Actinide (An = Th-Pu) Dimetallocenes: Promising Candidates for Metal-Metal Multiple Bonds

Cong-Zhi Wang¹, John K. Gibson², Jian-Hui Lan¹, Qun-Yan Wu¹, Yu-Liang Zhao¹, Jun Li³, Zhi-Fang

Chai^{1,4}, and Wei-Qun Shi*1

¹Laboratory of Nuclear Energy Chemistry and Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049,

China

*E-mail: shiwq@ihep.ac.cn

²Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States

³Department of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing 100084, China

⁴School for Radiological and interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China

Supporting Information

Figure S1. Different views of the LUMO and LUMO+1 orbitals for Th₂Cp*.

Figure S2-S6 The frontier MOs localized mainly on the An-An (An = Th-Pu) bonds

Figure S7-S11 NBO orbitals of the An-An bonds in the An₂Cp^{*}₂ complexes

Figure S12 Bond critical points for the An₂Cp^{*}₂ complexes

Table S1. Total energies after zero point energy corrections and the relative energies for the stable structures of An_2Cp^*

Table S2. Spin densities, spin contamination, bond distances for the $An_2Cp_2^*$ complexes calculated by the M06-L method

Table S3. Spin densities, spin contamination, bond distances, vibrational frequencies, Wiberg bond indices, and natural charges for An_2^{2+}

Table S4. Formal An-An bond order in An₂Cp^{*}₂ determined by the bonding molecular orbitals analysis

Table S5. Compositions of the An-An bonding in $An_2Cp_2^*$ obtained by natural bond orbital (NBO) analysis

Table S6. The changes in enthalpy and Gibbs free energy for dissociation reactions of AnCp* in the gas phase.

Table S7. The reaction energies for 2 ${}^{8}A$ PuCp^{*} $\rightarrow {}^{13}A$ Pu₂Cp^{*}₂ before and after inclusion of spin-orbit coupling effects.

Figure S1. Different views of the LUMO and LUMO+1 orbitals for Th₂Cp*.

Figure S2. The frontier MOs localized mainly on the Th-Th bonds in the $Th_2Cp_2^*$ complex (HOMO, HOMO-1 and HOMO-2 are Th-Th bonding orbitals).

Figure S3. The frontier MOs localized mainly on the Pa-Pa bonds in the $Pa_2Cp^*_2$ complex (SOMO down to HOMO-1 are Pa-Pa bonding orbitals).

Figure S4. The frontier MOs localized mainly on the U-U bonds in the $U_2Cp_2^*$ complex (SOMO, SOMO-1, SOMO-4 down to HOMO are U-U bonding orbitals, and SOMO-2, SOMO-3 relating to the U-U antibonding orbitals).

Figure S5. The frontier MOs localized mainly on the Np-Np bonds in the Np₂Cp^{*}₂ complex (SOMO, SOMO-3, SOMO-4, SOMO-6, HOMO are Np-Np bonding orbitals, and SOMO-1, SOMO-2, SOMO-5 relating to the Np-Np antibonding orbitals).

Figure S6. The frontier MOs localized mainly on the Pu-Pu bonds in the $Pu_2Cp_2^*$ complex (SOMO, SOMO-1, SOMO-3, SOMO-5, HOMO-1 are Pu-Pu bonding orbitals, and SOMO-2, SOMO-4, SOMO-6 relating to the Pu-Pu antibonding orbitals).

Figure S7. NBO orbitals of the Th-Th bonds in the $Th_2Cp^*_2$ complex.

Figure S8. NBO orbitals of the Pa-Pa bonds in the Pa₂Cp^{*}₂ complex.

Figure S9. NBO orbitals of the U-U bonds in the $U_2Cp_2^*$ complex.

Figure S10. NBO orbitals of the Np-Np bonds in the $Np_2Cp^*_2$ complex.

Figure S11. NBO orbitals of the Pu-Pu bonds in the $Pu_2Cp^*_2$ complex.

Figure S12. Bond critical points (BCPs, small orange spheres) for the $An_2Cp^*_2$ complexes. In all of the complexes the An-An BCP lies midway between the two actinide atoms.

Species	States	E _{ZPE}	ΔE_{ZPE}
	singlet	-1595.32677	0.0
	antiferromagnetic singlet	-1595.31149	9.6
	triplet	-1595.31086	10.0
T I C *	quintet	-1595.30767	12.0
Th_2Cp_2	septet	-1595.28563	25.8
	nonet	-1595.17884	92.8
	11-et	-1595.07050	160.8
	13-et	-1594.94454	239.9
	singlet	-1662.74416	4.9
	antiferromagnetic singlet	-1662.69346	36.7
	triplet	-1662.75196	0.0
D. C.*	quintet	-1662.73380	11.4
Pa ₂ Cp ₂	septet	-1662.72962	14.0
	nonet	-1662.70557	29.1
	11-et	-1662.59633	97.7
	13-et	-1662.48752	165.9
	singlet	-1733.78371	27.6
	antiferromagnetic singlet	-1733.72286	65.8
	triplet	-1733.80631	13.4
И.С.*	quintet	-1733.81796	6.1
U_2Cp_2	septet	-1733.82215	3.5
	nonet	-1733.82771	0.0
	11-et	-1733.81672	6.9
	13-et	-1733.70776	75.3
Np ₂ Cp [*] ₂	singlet	-1808.75750	83.8

Table S1. Total Energies after Zero Point Energy (ZPE) Corrections (E_{ZPE} , in Hartree) and the Relative Energies (ΔE_{ZPE} , in kcal/mol) for the Stable Structures of An₂Cp^{*}₂.

	antiferromagnetic singlet	-1808.67721	134.2
	triplet	-1808.87203	12.0
	quintet	-1808.84234	30.6
	septet	-1808.85340	23.7
	nonet	-1808.86476	16.5
	11-et	-1808.89110	0.0
	13-et	-1808.86310	17.6
	singlet	-1887.64788	143.2
	antiferromagnetic singlet	-1887.87145	2.9
	triplet	-1887.85572	12.8
	quintet	-1887.81475	38.5
$Pu_2Cp^*_2$	septet	-1887.78366	58.0
	nonet	-1887.80147	46.8
	11-et	-1887.85316	14.4
	13-et	-1887.87608	0.0
	15-et	-1887.85368	14.1

Table S2. Spin Densities, Spin Contamination $\langle S^2 \rangle$, Bond Distances (Å) for the An₂Cp^{*}₂ Complexes Calculated by the M06-L Method.

Species Symmetry	Smin State	(62)	Spin Density	Bond L	lengths	
Species	Symmetry	Spin State	$\langle S^{-} \rangle$	An	An-An	An-C
Th ₂ Cp [*] ₂	C_1	singlet	0.00	_	2.834	2.790
Pa ₂ Cp [*] ₂	C_1	triplet	2.02	0.986, 1.010	2.367	2.772
$U_2 Cp^*_2$	C_1	nonet	20.11	4.046, 4.032	2.581	2.684
Np ₂ Cp [*] ₂	C_1	11-et	30.05	5.103, 5.100	2.739	2.698
$Pu_2Cp^*_2$	C_1	13-et	42.18	6.045, 6.210	2.954	2.704

 $\textbf{Table S3.} Spin Densities, Spin Contamination \langle S^2 \rangle, Bond Distances (Å), Vibrational Frequencies (\upsilon_{sym},$

Spacios			Spin Density	Bond Lengths	υ_{sym}	WBIs	Q
Species	Species Spin State	$\langle S^2 \rangle$	An	An-An	An-An	An-An	An
Th ₂ ²⁺	singlet	0.00	_	2.858	139	3.064	1.000
Pa_2^{2+}	triplet	2.06	0.997, 1.003	2.479	224	3.293	1.000
U_2^{2+}	nonet	20.07	4.000, 4.000	3.217	108	1.493	1.000
Np_{2}^{2+}	11-et	30.06	5.000, 5.000	3.206	101	1.494	1.000
Pu_2^{2+}	13-et	42.01	6.000, 6.000	4.088	53	1.004	1.000

cm⁻¹), Wiberg Bond Indices (WBIs), and Natural Charges (Q) for An_2^{2+} .

Table S4. Formal An-An Bond Order in $An_2Cp^*_2$ Determined by the Bonding Molecular Orbitals Analysis.

Species	Bonding Electrons	Untibonding Electrons	An-An bond order (FBO)
$Th_2Cp^*{}_2$	6	0	3
Pa ₂ Cp [*] ₂	8	0	4
$U_2Cp^*_2$	8	2	3
Np ₂ Cp [*] ₂	8	4	2
Pu ₂ Cp [*] ₂	9	5	2

Table S5. Compositions of the An-An Bonding in $An_2Cp^*_2$ Obtained by Natural Bond Orbital (NBO)

. 1	
Ana	VS1S.
	J

Species Bond Type		Element	Composition (9/)	Contributions of Each Atomic Orbital (%)			
species	Bolla Type	Liement	Composition (70)		6р	6d	7s
	-	Th1	50.00	2.73	6.77	6.15	84.35
	σ	Th2	50.00	2.73	6.77	6.15	84.35
Th. C*	_	Th1	50.00	12.12	1.41	86.36	0.10
In_2Cp_2	л	Th2	50.00	12.12	1.41	86.36	0.10
	_	Th1	50.00	13.66	0.82	85.13	0.39
	л	Th2	50.00	13.66	0.82	85.13	0.39
	_	Pal	49.95	9.98	5.84	14.37	69.81
	σ	Pa2	50.05	9.95	5.85	14.37	69.84
	_	Pa1	50.01	58.99	0.50	40.50	0.01
	π	Pa2	49.99	59.02	0.50	40.46	0.01
D- C-*	_	Pa1	50.02	58.95	0.51	40.54	0.01
Pa ₂ Cp ₂	π	Pa2	49.98	58.97	0.51	40.52	0.01
	S	Pa1	50.30	17.22	0.01	82.77	0.00
	0	Pa2	49.70	18.17	0.01	81.82	0.00
	S	Pa1	49.69	17.54	0.01	82.46	0.00
0	0	Pa2	50.31	16.66	0.01	83.34	0.00
	_	U1	53.39	25.82	4.03	11.87	58.28
	0	U2	46.61	31.81	2.89	15.74	49.56
	_	U1	41.39	59.78	1.03	39.15	0.03
	π	U2	58.61	66.90	1.26	31.82	0.02
U.C*	_	U1	41.63	57.28	1.31	38.04	3.36
U_2Cp_2	π	U2	58.37	62.48	1.24	32.66	3.62
	_	U1	72.71	73.95	1.74	2.07	22.25
	σ	U2	27.29	51.51	10.02	4.45	34.02
	S	U1	43.75	29.14	0.09	70.72	0.05
	0	U2	56.25	15.11	0.01	84.83	0.05
	_	Np1	50.00	0.47	8.59	3.46	87.48
	σ	Np2	50.00	0.47	8.59	3.46	87.48
N. C.*	_	Npl	50.00	52.82	3.42	43.76	0.00
Np ₂ Cp ₂	π	Np2	50.00	52.82	3.42	43.76	0.00
		Np1	50.00	52.55	3.41	43.93	0.10
	π	Np2	50.00	52.55	3.41	43.93	0.10
D C *		Pu1	50.00	0.12	8.64	1.41	89.83
Pu ₂ Cp ₂	σ	Pu2	50.00	0.12	8.64	1.41	89.83

	Pu1	49.92	66.56	2.33	31.11	0.00
π	Pu2	50.08	66.67	2.32	31.01	0.00
_	Pu1	50.06	66.60	2.30	31.06	0.04
π	Pu2	49.94	66.50	2.31	31.15	0.04

Table S6. The Changes in Enthalpy (ΔH_{298}) and Gibbs Free Energy (ΔG_{298}) (kcal/mol) for the Dissociation Reactions of AnCp^{*} in the Gas Phase (298.15 K, 0.1 MPa).

Reactions	ΔH_{298}	ΔG_{298}
${}^{2}A \operatorname{ThCp}^{*} \rightarrow {}^{2}A_{1g} \operatorname{Th}^{+} + {}^{1}A [\operatorname{Cp}^{*}]^{-}$	201.5	191.5
${}^{3}A \operatorname{PaCp}^{*} \rightarrow {}^{3}A_{1g} \operatorname{Pa}^{+} + {}^{1}A [\operatorname{Cp}^{*}]^{-}$	185.4	176.3
${}^{4}A \operatorname{UCp}^{*} \rightarrow {}^{4}A_{1g} \operatorname{U}^{+} + {}^{1}A \operatorname{[Cp^{*}]^{-}}$	184.5	174.5
${}^{5}A \operatorname{NpCp}^{*} \rightarrow {}^{7}A_{1g} \operatorname{Np}^{+} + {}^{1}A [\operatorname{Cp}^{*}]^{-}$	172.9	184.5
⁸ A PuCp [*] \rightarrow ⁸ A _{1g} Pu ⁺ + ¹ A [Cp [*]] ⁻	158.1	148.9

Table S7. The Reaction Energies (kcal/mol) for $2 \ ^8A \ PuCp^* \rightarrow {}^{13}A \ Pu_2Cp^*_2$ before and after Inclusion of Spin-Orbit Coupling (SOC) Effects. (The Scalar Relativistic (SR) and SOC Effects were Considered by the Zero-Order Regular Approximation (ZORA) Approach.)

Reaction	SR-ZORA	SO-ZORA
$2 \ ^{8}A \ \mathrm{PuCp}^{*} \rightarrow {}^{13}A \ \mathrm{Pu_2Cp}^{*}_{2}$	-13.3	-14.3