Supporting Information

A dual functional probe for "turn-on" fluorescence response of Pb^{2+} and colorimetric detection of Cu^{2+} based on rhodamine derivative in aqueous media

Min Li,^a Xiu-Juan Jiang,^a Hui-Hui Wu,^a Hong-Lin Lu,^a Hai-Yang Li,^a Hong Xu,^{*,a} Shuang-Quan Zang,^{*,a} and Thomas C. W. Mak^{a,b}

^a College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China

^b Department of Chemistry and Center of Novel Functional Molecules, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, People's Republic of China

Author for correspondence:

E-mail: zangsqzg@zzu.edu.cn, xuhong@zzu.edu.cn

Fig. S2. ¹³C NMR spectrum of L in CDCl₃.

Fig. S3. ESI-MS spectrum of L in methanol.

Fig. S4. IR spectrum of L.

Fig. S5. Benesi–Hildebrand plot of L (10 μ M) assuming 1:1 stoichiometry between L and Pb²⁺ in aqueous HEPES buffer (10 mM, pH 6.5) containing 1% CH₃CN (v/v). λ_{ex} = 483 nm. The binding constant of L-Pb²⁺ was 2.43 × 10⁴ M⁻¹.

Fig. S6. Job's plot for L with Pb^{2+} in aqueous HEPES buffer (10 mM, pH 6.5) containing 1% CH₃CN (v/v).

Fig. S7. The linearity of fluorescence intensity of L (10 μ M) at 576 nm with respect to Pb²⁺ concentrations in aqueous HEPES buffer (10 mM, pH 6.5) containing 1% CH₃CN (v/v).

Fig. S8. Fluorescence responses ($\lambda_{ex} = 483 \text{ nm}$) of **L** (10 µM) at 576 nm treated with marked anions (10 equiv) followed by 10 equiv Pb²⁺ in aqueous HEPES buffer (10 mM, pH 6.5) containing 1% CH₃CN (v/v).

Fig. S9. Benesi–Hildebrand plot of L (10 μ M) assuming 1:1 stoichiometry between L and Cu²⁺ in aqueous HEPES buffer (10 mM, pH 7.2) containing 1% CH₃CN (v/v). The binding constant of L-Cu²⁺ was 1.20 × 10⁵ M⁻¹.

Fig. S10. Job's plot for L with Cu^{2+} in aqueous HEPES buffer (10 mM, pH 7.2) containing 1% CH₃CN (v/v).

Fig. S11. The linearity of absorption intensity of L (10 μ M) at 567 nm with respect to Cu²⁺ concentrations in aqueous HEPES buffer (10 mM, pH 7.2) containing 1% CH₃CN (v/v).

Fig. S12. Absorbance responses of L (10 μ M) at 567 nm treated with marked anions (10 equiv) followed by 10 equiv Cu²⁺ in aqueous HEPES buffer (10 mM, pH 7.2) containing 1% CH₃CN (v/v). Inset: observed color changes of L (10 μ M) treated with marked anions (10 equiv) followed by 10 equiv Cu²⁺.

Fig. S13. ESI-MS spectrum of L in the presence of $Pb(NO_3)_2$, where L' represented the ester hydrolyzed product of L.

Fig. S14. ¹H NMR (400 MHz) spectral changes of L (10 mM) in CD₃OD/D₂O (4.5:1) upon addition of Pb(NO₃)₂ at 298 K. (a) L, (b) L + Pb²⁺ (1:0.5), (c) L + Pb²⁺ (1:1), (d) L + Pb²⁺ (1:2), (e) L + Pb²⁺ (1:5), where * denotes the residual proton signal from D₂O and \approx denotes the residual proton signal from CD₃OD.

Fig. S15. ESI-MS spectrum of L in the presence of CuCl₂.

Fig. S16. ¹H NMR (400 MHz) spectral changes of L (10 mM) in CD₃OD/D₂O (4.5:1) upon addition of CuCl₂ at 298 K. (a) L, (b) L + Cu²⁺ (1:0.5), (c) L + Cu²⁺ (1:1), where * denotes the residual proton signal from D₂O and \times denotes the residual proton signal from CD₃OD.

Fig. S17. IR spectra of L, L-Cu²⁺ and L-Pb²⁺.

Fig. S18. Frontier molecular orbitals of L.

Fig. S19. Frontier molecular orbitals of complex $L-Cu^{2+}$.

Fig. S20. Fluorescence intensity at 576 nm of L (10 μ M) measured with 10 equiv Pb²⁺ and without Pb²⁺ in 10 mM HEPES buffer (containing 1% CH₃CN, v/v) at various pH values. The excitation wavelength was 483 nm. The pH of the solutions was adjusted by addition of NaOH (1 M) or HCl (1 M).

Fig. S21. Absorbance at 567 nm of L (10 μ M) measured with 10 equiv Cu²⁺ and without Cu²⁺ in 10 mM HEPES buffer (containing 1% CH₃CN, v/v) at various pH values. The pH of the solutions was adjusted by addition of NaOH (1 M) or HCl (1 M).

Fig. S22. Reversibility of Pb²⁺ (60 μ M) coordination to L (10 μ M) by EDTA disodium (60 μ M) in aqueous HEPES buffer (10 mM, pH 6.5) containing 1% CH₃CN (v/v). The excitation wavelength was 483 nm.

Fig. S23. Fluorescence decay curve of L at 576 nm in aqueous HEPES buffer (10 mM, pH 6.5) containing 1% CH₃CN (v/v). $\lambda_{ex} = 483$ nm.

Fig. S24. Fluorescence decay curve of L at 576 nm in the presence of 10 equiv Pb²⁺ in aqueous HEPES buffer (10 mM, pH 6.5) containing 1% CH₃CN (v/v). $\lambda_{ex} = 483$ nm.

Fig. S25. Fluorescence decay curve of L-Pb²⁺ at 576 nm in the presence of 100 equiv EDTA in aqueous HEPES buffer (10 mM, pH 6.5) containing 1% CH₃CN (v/v). $\lambda_{ex} =$ 483 nm.

Fig. S26. Reversibility of Cu²⁺ (10 μ M) coordination to L (10 μ M) by Na₂S (20 μ M) in aqueous HEPES buffer (10 mM, pH 7.2) containing 1% CH₃CN (v/v).

Fig. S27. The absorbance spectra of L in aqueous HEPES buffer (10 mM, pH 7.2) containing 1% CH₃CN (v/v).

Fig. S28. The fluorescence emission spectra of **L** in aqueous HEPES buffer (10 mM, pH 6.5) containing 1% CH₃CN (v/v). $\lambda_{ex} = 483$ nm.

Fig. S29. The excitation spectra of L in aqueous HEPES buffer (10 mM, pH 6.5) containing 1% CH₃CN (v/v). $\lambda_{em} = 576$ nm.

Fig. S30. UV–vis absorption spectra of L (10 μ M) with addition of Pb²⁺ in aqueous HEPES buffer (10 mM, pH 7.2) containing 1% CH₃CN (v/v).

Compound	L-Pb ²⁺		
Empirical formula	$C_{82}H_{110}N_{14}O_{34}Pb_2$		
Formula weight	2250.24		
Temperature (K)	293(2)		
Crystal system	Triclinic		
Space group	$P\overline{1}$		
<i>a</i> (Å)	12.1829(4)		
<i>b</i> (Å)	14.0906(8)		
<i>c</i> (Å)	14.9798(6)		
α (°)	63.766(5)		
β (°)	77.410(3)		
γ (°)	78.245(4)		
$V(Å^3)$	2234.16(17)		
Ζ	1		
$D_c ({\rm Mg/m^3})$ 1.673			
$\mu (\mathrm{mm}^{-1})$	3.858		
F(000)	1136		
Reflns collected	17572		
Independent reflns	8315		
Completeness	99.8 %		
<i>R</i> (int)	0.0589		
Refinement method Full-matrix least-squares on <i>I</i>			
Data / restraints / parameters8302 / 3733 / 588			
GOF on F^2	1.007		
${}^{a}R_{1}[I>2\sigma\left(I ight)],wR_{2}$	0.0680, 0.1700		
R_1 [all data], wR_2	0.0819, 0.1824		

Table S1. Crystallographic data and structure refinement parameters for complex L-Pb²⁺.

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|, wR_{2} = [\Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma w(F_{o}^{2})^{2}]^{1/2}$

band lengths $(Å)$							
$\frac{1}{2} \frac{1}{2} \frac{1}$							
	Pb(1)-O(7)	2.387(6)	Pb(1)–O(7)#1	2.676(5)			
	Pb(1)-O(1)	2.471(5)	Pb(1)–O(12)	3.023(10)			
	Pb(1)-N(4)	2.643(7)	Pb(1)–O(4)	2.924(7)			
	Pb(1)–N(5)	D(1)-N(5) 2.660(7) Pb(1)-O(3)		2.921(6)			
bond angles (°)							
	O(7)–Pb(1)–O(1)	70.92(18)	N(5)-Pb(1)-O(4)	58.0(2)			
	O(7) - Pb(1) - N(4)	102.0(2)	N(5)-Pb(1)-O(12)	83.4(3)			
	O(1)-Pb(1)-N(4)	73.5(2)	N(4)-Pb(1)-O(3)	61.1(2)			
	O(7) - Pb(1) - N(5)	64.2(2)	N(4)-Pb(1)-O(4)	105.9(2)			
	O(1)-Pb(1)-N(5)	106.7(2)	N(4)-Pb(1)-O(12)	67.0(3)			
	N(4)-Pb(1)-N(5)	63.8(2)	O(1)–Pb(1)–O(4)	160.6(2)			
	O(7)-Pb(1)-O(7)#1	66.1(2)	O(1)–Pb(1)–O(3)	59.8(2)			
	O(1)-Pb(1)-O(7)#1	73.30(18)	O(1)–Pb(1)–O(12)	129.1(3)			
	N(4)-Pb(1)-O(7)#1	146.8(2)	O(7)#1-Pb(1)-O(3)	101.9(2)			
	N(5)-Pb(1)-O(7)#1	126.59(19)	O(7)#1-Pb(1)-O(4)	105.1(2)			
	O(7)–Pb(1)–O(4)	90.5(2)	O(7)#1-Pb(1)-O(12)	139.2(3)			
	O(7)–Pb(1)–O(3)	130.6(2)	O(3) –Pb(1)–O(4)	137.6(2)			
	O(7)-Pb(1)-O(12)	146.8(3)	O(4)-Pb(1)-O(12)	64.8(3)			
	N(5)-Pb(1)-O(3)	124.8(2)	O(3)-Pb(1)-O(12)	73.3(3)			

Table S2. Selected bond lengths (Å) and angles [deg] for complex L-Pb²⁺.

Symmetry transformations used to generate equivalent atoms: #1 - x + 1, -y, -z + 1.

Table S3. The contribution of each orbital transitions to the lowest energy transition of L and L-Cu²⁺.

electronic transition	L oscillator strength (f)	electronic transition	L-Cu ²⁺ oscillator strength (f)	
HOMO→LUMO+4	0.1434	HOMO−10→LUMO+1	0.4619	
HOMO−2→LUMO	0.1434	HOMO−6→LUMO+1	0.4619	
HOMO−2→LUMO+5	0.2312	HOMO−1→LUMO	0.4295	
HOMO→LUMO+9	0.7335	HOMO–29→LUMO+1	0.4295	

	A_1	τ_1/ns	A_2	τ_2/ns	<7>/ns	χ^2
L at 576 nm	50%	0.384	50%	0.384	0.384	1.024
L-Pb ²⁺ at 576 nm	40%	2.597	60%	1.608	2.004	1.163
L-Pb ²⁺ -EDTA at 576 nm	50%	0.467	50%	0.467	0.467	1.144

Table S4. Fluorescence decay time constants of L, L-Pb²⁺ and L-Pb²⁺-EDTA.

Scheme S1. The schematic representation the transformation process of L structure upon complexation to Pb^{2+} , where L' represented the ester hydrolyzed product of L.