Supporting Information:

Well-Defined Palladium-(II) Complexes for Ligand-Enabled C(sp³)-Alkynylation

Vinod G. Landge,^{a,b} Garima Jaiswal,^{a,b} Manoj K. Sahoo,^{a,b} Siba P. Midya,^{a,b} and Ekambaram

Balaraman* a,b

^a Catalysis Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road,

411008-Pune, India. ^bAcademy of Scientific and Innovative Research (AcSIR), New Delhi-

110025, India.

Contents

1. General Information	S2
2. Experimental Section	S2
2.1 Synthesis of the Starting Materials	S2
2.2 Synthesis of the Palladium Complexes	S2
3. Optimization of Reaction Conditions	S4-S8
4. Characterization Data	S8-S16
5. Mechanistic Investigation	S17-S18
6. References	S19
7. Spectra	S20-S58

1. General Information

All catalytic experiments were carried out using standard Schlenk techniques. All solvents were reagent grade or better. Deuterated solvents were used as received. Toluene was refluxed over sodium/benzophenone ketyl and distilled under argon atmosphere and stored over sodium. Metal complexes and other chemicals used in catalysis reactions were used without additional purification. Thin layer chromatography (TLC) was performed on Merck 1.05554 aluminum sheets precoated with silica gel 60 F254 and the spots visualized with UV light at 254 nm or under iodine. Column chromatography was performed with SiO₂ (Silicycle Siliaflash F60 (230-400 mesh). ¹H NMR and ¹³C NMR spectra were recorded on a Bruker AMX-400 and AMX-500 NMR spectrometers in CDCl₃ with tetramethylsilane or CHCl₃ as an internal standard. The peaks were internally referenced to TMS (0.00 ppm) or residual undeuterated solvent signal (77.16 ppm for ¹³C NMR). Abbreviations used in the NMR follow-up experiments: br, broad; s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. GC analysis was carried out using a HP-5 column (30 m, 0.25 mm, 0.25µ). Mass spectra were obtained on a GCMS-QP 5000 instruments with ionization voltages of 70 eV. High resolution mass spectra (HRMS) were obtained on a JEOL JMS-DX303.

2. Experimental Section

2.1 Synthesis of the Starting Materials

All substituted 8-methylquinolines (1) were prepared by the known procedure [S1-S2] (Bromoethynyl)triisopropylsilane (2, CAS 111409-79-1) was prepared by previously reported AgNO₃-catalyzed bromination of (triisopropylsilyl)acetylene with *N*-bromosuccinimide.[S3]

2.2 Synthesis of the Palladium Complexes

a) (Phen)Pd(OAc)₂ C1 was prepared based on literature method as described below.[S4] Palladium acetate (56 mg, 0.25 mmol) and 1,10-phenanthroline (Phen) (45 mg, 0.25 mmol) were dissolved in 3.0 mL and 1.0 mL of acetone with stirring, respectively. Then the palladium acetate solution was added dropwise to the 1,10-phenanthroline solution with stirring, forming a yellow precipitate, and the mixture was kept stirring for 2 h at room temperature. The precipitate was separated by centrifugation, dried at 60 °C under vacuum for 8 h to yield (Phen)Pd(OAc)₂ C1 as a yellow solid, 98 mg, 97% yield.

b) (neocuproine) $Pd(OAc)_2$ C2 was prepared according to a literature procedure as described below.[S5]

To a 100-ml round-bottom flask with stir bar was added neocuproine (0.600 g, 2.88 mmol), palladium(II) acetate (0.588 g, 2.62 mmol), and acetone (55 mL), and the reaction mixture was stirred overnight. The yellow precipitate was isolated by vacuum filtration, rinsed with acetone, and dried under vacuum to afford 0.87 g of (neocuproine)Pd(OAc)₂ C2 (77% yield).

c) (BPhen)Pd(OAc)₂ C3 was prepared according to a literature procedure. [S4]

Yield: 88 % (yellow solid)

d) (bc)Pd(OAc)₂ C4 was prepared based on literature method as described below.[S6]

A solution of palladium(II)acetate (449 mg, 2 mmol) in 10 mL of freshly distilled dichloromethane is stirred under argon and bathocuproine (722 mg, 2 mmol) is added in one portion. The resulting solution is stirred under argon at room temperature for 3 hours before the solvent is reduced to a volume of approximately 2 mL. Absolute diethyl ether is added until precipitation occurs and the solution is allowed to stand for 2 hours. The precipitated material is filtered and dried under vacuum to give (bc)Pd(OAc)₂ C4 as a light yellow solid (1.123 g, 1.92 mmol, 96 %yield).

d) di(μ -aceto)bis[8-methylenylquinoline]dipalladium(II) **4** was synthesized according to a literature procedure.[S7]

3. Optimization of Reaction Conditions Table S1. Screening of ligand

Entry	Ligand	Yield (%) ^{a,b}
1	PPh ₃	NR
2	Xanthphos	NR
3	dppp	NR
4	dppb	NR
5	PCy ₃ .HBF ₄	NR
6	Picolinic acid	NR
7	4,4 dimethoxy 2-2, bipyridine	5%
8	2,6-pyridinedimethanol	trace
9	Isoleucine	4%
10	BINAP	NR
11	2-Amino-4-methoxyphenol	NR

^{*a*}Reaction conditions: **1a** (0.1 mmol), (triisopropylsilyl)ethynyl bromide **2** (0.15 mmol), Pd(OAc)₂ (10 mol%), ligand (20 mol%), Cu(OAc)₂ (2 equiv), toluene (1 mL), 80 °C, 5 h. ^{*b*}Analyzed by ¹H NMR analysis using dibromomethane as the internal standard.

Table S2. Screening of Palladium Salts

Entry	[Pd]	Yield (%) ^{a,b}
1	PdCl ₂	NR
2	Pd(ferrocene)(OAc) ₂	trace
3	Pd(CH ₃ CN) ₂ (Cl) ₂	41%
4	$Pd(PPh_3)_2(Cl)_2$	NR

5	Pd(PhCN) ₂ (Cl) ₂	39%
6	$Pd_2(dba)_3$	NR
7	$Pd(acac)_2$	30%
8	Pd(TFA) ₂	NR
9	[1,2-	NR
	Bis(diphenylphosphino)ethane]	
	dichloropalladium(II)	
10	$Pd_2(dba)_3$	NR

^{*a*}Reaction conditions: **1a** (0.1 mmol), (triisopropylsilyl)ethynyl bromide **2** (0.15 mmol), [Pd] (10 mol%), neocuproine (20 mol%), Cu(OAc)₂ (2 equiv), toluene (1 mL), 80 °C, 5 h. ^{*b*}The yield was determined by ¹H NMR analysis of the crude product using dibromomethane as the internal standard.

Table S3. Effect of Oxidants

Entry	Oxidant	Equiv. of oxidant	Yield of 3a (%) ^{a,b}
		(x)	
1	$K_2S_2O_8$	2	10%
2	PhI(OAc) ₂	2	6%
3	NFSI	2	15%
4	Cu(OAc) ₂	1	31%
5	ТВНР	1	NR
6	Cu ₂ O	1	10%
7	Cu(acac) ₂	2	8%
8	Ag ₂ CO ₃	1	12%
9	Ag ₂ O	1	10%
10	AgOAc	2	5%
11	Cu(OAc) ₂	2	42%
12	Cu(OAc) ₂	3	23%
13	Cu(OAc) ₂	0.5	7%
14			NR
15	O ₂	1 atm	NR
16	Oxone	1	trace

17	NaNO ₃	2	NR
18	Cu(OTf) ₂	1	8%
19	<i>p</i> -Benzoquinone	1	trace
20	V ₂ O ₅	2	trace
21	AgNO ₃	1	NR

^{*a*}Reaction conditions: **1a** (0.1 mmol), (triisopropylsilyl)ethynyl bromide **2** (0.15 mmol), Pd(OAc)₂ (10 mol%), neocuproine (20 mol%), oxidant (x equiv), toluene (1 mL), 80 °C, 5 h. ^{*b*}The yield was determined by ¹H NMR analysis of the crude product using dibromomethane as the internal standard.

Table S4. Effect of Solvent

Entry	Solvent	Yield of 3a (%) ^{a,b}
1	Toluene	42%
2	DCE	8%
3	DMSO	NR
4	DMF	NR
5	THF	12%
6	1,4-Dioxane	10%
7	Toluene + DMSO (1:1)	NR
8	<i>m</i> -Xylene	37%
9	Acetic acid	trace
10	C ₆ F ₆	trace
11	<i>t</i> -Amyl alcohol	NR
12	CH ₃ CN	28%
13	МеОН	12%

^{*a*}Reaction conditions: **1a** (0.1 mmol), (triisopropylsilyl)ethynyl bromide **2** (0.15 mmol), Pd(OAc)₂ (10 mol%), neocuproine (20 mol%), Cu(OAc)₂ (2 equiv), solvent (1 mL), 80 °C, 5 h. ^{*b*}The yield was determined by ¹H NMR analysis of the crude product using dibromomethane as the internal standard.

Reaction conditions: **1a** (0.1 mmol), **2** (0.15 mmol), complex **C2** (10 mol%), Cu(OAc)₂ (2 equiv) and toluene (1 mL) in a 10 mL screw-capped viol were heated and the yield was determined by ¹H NMR analysis of the crude product using dibromomethane as the internal standard. Figure 1a (left): reaction time 5 hr; Figure 1b (right): reaction at 80 °C

Figure 1b. Effect of mol% of catalyst (C2)^{a,b}

^{*a*}Reaction conditions: **1a** (0.1 mmol), **2** (0.15 mmol), complex **C2** (x mol%), Cu(OAc)₂ (2 equiv) and toluene (1 mL) in a 10 mL screw-capped viol were heated at 80 °C for 5 hr. ^{*b*}The yield was determined by ¹H NMR analysis of the crude product using dibromomethane as the internal standard.

4. Characterization Data

(1,10-phenanthroline)-palladium(II) acetate (C1)

Yield = 97%. Yellow Solid. ¹H NMR (CDCl₃, 500 MHz) δ 2.21 (s, 6H), 7.78-7.81 (q, *J* = 5.4 Hz, 2H), 7.96 (s, 2H), 8.51-8.52 (d, *J* = 4.2 Hz, 2H), 8.61-8.62 (d, *J* = 8.2 Hz, 1H). ¹³C NMR (CDCl₃, 500 MHz) δ 23.36, 125.19, 127.19, 129.65, 138.80, 146.34, 150.52, 178.63.

(2,9-Dimethyl-1,10-phenanthroline)-palladium(II) acetate (C2)

Yield = 94%. Yellow Solid. ¹H NMR (CDCl₃, 500 MHz) δ 2.05 (s, 6H), 2.87 (s, 6H), 7.39-7.41 (q, *J* = 8.5 Hz, 2H), 7.85 (s, 2H), 8.37-8.38 (d, *J* = 8.2 Hz, 2H). ¹³C NMR (CDCl₃, 500 MHz) δ 22.88, 24.44, 126.29, 127.82, 138.42, 147.15, 165.14, 178.53.

(2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline)-palladium(II) acetate (C3)

Yield = 96%. Yellow Solid. ¹H NMR (CDCl₃, 500 MHz) δ 2.03 (s, 6H), 2.99 (s, 6H), 7.43 (s, 2H), 7.46-7.48 (m,4H), 7.55-7.57 (m, 6H), 7.80 (s, 2H). ¹³C NMR (CDCl₃, 500 MHz) δ 22.90, 24.70, 124.33, 126.49, 126.81, 129.05, 129.23, 129.71, 135.37, 148.23, 150.86, 164.68, 178.45.

(4,7-diphenyl-1,10-phenanthroline)-palladium(II) acetate (C4)

Yield = 96%. Yellow Solid. ¹H NMR (CDCl₃, 500 MHz) δ 2.21 (s, 6H), 7.51-7.52 (m, 4H), 7.59-7.60 (m, 6H), 7.74-7.76 (d, *J* = 5.4 Hz, 2H), 7.99 (s, 2H), 8.67-8.69 (d, *J* = 5.19 Hz, 2H). ¹³C NMR (CDCl₃, 500 MHz) δ 23.40, 125.25, 125.37, 128.10, 129.24, 129.39, 130.09, 135.05, 147.32, 149.97, 151.76, 178.59.

8-(3-(triisopropylsilyl)prop-2-ynyl)quinoline (3a)

Isolated yield: 9.4 mg (66%). ¹H NMR (CDCl₃, 200 MHz) δ 1.13 (s, 21H), 4.40 (s, 2H), 7.39-7.45 (dd, J = 8.2 Hz, 1H), 7.52-7.60 (t, J = 7.0 Hz, 1H), 7.71-7.76 (d, J = 7.7 Hz, 1H), 8.06-8.11 (dd, J = 7.0 Hz, 1H), 8.14-8.19 (dd, J = 8.3 Hz, 1H), 8.90-8.94 (dd, J = 4.1 Hz, 1H). ¹³C NMR (CDCl₃, 500 MHz) δ 11.38, 18.69, 22.17, 83.56, 106.23, 121.04, 126.42, 126.54, 127.89, 128.18, 135.39, 136.20, 143.03, 149.30. HRMS Calcd for C₂₁H₃₀NSi [M+H]⁺: 324.2148; Found: 324.2142.

5-methoxy-8-(3-(triisopropylsilyl)prop-2-ynyl)quinoline (**3b**)

Isolated yield: 13.8 mg (80%). ¹H NMR (CDCl₃, 500 MHz) δ 1.13 (s, 21H), 4.01 (s, 3H), 4.29 (s, 2H), 6.87-6.89 (d, *J* = 7.9 Hz, 1H), 7.38-7.41 (dd, *J* = 8.5 Hz, 1H), 7.95-7.96 (d, *J* = 7.9 Hz, 1H), 8.57-8.59 (dd, *J* = 8.5 Hz, 1H), 8.90-8.91 (d, *J* = 4.2 Hz, 1H). ¹³C NMR (CDCl₃, 500 MHz) δ 11.39, 18.71, 21.69, 55.66, 83.16, 103.91, 106.74, 120.10, 120.60, 126.88, 127.84, 103.81, 146.46, 149.58, 154.03. HRMS Calcd for C₂₂H₃₂NOSi [M+H]⁺: 354.2253; Found: 354.2248

N,*N*-dimethyl-8-(3-(triisopropylsilyl)prop-2-ynyl)quinolin-5-amine (**3c**)

Isolated yield: 15.43 mg (83%). ¹H NMR (CDCl₃, 500 MHz) δ 1.13 (s, 21H), 2.89 (s,6H), 4.31 (s, 2H), 7.13-7.14 (d, *J* = 7.6 Hz, 1H), 7.27 (s, 1H), 7.40-7.41 (d, *J* = 4.5 Hz, 1H), 7.96-7.97 (d, *J* = 7.6 Hz, 1H), 8.56-8.57 (d, *J* = 8.2 Hz, 2H), 8.88 (s, 1H). ¹³C NMR (CDCl₃, 500 MHz) δ 11.40, 18.71, 21.94, 45.38, 83.25, 106.66, 114.21, 119.94, 123.72, 127.88, 129.44, 132.81, 146.99, 148.91, 149.80. HRMS Calcd for C₂₃H₃₅N₂Si [M+H]⁺: 367.2570; Found: 367.2564

5-methyl-8-(3-(triisopropylsilyl)prop-2-ynyl)quinoline (3d)

Isolated yield: 11.2 mg (71%). ¹H NMR (CDCl₃, 500 MHz) δ 1.13 (s, 21H), 2.68 (s, 3H), 4.36 (s, 2H), 7.39-7.40 (d, *J* = 7.3 Hz, 1H), 7.44-7.46 (dd, *J* = 4.2 Hz, 1H), 7.95-7.96 (d, *J* = 7.0 Hz, 1H), 8.32-8.34 (dd, *J* = 8.5 Hz, 1H), 8.92-8.92 (d, *J* = 4.2 Hz, 1H). ¹³C NMR (CDCl₃, 500 MHz) δ 11.38, 18.69, 18.52, 18.69, 83.31, 106.55, 120.60, 126.84, 127.37, 127.83, 132.62, 133.06, 133.28, 146.25, 148.77. HRMS Calcd for C₂₂H₃₂NSi [M+H]⁺: 338.2304; Found: 338.2299.

Isolated yield: 18.6 mg (76%). ¹H NMR (CDCl₃, 500 MHz) δ 1.15 (s, 21H), 4.41 (s, 2H), 7.18-7.21 (d, *J* = 16.1 Hz, 1H), 7.31-7.34 (t, *J* = 7.3 Hz, 1H), 7.41-7.44 (t, *J* = 7.6 Hz, 2H), 7.46-7.48 (q, *J* = 3.9 Hz, 1H), 7.60-7.62 (d, *J* = 7.6 Hz, 2H), 7.78-7.81 (d, *J* = 16.1 Hz, 1H), 7.84-7.85 (d, *J* = 7.6 Hz, 1H), 8.10-8.11 (d, *J* = 7.6 Hz, 1H), 8.56-8.58 (dd, *J* = 8.5 Hz, 1H), 8.94-8.95 (dd, *J* = 3.9 Hz, 1H). ¹³C NMR (CDCl₃, 500 MHz) δ 11.37, 18.71, 22.14, 83.64, 106.20, 120.85, 123.68, 124.21, 126.15, 126.67, 127.99, 128.03, 128.79, 132.28, 132.29, 133.95, 135.03, 127.27, 146.10, 129.11. HRMS Calcd for C₂₉H₃₆NSi [M+H]⁺: 426.2617; Found: 426.2612.

5-fluoro-8-(3-(triisopropylsilyl)prop-2-ynyl)quinoline (3f)

Isolated yield: 9.5 mg (59%). ¹H NMR (CDCl₃, 500 MHz) δ 1.13 (s, 21H), 4.32 (s, 2H), 7.21-7.24 (t, *J* = 8.2 Hz, 1H), 7.46-7.49 (q, *J* = 3.9 Hz, 1H), 7.97-8.00 (t, *J* = 6.7 Hz, 1H), 8.42-8.44 (dd, *J* = 8.2 Hz, 1H), 8.94-8.96 (dd, *J* = 4.2 Hz, 1H). ¹³C NMR (CDCl₃, 500 MHz) δ 11.36, 18.67, 21.86, 83.74, 105.95, 109.63, 109.78, 118.69, 118.82, 121.06, 127.49, 127.56, 129.41, 129.44, 131.22, 146.18, 150.08, 155.77, 157.79. HRMS Calcd for C₂₁H₂₉NSi [M+H]⁺: 342.2053; Found: 342.2048.

5-bromo-8-(3-(triisopropylsilyl)prop-2-ynyl)quinoline (3g)

Isolated yield: 13.4 mg (61%). ¹H NMR (CDCl₃, 500 MHz) δ 1.13 (s, 21H), 4.34 (s, 2H), 7.51-7.53 (dd, *J* = 4.2 Hz, 1H), 7.84-7.86 (d, *J* = 7.3 Hz, 1H), 7.93-7.95 (d, *J* = 7.9 Hz, 1H), 8.53-8.58 (d, *J* = 8.5 Hz, 1H), 8.92-8.93 (d, *J* = 3.6 Hz, 1H). ¹³C NMR (CDCl₃, 500 MHz) δ 11.32, 18.67, 22.16, 84.03, 105.55, 120.25, 122.14, 127.17, 128.55, 130.14, 135.65, 146.58, 149.29, 149.85; HRMS Calcd for C₂₁H₂₉BrNSi [M+H]⁺: 402.1253 ; Found: 402.1247.

5-(trifluoromethyl)-8-(3-(triisopropylsilyl)prop-2-ynyl)quinoline (**3h**)

Isolated yield: 10.60 mg (48%). ¹H NMR (CDCl₃, 500 MHz) δ 1.14 (s, 21H), 4.44 (s, 2H), 7.54-7.57 (dd, J = 8.8 Hz, 1H), 7.95-7.96 (dd, J = 7.6 Hz, 1H), 8.13-8.14 (d, J = 7.3 Hz, 1H), 8.50-8.52 (d, J = 8.5 Hz, 1H), 8.99-9.00 (d, J = 4.2 Hz, 1H). ¹³C NMR (CDCl₃, 500 MHz) δ 11.34, 18.68, 22.74, 84.55, 105.09, 122.22, 122.67, 123.15, 124.03, 125.07, 125.03, 126.50, 128.76, 132.27, 140.76, 146.03, 149.84, 150.57. HRMS Calcd for C₂₂H₂₉F₃NSi [M+H]⁺: 392.2021; Found: 392.2016.

5-nitro-8-(3-(triisopropylsilyl)prop-2-ynyl)quinoline (3i)

Isolated yield: 9.8 mg (52%). ¹H NMR (CDCl₃, 500 MHz) δ 1.14 (s, 21H), 4.47 (s, 2H), 7.66-7.68 (dd, *J* = 8.8 Hz, 1H), 8.18-8.20 (d, *J* = 7.6 Hz, 1H), 8.43-8.44 (d, *J* = 7.9 Hz, 1H), 9.01-9.03 (dd, *J* = 3.9 Hz, 1H), 9.05-9.07 (dd, *J* = 8.8 Hz, 1H). ¹³C NMR (CDCl₃, 500 MHz) δ 11.31, 16.67, 23.20, 85.17, 104.39, 120.83, 123.86, 124.69, 126.35, 132.25, 143.98, 144.36, 150.36, 158.90. HRMS Calcd for C₂₁H₂₉N₂O₂Si [M+H]⁺: 369.1998; Found: 369.1996.

7-methyl-8-(3-(triisopropylsilyl)prop-2-ynyl)quinoline (3j)

Isolated yield: 12.3 mg (78%). ¹H NMR (CDCl₃, 500 MHz) δ 0.98 (s, 21H), 2.69 (s, 3H), 4.42 (s, 2H), 7.34-7.35 (d, *J* = 4.2 Hz, 1H), 7.40-7.41 (q, *J* = 8.2 Hz, 1H), 7.64-7.65 (d, *J* = 8.2 Hz, 1H), 8.09-8.11 (dd, *J* = 8.2 Hz, 1H), 8.93-8.94 (d, *J* = 4.2 Hz, 1H). ¹³C NMR (CDCl₃, 500 MHz) δ 11.28, 17.88, 18.56, 20.33, 79.90, 106.68, 120.04, 126.00, 126.67, 129.77, 133.36, 135.95, 137.96, 146.13, 149.46. HRMS Calcd for C₂₂H₃₂NSi [M+H]⁺: 338.2304; Found: 338.2299.

7-fluoro-8-(3-(triisopropylsilyl)prop-2-ynyl)quinoline (**3k**)

Isolated yield: 13.0 mg (81%). ¹H NMR (CDCl₃, 500 MHz) δ 0.98 (s, 21H), 4.29 (s, 2H), 7.34-7.36 (d, *J* = 8.8 Hz, 1H), 7.38-7.40 (q, *J* = 4.2 Hz, 1H), 7.72-7.75 (q, *J* = 6.1 Hz, 1H), 8.13-8.15 (dd, *J* = 8.2 Hz, 1H), 8.97-8.98 (dd, *J* = 4.2 Hz, 1H). ¹³C NMR (CDCl₃, 500 MHz) δ 11.25, 18.50, 14.70, 80.03, 105.95, 116.88, 117.07, 120.20, 120.67, 120.79, 125.30, 127.96, 128.04, 136.06, 146.87, 146.93, 150.42, 159.61, 161.59. HRMS Calcd for C₂₁H₂₉NFSi [M+H]⁺: 342.2053; Found: 342.2048.

7-chloro-8-(3-(triisopropylsilyl)prop-2-ynyl)quinoline (31)

Isolated yield: 14.9 mg (84%). ¹H NMR (CDCl₃, 500 MHz) δ 0.97 (s, 21H), 4.46 (s, 2H), 7.41-7.43 (q, *J* = 4.2 Hz, 1H), 7.55-7.56 (d, *J* = 8.8 Hz, 1H), 7.67-7.69 (d, *J* = 8.8 Hz, 1H), 8.12-8.14 (dd, *J* = 8.2 Hz, 1H), 8.97-8.99 (d, *J* = 4.2 Hz, 1H). ¹³C NMR (CDCl₃, 500 MHz) δ 11.24, 18.52, 19.26, 80.45, 105.47, 121.01, 126.88, 127.34, 128.20, 133.93, 135.07, 136.06, 146.61, 150.38; HRMS Calcd for C₂₁H₂₉NClSi [M+H]⁺: 358.1758 ; Found: 358.1752.

6-methyl-8-(3-(triisopropylsilyl)prop-2-ynyl)quinoline (**3m**)

Isolated yield: 11.0 mg (70%). ¹H NMR (CDCl₃, 500 MHz) δ 1.15 (s, 21H), 2.54 (s, 3H), 4.36 (s, 2H), 7.36-7.39 (q, *J* = 4.2 Hz, 1H), 7.49 (s, 1H), 7.97 (s, 1H), 8.05-8.07 (dd, *J* = 8.2 Hz, 1H), 8.84-8.85 (d, *J* = 4.2 Hz, 1H). ¹³C NMR (CDCl₃, 500 MHz) δ 11.39, 18.69, 21.65, 22.08, 83.70, 106.39, 121.04, 125.23, 128.14, 130.70, 134.82, 135.51, 136.16, 144.67, 148.42. HRMS Calcd for C₂₂H₃₂NSi [M+H]⁺: 338.2304 ; Found: 338.2299.

6-chloro-8-(3-(triisopropylsilyl)prop-2-ynyl)quinoline (3n)

Isolated yield: 11.7 mg (66%). ¹H NMR (CDCl₃, 500 MHz) δ 1.15 (s, 21H), 4.35 (s, 2H), 7.42-7.44 (q, J = 4.2 Hz, 1H), 7.70 (d, J = 2.4 Hz, 1H), 8.05-8.07 (m, 2H), 8.88-8.90 (dd, J = 8.2 Hz, 1H); ¹³C NMR (CDCl₃, 500 MHz) δ 11.34, 18.68, 22.16, 84.66, 105.19, 121.92, 124.99, 128.64, 129.36, 132.37, 135.29, 137.74, 144.45, 149.42 ; HRMS Calcd for C₂₁H₂₉NClSi [M+H]⁺: 358.1758; Found: 358.1752.

4-chloro-8-(3-(triisopropylsilyl)prop-2-ynyl)quinoline (30)

Isolated yield: 14.3 mg (81%). ¹H NMR (CDCl₃, 500 MHz) δ 1.13 (s, 21H), 4.39 (s, 2H), 7.50-7.51 (d, *J* = 4.8 Hz, 1H), 7.64-7.67 (t, *J* = 7.9 Hz, 1H), 8.13-8.17 (t, *J* = 9.1 Hz, 2H), 8.76-8.77 (t, *J* = 4.5 Hz, 1H). ¹³C NMR (CDCl₃, 500 MHz) δ 11.35, 18.68, 22.47, 83.86, 105.84, 121.25, 122.82, 126.23, 127.39, 129.14, 135.96, 142.76, 146.89, 148.63. HRMS Calcd for C₂₁H₂₉NClSi [M+H]⁺: 358.1758; Found: 358.1572.

ethyl 4-chloro-8-(3-(triisopropylsilyl)prop-2-ynyl)quinoline-3-carboxylate (3p)

Isolated yield: 18.4 mg (74%). ¹H NMR (CDCl₃, 500 MHz) δ 1.13 (s, 21H), 1.46-1.49 (t, *J* = 7.0 Hz, 3H), 4.39 (s, 2H), 4.50-4.52 (q, *J* = 7.0 Hz, 2H), 7.70-7.73 (t, *J* = 7.9 Hz, 1H), 8.19-8.21 (d, *J* = 6.7 Hz, 1H), 8.33-8.35 (d, *J* = 8.5 Hz, 1H), 9.20 (s, 1H). ¹³C NMR (CDCl₃, 500 MHz) δ 11.35, 14.23, 18.68, 22.41, 62.05, 84.20, 105.57, 122.98, 124.09, 125.98, 128.16, 130.69, 136.20, 143.51, 147.30, 148.95, 164.65; HRMS Calcd for C₂₄H₃₁NClO₂Si [M-H]⁺: 428.1813; Found: 428.1807

5. Mechanistic Investigation

(i). Irrversibility of C-H activation

a) To a flame dried 10 mL screw-capped vial, 8-methylquinoline **1a** (1 equiv), (bromoethynyl)triisopropylsilane **2** (0.15 mmol), (nc)Pd(OAc)₂ **C2** (10 mol%), Cu(OAc)₂ (2 equiv) and MeOH-d₄ (1 mL) were added. The mixture was stirred for 5 hr at 80 °C followed by cooling to room temperature. The residue was purified by column chromatography on silica gel (eluent: pet ether/EtOAc) to afford the alkynylated product **3a** (11%) with a recovery of **1a** (75%) and the ¹H NMR reveled formation of deuterated **1a** was unobserved.

b) To a flame dried 10 mL screw-capped vial, 8-methylquinoline **1a** (1 equiv), $(nc)Pd(OAc)_2$ **C2** (10 mol%), Cu(OAc)₂ (2 equiv) and MeOH-d₄ (1 mL) were added. The mixture was stirred for 5 hr at 80 °C followed by cooling to room temperature. ¹H NMR reveled formation of deuterated **1a** was unobserved.

(ii). Competitive experiment

To a flame dried 10 mL screw-capped vial, 5-methoxy-8-methylquinoline **1b** (1 equiv) and 8methyl-5-(trifluoromethyl)quinoline **1f** (1 equiv), (triisopropylsilyl)ethynyl bromide **2** (1 equiv), (nc)Pd(OAc)₂ (10 mol%), Cu(OAc)₂ (2 equiv) and toluene (1 mL) were added. The mixture was stirred for 2 hr at 80 °C followed by cooling to room temperature. The solution was filtered through a celite pad and washed with 10-20 mL of dichloromethane. The filtrate was concentrated and the residue was analyzed by ¹H NMR.

(iii). Reaction of palladacycle(II) 4 with 2

To a flame dried 10 mL screw-capped vial, palladacycle(II) **4** (0.1 mmol), (triisopropylsilyl)ethynyl bromide **2** (0.25 mmol) and toluene (1 mL) were added under Ar. The mixture was stirred for 8 hr at 80 °C followed by cooling to room temperature. The solution was filtered through a celite pad and washed with 10-20 mL of dichloromethane. The filtrate was concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (eluent: pet ether/EtOAc) to afford the alkynylated products **3a** with isolated yield of 58%.

References

[S1] P. Evans, P. Hogg, R. Grigg, M. Nurnabi, J. Hinsley, V. Sridharan, S. Suganthan, S. Korn, S. Collard, J. E. Muir, *Tetrahedron* 2005, 61, 9696.

[S2] B. Liu, T. Zhou, B. Li, S. Xu, H. Song, B. Wang, Angew. Chem. Int. Ed. 2014, 53, 4191.

[S3] M. X.-W. Jiang, M. Rawat, W. D. Wulff, J. Am. Chem. Soc. 2004, 126, 5970.

[S4] S.-Y. Ding, J. Gao, Q. Wang, Y. Zhang, W.-G. Song, C.-Y. Su, W. Wang, J. Am. Chem. Soc. 2011, 133, 19816.

[S5] D. M. Pearson, N. R. Conley, R. M. Waymouth, Adv. Syn. Catal. 2011, 353, 3007.

- [S6] K. Muñiz, M. Nieger, Angew. Chem. Int. Ed. 2006, 45, 2305.
- [S7] A. J. Deeming, I. P. Rothwell, J. Organometal. Chem. 1981, 205, 117.

#