SUPPLEMENTARY INFORMATIONS

Tuning the Mn valence state in new Ca_{0.66}Mn_{2-x}Al_xO₄ (x≤0.4) oxides: impact on magnetic and redox properties.

Stéphanie Lesturgez^{1,2}, Graziella Goglio^{1,2}, François Weill^{1,2}, Olivier N'Guyen^{1,2}, Olivier Toulemonde^{1,2}, Etienne Durand^{1,2}, Julien Hernandez³, and Alain Demourgues^{*1,}

Figure S1: X-ray powder diffraction patterns 10°-40° 2Θ range (counting time 2000s per step: 0.008°) of a) CaMn₃O₆=Ca_{0.66}Mn₂O₄ (monoclinic unit cell, SG: P2₁/a) and b) Ca_{0.66}Mn_{1.6}Al_{0.4}O₄ (orthorhombic unit cell, SG: Pnma) compounds. (hkl) indexations at low 2Θ angles are mentioned.

Figure S2: Rietveld refinement of X-ray powder diffraction patterns (10°-80° 2⊕ range, counting time 2000s per step: 0.008°) of CaMn₃O₆=Ca_{0.66}Mn₂O₄ compound. Calculated (in red), observed (in black), difference (in blue) patterns are represented. Bragg peaks (in green) are noted.

Figure S3: X-ray powder diffraction patterns (10°-40° 2 Θ range, counting time 500s per step: 0.017°) of Ca_{0,66}Mn_{2-x}Al_xO₄ (0<x≤0.47) compounds. For x=0.47, the impurity (Brownmillerite-type phase) is marked with a star.

Figure S4: Comparison of the temperature dependence of H/M susceptibility curve per mole of Mn for $Ca_{0.66}Mn_2O_4$ (in red), $Ca_{0,66}Mn_{1,8}Al_{0,2}O_4$ (in black) and $Ca_{0,66}Mn_{1,6}Al_{0,4}O_4$ (in blue) compounds (recorded with a magnetic field of 10 KOe).

Figure S5: Full Pattern Profile refinement of X-ray powder diffraction patterns (10°-75° 2Θ range, counting time 60 s per step : 0.017°) of the Ca_{0.23}Mn_{0.56}Al_{0.14}O compound (rocksalt-type structure) obtained after reduction under Ar/H₂ 5% of Ca_{0.66}Mn_{1.6}Al_{0.4}O₄ oxide (TGA-Figures 9 and 12)

Figure S6 X-ray powder diffraction patterns (10°-40° 2 Θ range, counting time 500s per step: 0.017°) of a) Ca_{0,6}Mn_{1,8}Al_{0,2}O₄, b) Ca_{0,66}Mn_{1,8}Al_{0,2}O₄ and c) Ca_{0,7}Mn_{1,8}Al_{0,2}O₄ compounds. For the composition Ca_{0,6}Mn_{1,8}Al_{0,2}O₄ the impurity considered as Brownmillerite-type (SG:Imma) phase (Ca₂(Mn,Al)₂O₅) is marked with a star.

Atom	Wyckoff positions	x	У	z	Biso [Å ³]	Occupancy
Cal	4e	0.2476(6)	0.3337(6)	0.5585(7)	1.72(7)	1
Ca2	4e	0.2429(6)	0.3353(6)	0.9361(7)	1.72(7)	1
Mn1	4e	0.0517(5)	0.1150(4)	0.4619(7)	0.37(3)	1
Mn2	4e	0.4225(6)	0.6143(4)	0.8683(8)	0.37(3)	1
Mn3	4e	0.0871(6)	0.5967(4)	0.4737(7)	0.37(3)	1
Mn4	4e	0.4058(6)	0.0938(5)	0.8582(7)	0.37(3)	1
Mn5	4e	0.0708(6)	0.1036(4)	0.7982(8)	0.37(3)	1
Mn6	4e	0.0788(5)	0.5939(5)	0.8022(8)	0.37(3)	1
01	4e	0.301(1)	0.642(1)	0.599(1)	0.61(5)	1
02	4e	0.196(1)	0.161(1)	0.714(2)	0.61(5)	1
03	4e	0.385(2)	0.977(1)	0.677(3)	0.61(5)	1
04	4e	0.104(1)	0.472(1)	0.666(2)	0.61(5)	1
05	4e	0.455(1)	0.1986(1)	0.720(3)	0.61(5)	1
06	4e	0.002(1)	0.691(1)	0.589(2)	0.61(5)	1
07	4e	0.077(2)	0.910(1)	0.486(2)	0.61(5)	1
08	4e	0.426(2)	0.417(1)	0.862(3)	0.61(5)	1
O9	4e	0.266(1)	0.644(1)	0.926(2)	0.61(5)	1
010	4e	0.372(1)	0.991(1)	0.005(3)	0.61(5)	1
011	4e	0.465(2)	0.203(1)	0.072(3)	0.61(5)	1
012	4e	0.071(2)	0.909(1)	0.819(3)	0.61(5)	1
	1	Cell	parameters SG: P21	/a		1
a(Å) b(Å)		c(Å)	V(Å ³)			
	10	0.6879(1) 11.3311(1) 8.4868(1)	868.36(1)	
	CRp :20,2% CRwp:19,3 % RBragg=6,09%					

Table S1 : Atomic positions and unit cell unit parameters determined by Rietveld refinement (λ Cu K α 1, counting time 2000s per step: 0.008°, Figure 4a) of powder X-Ray diffraction data of CaMn₃O₆ oxide. The reliability factors CRp, CRpw and RBragg are mentioned.

Atom	Wyckoff positions	x	Ŷ	Z	Biso [Å ³]	Occupancy
Ca1	4c	0.2452(3)	1/4	0.3335(2)	3.79(8)	0.666
Mn1	4c	0.0705(1)	1/4	0.11139(9)	0.323(1)	0.846(1)
Al1	4c	0.0705(1)	1/4	0.11139(9)	0.323(1)	0.154(1)
Mn2	4c	0.0828(2)	1/4	0.5942(1)	0.323(1)	0.754(1)
Al2	4c	0.0828(2)	1/4	0.5942(1)	0.323(1)	0.246 (1)
01	4c	0.2900(5)	1/4	0.6512(3)	1.01(4)	1
02	4c	0.3829(4)	1/4	0.9800(3)	1.01(4)	1
03	4c	0.4764(5)	1/4	0.1985(3)	1.01(4)	1
04	4c	0.0691(6)	1/4	0.9149(3)	1.01(4)	1
Cell parameters SG: Pnma						
	a(Å) b(Å) c(Å) V(Å ³) 8.9535(2) 2.82391(9) 11.2802(3) 285.21(1)					
CRp :15.7% CRwp:12.6 % RBragg 6.42 %						

Table S2a: Atomic positions and unit cell unit parameters determined by Rietveld refinement (λCu Kα1, counting time 2000s per step: 0.008°, Figure 4a) of powder X-Ray diffraction data of Ca_{0.66}Mn_{1.6}Al_{0.4}O₄ oxide. The reliability factors CRp, CRpw and RBragg are mentioned. Structural hypothesis: Al atoms distribution in two Mn1/Mn2 sites.

Atom	Wyckoff positions	x	У	z	Biso [Å ³]	Occupancy
Cal	4c	0.2446(3)	1/4	0.3329(1)	2.68(5)	0.666
Mn1	4c	0.0694(1)	1/4	0.11153(6)	0.34(1)	0.944(1)
Mn2	4c	0.0831(1)	1/4	0.59460(6)	0.34(1)	0.856(1)
Al2	4c	0.0831(1)	1/4	0.59460(6)	0.34(1)	0.144(1)
Al1	4c	0.0694(1)	1/4	0.11153(6)	0.34(1)	0.056(1)
01	4c	0.2920(3)	1/4	0.6511(2)	0.36(2)	1
02	4c	0.3832(2)	1/4	0.9796(2)	0.36(2)	1
03	4c	0.4745(3)	1/4	0.1978(2)	0.36(2)	1
04	4c	0.0710(4)	1/4	0.9148(2)	0.36(2)	1
Cell parameters SG: Pnma						
		a(Å) 8.9660(2)	b(Å) 2.82493(4)	c(Å) 11.2881(2)	V(Å ³) 285.908(9)
CRp :15.7% CRwp:12.9% RBragg 8.66%						

Table S2b: Atomic positions and unit cell parameters determined by Rietveld refinement (λ Cu K α 1, counting time 2000s per step: 0.008°, Figure 4b) of powder X-Ray diffraction data of Ca_{0.66}Mn_{1.8}Al_{0.2}O₄ oxide .The reliability factors CRp, CRpw and RBragg are mentioned. Structural hypothesis: Al atoms distribution in two Mn1/Mn2 sites.

Aton	Atoms		
Mn2 Al2	03	1.912(3)	
Mn2 Al2	03	1.912(3)	
Mn2 Al2	02	1.935(3)	
Mn2 Al2	02	1.935(3)	
Mn2 Al2	01	1.964(5)	
Mn2 Al2	02	1.976(4)	
<mn2< td=""><td>-0></td><td>1.939(3)</td></mn2<>	-0>	1.939(3)	
<∆> = Mn2-O-•	<mn2 -0=""> /6</mn2>	0.028(3)	
Brown bond	d valence	3.70	
Aton	ns	Distance (Å)	
Aton Mn1 Al1	ns O4	Distance (Å) 1.909(4)	
Aton Mn1 Al1 Mn1 Al1	04 04	Distance (Å) 1.909(4) 1.909(4)	
Aton Mn1 Al1 Mn1 Al1 Mn1 Al1	ns 04 04 04 01 01	Distance (Å) 1.909(4) 1.909(4) 1.937(3)	
Aton Mn1 Al1 Mn1 Al1 Mn1 Al1 Mn1 Al1	ns 04 04 01 01 01	Distance (Å) 1.909(4) 1.909(4) 1.937(3) 1.937(3)	
Aton Mn1 Al1 Mn1 Al1 Mn1 Al1 Mn1 Al1 Mn1 Al1	ns 04 04 01 01 01 04 04	Distance (Å) 1.909(4) 1.909(4) 1.937(3) 1.937(3) 2.215(3)	
Aton Mn1 Al1 Mn1 Al1 Mn1 Al1 Mn1 Al1 Mn1 Al1 Mn1 Al1	ns 04 04 01 01 01 04 03 03	Distance (Å) 1.909(4) 1.909(4) 1.937(3) 1.937(3) 2.215(3) 2.303(4)	
Aton Mn1 Al1 Mn1 Al1 Mn1 Al1 Mn1 Al1 Mn1 Al1 Mn1 Al1	ns 04 04 01 01 01 04 03 03 -0>	Distance (Å) 1.909(4) 1.909(4) 1.937(3) 1.937(3) 2.215(3) 2.303(4) 2.035(3)	
Aton Mn1 Al1 Mn1 Al1 Mn1 Al1 Mn1 Al1 Mn1 Al1 Mn1 Al1 <td>ns 04 04 01 01 04 03 −O> </td> <td>Distance (Å) 1.909(4) 1.909(4) 1.937(3) 1.937(3) 2.215(3) 2.303(4) 2.035(3) 0.153(3)</td>	ns 04 04 01 01 04 03 −O> 	Distance (Å) 1.909(4) 1.909(4) 1.937(3) 1.937(3) 2.215(3) 2.303(4) 2.035(3) 0.153(3)	

		D
Atoms		Distance (A)
Ca1	04	2.365(5)
Ca1	O4	2.365(5)
Ca1	03	2.434(5)
Ca1	02	2.458(4)
Ca1	02	2.458(4)
Ca1	01	2.515(4)
Ca1	01	2.515(4)
Ca1	03	2.569(5)
<(Ca1-O>	2.460
<∆> = Ca1-O- <ca1 -o=""> /8</ca1>		0.054
Brown k	oond valence	2.36

Table S3a: Bond distances and valence determined from Table S1 (Rietveld refinement of powder X-Ray diffraction data of Ca_{0.66}Mn_{1.6}Al_{0.4}O₄, (λCu Kα1, counting time 2000s per step: 0.008°, Figure 4a) oxide. The average <Mn-O> and <Ca-O> bonds distances as well as the average of the difference between main distance and average distance are mentioned. Structural hypothesis: Al atoms distribution in two Mn1/Mn2 sites.

Aton	ns	Distance (Å)
Mn2 Al2	03	1.903(2)
Mn2 Al2	03	1.903(2)
Mn2 Al2	02	1.941(1)
Mn2 Al2	02	1.941(1)
Mn2 Al2	01	1.977(2)
Mn2 Al2	02	1.979(2)
<mn2-< th=""><th>-0></th><th>1.940(2)</th></mn2-<>	-0>	1.940(2)
<∆> = Mn2-0-«	<mn2 -o=""> /6</mn2>	0.025(2)
Brown bond	l valence	3.69
		•
Aton	าร	Distance (Å)
Aton Mn1 Al1	O4	Distance (Å) 1.915(2)
Aton Mn1 Al1 Mn1 Al1	04 04	Distance (Å) 1.915(2) 1.915(2)
Aton Mn1 Al1 Mn1 Al1 Mn1 Al1	04 04 01	Distance (Å) 1.915(2) 1.915(2) 1.932(1)
Aton Mn1 Al1 Mn1 Al1 Mn1 Al1 Mn1 Al1	04 04 01 01	Distance (Å) 1.915(2) 1.915(2) 1.932(1) 1.932(1)
Aton Mn1 Al1 Mn1 Al1 Mn1 Al1 Mn1 Al1 Mn1 Al1	ns 04 04 01 01 01 04 04	Distance (Å) 1.915(2) 1.915(2) 1.932(1) 1.932(1) 2.220(2)
Aton Mn1 Al1 Mn1 Al1 Mn1 Al1 Mn1 Al1 Mn1 Al1 Mn1 Al1	ns 04 04 01 01 01 04 03 03	Distance (Å) 1.915(2) 1.915(2) 1.932(1) 1.932(1) 2.220(2) 2.313(3)
Aton Mn1 Al1 Mn1 Al1 Mn1 Al1 Mn1 Al1 Mn1 Al1 Mn1 Al1 Mn1 Al1	ns 04 04 01 01 01 03 03 00>	Distance (Å) 1.915(2) 1.915(2) 1.932(1) 1.932(1) 2.220(2) 2.313(3) 2.038(2)
Atom Mn1 Al1 Mn1 Al1	ns 04 04 01 01 01 04 03 ○>	Distance (Å) 1.915(2) 1.915(2) 1.932(1) 1.932(1) 2.220(2) 2.313(3) 2.038(2) 0.152(2)

Atoms		Distance (Å)
Ca1	04	2.361(3)
Ca1	04	2.361(3)
Ca1	03	2.447(3)
Ca1	02	2.459(2)
Ca1	02	2.459(2)
Ca1	01	2.513(2)
Ca1	01	2.513(2)
Ca1	03	2.563(3)
-6-1.0	2.460	
<(01-0)	2.460	
<∆> = Ca1-O- <ca1 -o=""> /8</ca1>		0.052
Brown bond v	2.14	

Table S3b: Bond distances and valence determined from Table S2a (Rietveld refinement of powder X-Ray diffraction data of $Ca_{0.66}Mn_{1.8}Al_{0.2}O_4$ (λ Cu K α 1, counting time 2000s per step: 0.008°, Figure 4b) oxide. The average <Mn-O> and <Ca-O> bonds distances as well as the average of the difference between main distance and average distance are mentioned. Structural hypothesis: Al atoms distribution in two Mn1/Mn2 sites.