Supporting Information

Halide coordinated homoleptic $[Fe_4S_4X_4]^{2-}$ and heteroleptic $[Fe_4S_4X_2Y_2]^{2-}$ clusters (X, Y = Cl, Br, I) – Alternative preparations, structural analogies and spectroscopic properties in solution and solid state

Andreas O. Schüren,^{a,b} Verena K. Gramm,^a Maximilian Dürr,^c Ana Foí,^b Ivana Ivanović-Burmazović,^c Fabio Doctorovich,^b Uwe Ruschewitz,^a and Axel Klein^{*a}

Supplementary Figures

(Figures S1 - S29)

Figure S1.	Negative ESI MS of $(Et_4N)_2[Fe_4S_4Cl_4]$ obtained from reaction with $[CoCl_4]^{2-}$ in MeCN.

- Figure S2. Negative ESI MS of $(BTMA)_2[Fe_4S_4I_4]$ in THF.
- Figure S3. Negative ESI MS of $(BTMA_2[Fe_4S_4Cl_2l_2]$ in THF; conversion with I_2 and chloride.
- Figure S4 Negative ESI MS of (BTMA₂[Fe₄S₄Cll₃] in THF; conversion with iodine monochloride and iodide. Figure S5. Negative ESI MS of (BTMA₂[Fe₄S₄Brl₃] in THF; conversion with iodine monobromide and iodide.
- Figure S6. Neg. UHR ESI MS of $(BTMA)_2[Fe_4S_4Br_4]$ in acetone (above, measured spectra; below, simulated molecular peaks; detailed view of $[Fe_4S_4Br_4]^{2-}$ with its simulation is given on the right side).
- Figure S7. Negative UHR ESI MS of $(BTMA)_2[Fe_4S_4Br_4]$ in acetone and simulated patterns of molecular ions of fragmentation and oxidation products as well as adducts $([Fe_4S_4Br_3]^-, [Fe_4S_4Br_3O_2]^-, [Fe_4S_4Br_4], [Fe_4S_4Br_3Li]^-, [Fe_4S_4Br_3N_3]^-)$.
- Figure S8. Negative UHR ESI MS of $(BTMA)_2[Fe_4S_4Br_4]$ in acetone (red: measurement after dissolving; green: measurement after one day).
- Figure S9. Negative UHR ESI MS of (BTMA)₂[Fe₄S₄Br₂Cl₂] in acetone and simulated patterns of molecular ions.
- Figure S10. Negative UHR ESI MS of $(BTMA)_2[Fe_4S_4Br_2Cl_2]$ in acetone and simulated patterns of molecular ions; $[Fe_4S_4Br_{3-n}Cl_n]^-$ and $[Fe_4S_4Br_{3-n}Cl_nO_2]^-$ fragmentation series.
- Figure S11. Negative UHR ESI MS of $(BTMA)_2[Fe_4S_4Br_2Cl_2]$ in acetone (red: measurement after dissolving; green: measurement after 24 h).
- Figure S12. Negative UHR ESI MS of $(BTMA)_2[Fe_4S_4Br_2I_2]$ in acetone and simulated patterns of molecular ions.
- Figure S13.Negative UHR ESI MS of $(BTMA)_2[Fe_4S_4Br_2I_2]$ in acetone and simulated patterns of molecular
ions; $[Fe_4S_4Br_{3-n}I_n]^-$ and $[Fe_4S_4Br_{3-n}I_nO_2]^-$ fragmentation series.
- Figure S14. Negative UHR ESI MS of $(BTMA)_2[Fe_4S_4Br_2I_2]$ in acetone (red: measurement after dissolving; green: measurement after 24 h).
- Figure S15. Negative UHR ESI MS of $(BTMA)_2[Fe_4S_4Cl_2I_2]$ in acetone (above, measured spectra; below, simulated molecular peaks; detailed view of $[Fe_4S_4Cl_2I_2]^{2-}$ with its simulation is given on the right side).
- Figure S16. Decay ion series of $(BTMA)_2[Fe_4S_4Cl_2l_2]$ in acetone (above, measured spectra; below, simulated molecular peaks).
- Figure S17. Negative UHR ESI MS of $(BTMA)_2[Fe_4S_4Cl_2l_2]$ in acetone (red: measurement after dissolving; green: measurement after 24 h).
- Figure S18. UV-vis-NIR spectra of $(BTMA)_2[Fe_4S_4I_4]$ in acetonitrile.
- Figure S19. UV-vis-NIR spectra of $(BTMA)_2[Fe_4S_4Cl_4]$ in acetonitrile.
- Figure S20. UV-vis-NIR spectra of $(BTMA)_2[Fe_4S_4Br_4]$ in acetonitrile.
- Figure S21. UV-vis-NIR spectra of $(BTMA)_2[Fe_4S_4Br_2Cl_2]$ in acetonitrile.
- Figure S22. UV-vis-NIR spectra of $(BTMA)_2[Fe_4S_4Cl_2l_2]$ in acetonitrile.

Figure S23.	UV-vis-NIR spectra of $(BTMA)_2[Fe_4S_4Br_2I_2]$ in acetonitrile.
Figure S24.	Synchrotron XRPD of (BTMA) ₂ [Fe ₄ S ₄ I ₄] at ambient temperature (above: experimental data,
	with λ = 0.207203 Å; below calculated pattern ¹).
Figure S25.	Synchrotron XRPD of (BTMA) ₂ [Fe ₄ S ₄ Br ₄] at ambient temperature (above: experimental data,
	with λ = 0.207203 Å; below calculated pattern ²).
Figure S26.	Synchrotron XRPD of $(Ph_4P)_2[Fe_4S_4Br_4]$ at ambient temperature (above: experimental data,
	with λ = 0.551155 Å; below calculated pattern).
Figure S27.	XRPD of $(BTMA)_2[Fe_4S_4Br_2Cl_2]$; experiment with λ = 0.207203 Å synchrotron radiation
	(DESY, beam line P02.1, storage ring Petra III); calculated pattern based single crystal
	structure data. ¹
Figure S28.	XRPD von (BTMA) ₂ [Fe ₄ S ₄ Br ₂ I ₂]; experiment with λ = 0.207203 Å synchrotron radiation
	(DESY, beam line P02.1, storage ring Petra III); calculated pattern based single crystal
	structure data. ¹
Figure S29.	XRPD of $(BTMA)_2[Fe_4S_4Cl_2l_2]$; experiment with λ = 0.207203 Å synchrotron radiation
	(DESY, beam line P02.1, storage ring Petra III); calculated pattern based single crystal
	structure data. ¹

ESI mass spectrometry

Figure S1: Negative ESI MS of $(Et_4N)_2[Fe_4S_4Cl_4]$ obtained from reaction with $[CoCl_4]^{2-}$ in MeCN.

Figure S2: Negative ESI MS of (BTMA)₂[Fe₄S₄I₄] in THF.

Figure S3: Negative ESI MS of $(BTMA_2[Fe_4S_4Cl_2I_2]$ in THF; conversion with iodine and chloride.

Figure S4: Negative ESI MS of (BTMA₂[Fe₄S₄ClI₃] in THF; conversion with iodine monochloride and iodide.

Figure S5: Negative ESI MS of (BTMA₂[Fe₄S₄BrI₃] in THF; conversion with iodine monobromide and iodide.

Figure S6: Negative UHR ESI MS of $(BTMA)_2[Fe_4S_4Br_4]$ in acetone (above, measured spectra; below, simulated molecular peaks; detailed view of $[Fe_4S_4Br_4]^{2-}$ with its simulation is given on the right side).

Figure S7: Negative UHR ESI MS of $(BTMA)_2[Fe_4S_4Br_4]$ in acetone and simulated patterns of molecular ions of fragmentation and oxidation products as well as adducts ($[Fe_4S_4Br_3]^-$, $[Fe_4S_4Br_3O_2]^-$, $[Fe_4S_4Br_4]^-$, $[Fe_4S_4Br_3Li]^-$, $[Fe_4S_4Br_3Na]^-$).

Figure S8: Negative UHR ESI MS of $(BTMA)_2[Fe_4S_4Br_4]$ in acetone (above: measurement after dissolving; below: measurement after 24 h).

Figure S9: Negative UHR ESI MS of $(BTMA)_2[Fe_4S_4Br_2Cl_2]$ in acetone and simulated patterns of molecular ions.

Figure S11: Negative UHR ESI MS of $(BTMA)_2[Fe_4S_4Br_2Cl_2]$ in acetone (top: measurement after dissolving; bottom: measurement after 24 h).

Figure S13: Negative UHR ESI MS of $(BTMA)_2[Fe_4S_4Br_2I_2]$ in acetone and simulated patterns of molecular ions; $[Fe_4S_4Br_{3-n}I_n]^-$ and $[Fe_4S_4Br_{3-n}I_nO_2]^-$ fragmentation series.

Figure S14: Negative UHR ESI MS of $(BTMA)_2[Fe_4S_4Br_2I_2]$ in acetone (red: measurement after dissolving; green: measurement after 24 h).

Figure S15: Neg. UHR ESI MS of $(BTMA)_2[Fe_4S_4Cl_2I_2]$ in acetone (above, measured spectra; below, simulated molecular peaks; detailed view of $[Fe_4S_4Cl_2I_2]^{2-}$ with its simulation is given on the right side).

Figure S16: Decay ion series of $(BTMA)_2[Fe_4S_4Cl_2l_2]$ in acetone (above, measured spectra; below, simulated molecular peaks).

Figure S17: Neg. UHR ESI MS of (BTMA)₂[Fe₄S₄Cl₂l₂] in acetone (red: measurement after dissolving; green: measurement after 24 h).

UV-vis-NIR absorption spectroscopy

Figure S18: UV-vis-NIR spectra of (BTMA)₂[Fe₄S₄I₄] in acetonitrile.

Figure S19: UV-vis-NIR absorption for reaction control during synthesis of (BTMA)₂[Fe₄S₄Cl₄] in acetonitrile.

Figure S20: UV-vis-NIR spectra of $(BTMA)_2[Fe_4S_4Br_4]$ in acetonitrile.

Figure S21: UV-vis-NIR spectra of (BTMA)₂[Fe₄S₄Br₂Cl₂] in acetonitrile.

Figure S22: UV-vis-NIR spectra of (BTMA)₂[Fe₄S₄Cl₂l₂] in acetonitrile.

Figure S23: UV-vis-NIR spectra of (BTMA)₂[Fe₄S₄Br₂I₂] in acetonitrile.

Synchrotron X-ray powder diffraction

Figure S24: Synchrotron XRPD of $(BTMA)_2[Fe_4S_4I_4]$ at ambient temperature (above: experimental data, with $\lambda = 0.207203$ Å; below calculated pattern¹).

Figure S25: Synchrotron XRPD of $(BTMA)_2[Fe_4S_4Br_4]$ at ambient temperature (above: experimental data, with $\lambda = 0.207203$ Å; below calculated pattern²).

Figure S26: Synchrotron XRPD of $(Ph_4P)_2[Fe_4S_4Br_4]$ at ambient temperature (above: experimental data, with $\lambda = 0.551155$ Å; below calculated pattern³).

Figure S27: XRPD of $(BTMA)_2[Fe_4S_4Br_2Cl_2]$; experiment with $\lambda = 0.207203$ Å synchrotron radiation (DESY, beam line P02.1, storage ring Petra III); calculated pattern based single crystal structure data.¹

Figure S28: XRPD von $(BTMA)_2[Fe_4S_4Br_2I_2]$; experiment with $\lambda = 0.207203$ Å synchrotron radiation (DESY, beam line P02.1, storage ring Petra III); calculated pattern based single crystal structure data.¹

Figure S29: XRPD of $(BTMA)_2[Fe_4S_4Cl_2l_2]$; experiment with λ = 0.207203 Å synchrotron radiation (DESY, beam line P02.1, storage ring Petra III); calculated pattern based single crystal structure data.¹

Literature

- 1. W. Saak and S. Pohl, Z. Naturforsch., 1985, **40b**, 1105-1112.
- 2. A. O. Schüren, L. Carrella, E. Rothe, B. M. Ridgway, V. K. Gramm, F. Doctorovich, E. Rentschler, V. Schünemann, and A. Klein, *manuscript in preparation*, 2016.
- 3. A. Müller, N. H. Schladerbeck, E. Krickemeyer, H. Bögge, K. Schmitz, E. Bill, and A. X. Trautwein, *Z. Anorg. Allg. Chem.*, 1989, **570**, 7-36.