Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Information (ESI)

Preparation of solid-solution-type Fe-Co nanoalloys by synchronous deposition of

Fe and Co using dual arc plasma guns

Masaaki Sadakiyo,^{a,b} Minako Heima,^{a,b} Tomokazu Yamamoto,^c Syo Matsumura,^c Masashi Matsuura,^d

Satoshi Sugimoto,^d Kenichi Kato,^{b,e} Masaki Takata,^e and Miho Yamauchi*a,^{b,f}

^a International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan. ^b Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 7 Goban-cho, Chiyoda-ku, Tokyo 102-0076, Japan. ^c Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan. ^d Department of Materials Science, Graduate School of Engineering, Tohoku University, 6-6-02 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8579, Japan. ^e RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan. ^f Department of Chemistry, Faculty of Science, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan

E-mail: yamauchi@i2cner.kyushu-u.ac.jp

Fig. S1 Deposited metal weight vs. number of shots of (a) Fe and (b) Co sources, estimated by ICP-AES measurements.

Fig. S2 Fe atomic ratio vs. number of shots of Fe (or Co), determined by ICP-AES measurements.

Fig. S3 Low magnification HAADF-STEM images of **FeCo**⁵⁰⁰⁰. Small white dots correspond to the deposited FeCo particles. There also exist bare surface of carbon supports.

Fig. S4 Low magnification HAADF-STEM images of **FeCo³⁰⁰⁰**. Small white dots correspond to the deposited FeCo particles. There also exist bare surface of carbon supports.

Fig. S5 HR–STEM images of (a) FeCo⁵⁰⁰⁰ and (b) FeCo³⁰⁰⁰⁰.

Fig. S6 XRPD patterns of a simulation of B2-structured Fe–Co alloy (brown), carbon support (blue), FeCo¹⁰⁰⁰ (red), FeCo⁵⁰⁰⁰ (green), and FeCo³⁰⁰⁰⁰ (pink).

Fig. S7 (a) HAADF–STEM image of grains of **FeCo**₅₀₀₀. STEM–EDX map of (b) Fe-K and (c) Co-K signals. (d) overlap image of Fe-K and Co-K signals. Green and red correspond to Fe-K and Co-K signals, respectively.

Fig. S8 (a) HAADF–STEM image of grains of **FeCo³⁰⁰⁰⁰**. STEM–EDX map of (b) Fe-K and (c) Co-K signals. (d) overlap image of Fe-K and Co-K signals. Green and red correspond to Fe-K and Co-K signals, respectively.

Fig. S9 XRPD patterns of a simulation of B2-structured Fe-Co alloy (brown), carbon support (blue), asprepared **FeCo¹⁰⁰⁰** (red), and **FeCo¹⁰⁰⁰** treated at 800 °C under 5% H₂/Ar gas flow (green).

Fig. S10 XRPD patterns of a simulation of B2-structured Fe-Co alloy (brown), carbon support (blue), asprepared $FeCo^{5000}$ (red), and $FeCo^{5000}$ treated at 800 °C under 5% H₂/Ar gas flow (green).

Fig. S11 XRPD patterns of a simulation of B2-structured Fe–Co alloy (brown), carbon support (blue), asprepared **FeCo³⁰⁰⁰⁰** (red), and **FeCo³⁰⁰⁰⁰** treated at 800 °C under 5% H₂/Ar gas flow (green).

Fig. S12 STEM images of (a) $FeCo^{5000}$ and (b) $FeCo^{30000}$ after hydrogen treatment at 800 °C under H₂/Ar mixed gas flow. Particle size distributions of (c) $FeCo^{5000}$ and (d) $FeCo^{30000}$. HAADF–STEM images of (e) $FeCo^{5000}$ and (f) $FeCo^{30000}$ after the hydrogen treatment.

Fig. S13 (left) A magnified FFT image of (right) the HR-STEM image of **FeCo⁵⁰⁰⁰**. The yellow arrows indicate the characteristic spots of ordered B2 structure (e.g. (100) plane).

Fig. S14 (left) A magnified FFT image of (right) the HR-STEM image of **FeCo³⁰⁰⁰⁰**. The yellow arrows indicate the characteristic spots of ordered B2 structure (e.g. (100) plane).

Fig. S15 (a) HAADF–STEM image of a nanoparticle of $FeCo^{5000}$ after hydrogen treatment at 800 °C under H₂/Ar mixed gas flow. STEM–EDX map of (b) Fe-K and (c) Co-K signals. (d) overlap image of Fe-K and Co-K signals. Green and red correspond to Fe-K and Co-K signals, respectively.

Fig. S16 (a) HAADF–STEM image of a nanoparticle of **FeCo**³⁰⁰⁰⁰ after hydrogen treatment at 800 °C under H₂/Ar mixed gas flow. STEM–EDX map of (b) Fe-K and (c) Co-K signals. (d) overlap image of Fe-K and Co-K signals. Green and red correspond to Fe-K and Co-K signals, respectively.

Fig. S17 A line profile of EDX signals of Fe-K, Co-K, and O-K peaks of **FeCo⁵⁰⁰⁰** after hydrogen treatment at 800 °C under H₂/Ar mixed gas flow. Green, red, and orange correspond to Fe-K, Co-K, and O-K signals, respectively.

Fig. S18 A line profile of EDX signals of Fe-K, Co-K, and O-K peaks of $FeCo^{30000}$ after hydrogen treatment at 800 °C under H₂/Ar mixed gas flow. Green, red, and orange correspond to Fe-K, Co-K, and O-K signals, respectively.