), 2.45 (s, 3 H, -CH₃), 2.78 (br s, 1 H, CH_{cym-e}), 5.69 – 6.10 (m, 4 H, H_{cym}), 7.31 – 7.60 (m, 3 H, H5, H_{Ar}), 7.90 (br s, 1 H, H_{Ar}), 8.32 (br s, 1 H, H_{Ar}) ppm, signals at 1.20, 2.30, 7.21, 7.23, 7.50 and 8.25 ppm were assigned to decomposition products.

Stability ¹H NMR measurements of 8c

Figure S4. Full ¹H NMR spectra of **8c** in D₂O after **a**) 5 minutes, **b**) 5 hours, **c**) 24 hours and **d**) 7 days. ¹H NMR (D₂O, 500.10 MHz, 25 °C): δ = 1.75 (s, 15 H, Cp*), 2.45 (s, 3 H, -CH₃), 2.53 (s, 3 H, -CH₃), 7.27 (d, ³JH,H = 8 Hz, 2 H, H_{Ar}), 7.52 (s, 1 H, H5), 7.75 (s, 2 H, H_{Ar}), ppm; signals at 1.43, 2.02, 7.37 and 7.92 ppm were assigned to decomposition products.

Stability ¹H NMR measurements of 7c under exclusion of light

Figure S5. Full ¹H NMR spectra of **7c** in D₂O after after **a**) 5 minutes, **b**) 24 hours and **c**) 7 days. ¹H NMR (D₂O, 500.10 MHz, 25 °C): δ = 1.23 (br s, 6 H, -CH_{3cym-f}), 2.38 (br s, 6 H, -CH₃), 2.45 (s, 3 H, -CH₃), 2.78 (br s, 1 H, CH_{cym-e}), 5.69 – 6.10 (m, 4 H, H_{cym}), 7.31 – 7.60 (m, 3 H, H5, H_{Ar}), 7.90 (br s, 1 H, H_{Ar}), 8.32 (br s, 1 H, H_{Ar}) ppm, signals at ca. 1.22, 2.31, 7.22, 7.24, 7.50 and 8.25 ppm were assigned to decomposition products.