1

FT-IR (Nicolet 6700 FT-IR Spectrometer with SmartOrbit[™] diamond ATR accessory in the range of 4000–400 cm⁻¹):

1: 3116 (w), 3109 (w), 3086 (w), 3053 (w), 3018 (w), 1616 (w), 1593 (m), 1583 (m), 1552 (w), 1506 (s), 1471 (w), 1456 (w), 1432 (m), 1381 (m), 1364 (m), 1335 (m), 1316 (w), 1302 (m), 1214 (m), 1176 (m), 1163 (w), 1145 (s), 1135 (m), 1104 (m), 1049 (w), 997 (w), 973 (m), 956 (m), 891 (w), 872 (m), 833 (vs), 802 (w), 783 (vs), 747 (vs), 701 (m), 658 (m), 650 (m), 635 (m), 623 (m), 525 (w), 500 (m), 487 (s)

2: 3115 (w), 3108 (w), 3086 (w), 3053 (w), 3016 (w), 1616 (w), 1593 (m), 1582 (m), 1552 (w), 1506 (s), 1471 (w), 1454 (w), 1433 (m), 1381 (m), 1363 (m), 1334 (m), 1316 (w), 1301 (m), 1214 (m), 1174 (m), 1162 (w), 1144 (s), 1134 (m), 1103 (m), 1048 (w), 996 (m), 973 (m), 956 (m), 892 (w), 872 (m), 832 (vs), 802 (w), 783 (vs), 747 (vs), 700 (m), 658 (m), 649 (m), 635 (m), 622 (m), 525 (w), 500 (m), 487 (s)

3: 3113 (w), 3106 (w), 3080 (w), 3047 (w), 3012 (w), 1615 (w), 1593 (m), 1581 (m), 1552 (w), 1505 (s), 1471 (w), 1455 (w), 1429 (m), 1380 (m), 1362 (m), 1334 (m), 1315 (w), 1299 (m), 1213 (m), 1173 (m), 1162 (w), 1143 (s), 1134 (m), 1102 (m), 1047 (w), 992 (m), 973 (m), 954 (m), 891 (w), 870 (m), 830 (vs), 800 (w), 781 (vs), 745 (vs), 698 (m), 657 (m), 648 (m), 635 (m), 622 (m), 524 (w), 498 (m), 485 (s)

Table S1 Crystal data an	d final ret	finement parameters for	r 1-3	
		1	2	3
Empirical formula		$C_{18}H_{12}N_2CoCl_2$	$C_{18}H_{12}N_2CoBr_2$	$C_{18}H_{12}N_2CoI_2$
Formula weight M _r		386.1	475.0	569.1
Temperature		120 K	120 K	120 K
Wavelength [Å]		1.54184	1.54184	1.54184
Crystal system		Monoclinic	Monoclinic	Monoclinic
Space group		$P2_{1}/c$	$P2_{1}/c$	$P2_{1}/c$
Unit cell dimensions a	[Å]	7.8402(3)	7.7948(2)	7.7734(2)
b	[Å]	12.2014(4)	12.3160(3)	12.5186(4)
С	[Å]	16.8762(6)	17.2656(4)	17.9276(7)
¢	3[°]	104.098(4)	102.812(2)	101.346(3)
Volume [Å ³]		1565.78(10)	1616.24(7)	1710.48(10)
Ζ		4	4	4
Density (calculated) [g/cm ³]		1.6381	1.9523	2.2097
Absorption coefficient [mn	n ⁻¹]	11.714	14.100	36.194
Crystal dimensions [mm]		0.31×0.07×0.02	0.65×0.07×0.04	$0.42 \times 0.07 \times 0.02$
Θ range for data collection	[°]	4.52 - 67.06	4.45 - 66.9	5 - 66.87
Reflections collected		12022	19218	13110
Independent reflections		2778	2870	3024
<i>R</i> (int)		0.0426	0.0427	0.0421
Completeness to Θ_{\max} [%]		0.99	0.99	0.99
Absorption correction		Gaussian	Gaussian	Gaussian
Max. and min. transmission	1	0.234; 0.773	0.098; 0.589	0.053; 0.512
Data / restraints / parameter	rs	2778 / 0 / 208	2870 / 0 / 208	3024 / 0 / 208
Goodness-of-fit on F ²		1.01	1.09	1.47
Final <i>R</i> indices $[I > 2\sigma(I)]$	<i>R</i> 1	0.0267	0.0202	0.0413
.,-	wR2	0.0302	0.0247	0.1040
Final <i>R</i> indices (all data)	<i>R</i> 1	0.0318	0.0226	0.0470
	wR2	0.0327	0.0258	0.1090

Table S2 Selected geometric parameters [Å, °] for 1-3.

	1 (X = Cl)	2 (X = Br)	3 (X = I)
Co1–N1	2.0311(19)	2.029(2)	2.031(6)
Co1–N2	2.0362(17)	2.0378(19)	2.031(6)
Co1–X1	2.2275(7)	2.3642(5)	2.5520(12)
Co1–X2	2.2176(6)	2.3472(4)	2.5255(10)
N1-Co1-N2	81.70(7)	81.88(8)	81.9(2)
X1–Co1–X2	117.36(3)	117.864(18)	118.29(5)
N1-Co1-X1	114.45(5)	114.21(6)	115.23(16)
N1-Co1-X2	112.17(5)	112.30(5)	112.05(14)
N2-Co1-X1	107.67(5)	108.53(6)	109.33(15)
N2-Co1-X2	118.42(5)	116.78(6)	114.56(15)

5	8 8	L	<i>i</i>	
D-H···A	d(D-H)	d(H····A)	d(D…A)	<(DHA)
C12-H1C12···Cl2 ⁱ	0.96	2.76	3.426(2)	128
$C22\text{-}H1C22\text{-}Cl1^{i}$	0.96	2.77	3.603(2)	145
$\frac{1}{(1)}$	2/2 1/			

					0	
Table C2	Doggihlo	hudro gon	handing	intoroptiona	FX 0	for 1
I able 55	POSSIDIE	nvarogen	DODUUDS	interactions	IA	
	1 0001010		00110111		1	

Symmetry codes: (i) x, 3/2 - y, $-\frac{1}{2} + z$

Table S4 Possible hydrogen bonding interactions [Å, °] for 2‡

D-H···A	d(D-H)	d(H···A)	d(D····A)	<(DHA)	
C12-H1C12···Br2 ⁱⁱ	0.96	2.83	3.531(2)	131	

Symmetry codes: (ii) x, $\frac{1}{2} - y$, $-\frac{1}{2} + z$

‡ the shortest contact for the Br1 bromido ligand, C22-H1C22···Br1ⁱⁱ (d(H···A) = 2.99 Å and d(D···A) = 3.783(2) Å) is outside the usual range for hydrogen bonding interactions (d(H···Br) ≤ 2.88 Å).

Table S5 Possible hydrogen bonding interactions [Å, °] for 3‡

D-H···A	d(D-H)	d(H···A)	d(D…A)	<(DHA)	
C12-H1C12…I2 ⁱⁱ	0.96	2.97	3.724(7)	137	

Symmetry codes: (ii) x, $\frac{1}{2} - y$, $-\frac{1}{2} + z$

 \ddagger the shortest contact for the I1 iodido ligand, C22-H1C22···I1ⁱⁱ (d(H···A) = 3.41 Å and d(D···A) = 4.131(7)

Å) is outside the usual range for hydrogen bonding interactions (d(H···I) \leq 3.03 Å).

ESI – Electronic Supplementary Information

Three Tetracoordinate Co(II) Complexes [Co(biq)X₂] (X = Cl, Br, I) with Easy-Plane Magnetic Anisotropy as Field-Induced Single-Molecule Magnets Lukáš Smolko, Juraj Černák, Michal Dušek, Jozef Miklovič, Ján Titiš, Roman Boča

Table S6 Possible	π - π interactions [Å	, °] for 1			
Cg(I)···Cg(J) ‡	d(Cg…Cg)	α	β	γ	
Cg1…Cg1 ⁱⁱⁱ	3.4941(12)	0	20.40	20.40	
Cg1…Cg3 ⁱⁱⁱ	3.5788(13)	0.66(11)	24.25	23.59	
Cg2…Cg2 ^{iv}	3.7204(13)	0	23.70	23.70	
Cg2…Cg4 ^{iv}	3.7172(14)	0.15(11)	23.82	23.87	
Cg4…Cg4 ^v	3.4891(14)	0	14.26	14.26	
Symmetry codes: (iii	i) $2 - x$, $2 - y$, $- z$; (iv	(x) 2 - x, 1 - y, -	z; (v) 1 – x, 1 –	y, - z	

Cg(I)Cg(J) ‡	d(Cg···Cg)	α	β	γ	
Cg1···Cg1 ^v	3.4942(14)	0	20.56	20.56	
Cg1···Cg3 ^v	3.6173(14)	0.82(11)	25.84	25.02	
Cg2…Cg2 ^{vi}	3.7187(14)	0	22.28	22.28	
Cg2····Cg4 ^{vi}	3.6991(14)	0.40(11)	22.18	21.80	
Cg4…Cg4 ^{vii}	3.4955(14)	0	16.39	16.39	

Symmetry codes: (v) 1 - x, 1 - y, -z; (vi) 1 - x, -y, -z; (vii) -x, -y, -z

Table S8 Possible π - π interactions [Å, °] for 3

Cg(I)···Cg(J) ‡	d(Cg···Cg)	α	β	γ	
Cg1···Cg1 ^{iv}	3.521(4)	0	20.85	20.85	
Cg1···Cg3 ^{iv}	3.642(4)	0.9(3)	25.86	25.07	
Cg2…Cg2 ^{viii}	3.648(4)	0	18.87	18.87	
Cg2…Cg4 ^{viii}	3.663(4)	0.4(3)	20.03	19.81	
Cg4…Cg4 ^{vi}	3.520(4)	0	19.05	19.05	

Symmetry codes: (iv) 2 - x, 1 - y, -z; (vi) 1 - x, -y, -z; (viii) 2 - x, -y, -z

‡Cg1 represents the centroid of the heterocyclic ring containing N1 atom

Cg2 represents the centroid of the heterocyclic ring containing N2 atom

Cg3 represents the centroid of the carbocyclic ring containing C18 atom

Cg4 represents the centroid of the carbocyclic ring containing C28 atom

 $\boldsymbol{\alpha}$ denotes the dihedral angle between planes I and J;

 β denotes the angle between the Cg(I)…Cg(J) vector and normal to plane I;

 γ denotes the angle between the Cg(I)…Cg(J) vector and normal to plane J.

ESI – Electronic Supplementary Information

ESI – Electronic Supplementary Information 5 Three Tetracoordinate Co(II) Complexes $[Co(biq)X_2]$ (X = Cl, Br, I) with Easy-Plane Magnetic Anisotropy as Field-Induced Single-Molecule Magnets

Lukáš Smolko, Juraj Černák, Michal Dušek, Jozef Miklovič, Ján Titiš, Roman Boča

Table S9 Th	e shortest C…	·C contacts [Å]	between carbo	on atoms of 2,2'-	biquinoline for 1-3	
	1		2		3	
C(I)…C(J)	d(C…C)	C(I)··· $C(J)$	d(C…C)	C(I)··· $C(J)$	d(C…C)	
C11····C15 ⁱⁱⁱ	3.283(3)	C11…C15 ^v	3.279(3)	C11C15 ^{iv}	3.311(9)	
C13…C19 ⁱⁱⁱ	3.280(3)	C13…C19 ^v	3.269(3)	C13…C19 ^{iv}	3.293(9)	
C15····C11 ⁱⁱⁱ	3.283(3)	C15…C11 ^v	3.279(3)	C15…C11 ^{iv}	3.311(9)	
C19…C13 ⁱⁱⁱ	3.280(3)	C19…C13 ^v	3.269(3)	C19…C13 ^{iv}	3.293(9)	
C11C26 ^{iv}	3.324(3)	C11····C26 ^{vi}	3.344(3)	C24···C26 ^{vi}	3.341(10)	
C22C28 ^{iv}	3.399(3)	C22C28vi	3.426(3)	C26···C24 ^{vi}	3.341(10)	
C26C11 ^{iv}	3.324(3)	C26…C11 ^{vi}	3.344(3)			
C28C22 ^{iv}	3.399(3)	C28C22vi	3.426(3)			

Symmetry codes: (iii) 2 - x, 2 - y, -z; (iv) 2 - x, 1 - y, -z; (v) 1 - x, 1 - y, -z; (vi) 1 - x, -y, -z

Fig. S1 Thermal ellipsoid plot of 1 showing the numbering scheme. The ellipsoids are drawn at 50 % probability level.

Fig. S2 Thermal ellipsoid plot of 2 showing the numbering scheme. The ellipsoids are drawn at 50 % probability level.

Fig. S3 Thermal ellipsoid plot of 3 showing the numbering scheme. The ellipsoids are drawn at 50 % probability level.

Fig. S4 Chain-like arrangement formed by weak C-H···Cl hydrogen bonding interactions of the complex molecules in 1. Symmetry codes: (i) x, 3/2 - y, $-\frac{1}{2} + z$

Fig. S5 Chain-like arrangement formed by weak C-H \cdots Br hydrogen bonding interactions of the complex molecules in 2. Symmetry codes: (ii) x, 3/2 - y, $-\frac{1}{2} + z$

Fig. S6 Chain-like arrangement formed by weak C-H…I hydrogen bonding interactions of the complex molecules in 3. Symmetry codes: (ii) x, 3/2 - y, $-\frac{1}{2} + z$

	1		2		3
C(I)··· $C(J)$	d(C…C)	C(I)··· $C(J)$	d(C…C)	C(I)··· $C(J)$	d(C…C)
C11C15 ⁱⁱⁱ	3.283(3)	C11C15 ^v	3.279(3)	C11C15 ^{iv}	3.311(9)
C13…C19 ⁱⁱⁱ	3.280(3)	C13…C19 ^v	3.269(3)	C13…C19 ^{iv}	3.293(9)
C15…C11 ⁱⁱⁱ	3.283(3)	C15…C11 ^v	3.279(3)	C15C11 ^{iv}	3.311(9)
C19C13 ⁱⁱⁱ	3.280(3)	C19…C13 ^v	3.269(3)	C19C13 ^{iv}	3.293(9)
C11C26 ^{iv}	3.324(3)	C11····C26 ^{vi}	3.344(3)	C24C26 ^{vi}	3.341(10)
C22C28 ^{iv}	3.399(3)	C22····C28 ^{vi}	3.426(3)	C26C24vi	3.341(10)
C26C11 ^{iv}	3.324(3)	C26C11vi	3.344(3)		
C28C22 ^{iv}	3.399(3)	C28····C22 ^{vi}	3.426(3)		

Table S10 The shortest C…C contacts [Å] between carbon atoms of 2,2'-biquinoline for 1-3

Symmetry codes: (iii) 2 - x, 2 - y, -z; (iv) 2 - x, 1 - y, -z; (v) 1 - x, 1 - y, -z; (vi) 1 - x, -y, -z

Fig. S7 The shortest C···C contacts [Å] between carbon atoms of 2,2'-biquinoline present in the crystal structure of **1**. Hydrogen atoms are omitted for clarity. Symmetry codes: (iii) 2 - x, 2 - y, - z; (iv) 2 - x, 1 - y, - z

Fig. S8 The shortest C···C contacts [Å] between carbon atoms of 2,2'-biquinoline present in the crystal structure of **2**. Hydrogen atoms are omitted for clarity. Symmetry codes: (v) 1 - x, 1 - y, -z; (vi) 1 - x, -y, -z;

Fig. S9 The shortest C…C contacts [Å] between carbon atoms of 2,2'-biquinoline present in the crystal structure of 3. Hydrogen atoms are omitted for clarity. Symmetry codes: (iv) 2 - x, 1 - y, -z; (vi) 1 - x, -y, -z;

ESI - Electronic Supplementary Information 10Three Tetracoordinate Co(II) Complexes [Co(biq)X₂] (X = Cl, Br, I) with Easy-Plane Magnetic Anisotropy as Field-Induced Single-Molecule Magnets

Fig. S10 Magnetic data for $1 = [Co(biq)Cl_2]$.

Three Tetracoordinate Co(II) Complexes $[Co(biq)X_2]$ (X = Cl, Br, I) with Easy-Plane Magnetic Anisotropy as Field-Induced Single-Molecule Magnets

Lukáš Smolko, Juraj Černák, Michal Dušek, Jozef Miklovič, Ján Titiš, Roman Boča

Two-component Debye model for AC susceptibility: a) in phase susceptibility

$$\chi'(\omega) = \chi_{S} + (\chi_{T1} - \chi_{S}) \frac{1 + (\omega\tau_{1})^{1-\alpha_{1}} \sin(\pi\alpha_{1}/2)}{1 + 2(\omega\tau_{1})^{1-\alpha_{1}} \sin(\pi\alpha_{1}/2) + (\omega\tau_{1})^{2-2\alpha_{1}}} + (\chi_{T2} - \chi_{T1}) \frac{1 + (\omega\tau_{2})^{1-\alpha_{2}} \sin(\pi\alpha_{2}/2)}{1 + 2(\omega\tau_{2})^{1-\alpha_{2}} \sin(\pi\alpha_{2}/2) + (\omega\tau_{2})^{2-2\alpha_{2}}}$$

b) out of phase susceptibility

$$\chi''(\omega) = (\chi_{T1} - \chi_S) \frac{(\omega \tau_1)^{1-\alpha_1} \cos(\pi \alpha_1/2)}{1 + 2(\omega \tau_1)^{1-\alpha_1} \sin(\pi \alpha_1/2) + (\omega \tau_1)^{2-2\alpha_1}} + (\chi_{T2} - \chi_{T1}) \frac{(\omega \tau_2)^{1-\alpha_2} \cos(\pi \alpha_2/2)}{1 + 2(\omega \tau_2)^{1-\alpha_2} \sin(\pi \alpha_2/2) + (\omega \tau_2)^{2-2\alpha_2}}$$

for $\omega = 2\pi f$.

Table S11 Parameters of the extended Deby	e model for 1 (two relaxation	processes) at $B_{\rm DC} = 0.2$ T. ^a
---	-------------------------------	--

T/K	χs	χ_{T1}	α_1	$ au_1$ /10 ⁻³ s	X T2	α_2	$ au_2 / 10^{-6} \mathrm{s}$	$R(\chi')/\%$	$R(\chi'')/\%$
1.9	1.67(6)	4.44(35)	0.20(3)	46.7(46)	11.14(3)	0.32(2)	1644(119)	0.64	1.8
2.1	1.52(3)	4.03(24)	0.30(2)	34.8(36)	10.39(2)	0.31(1)	1530(66)	0.23	1.2
2.3	1.48(2)	3.40(22)	0.32(2)	36.5(51)	9.70(2)	0.29(1)	1470(53)	0.32	0.72
2.5	1.47(3)	3.15(22)	0.33(4)	33.6(65)	9.03(3)	0.22(1)	1040(30)	0.44	1.8
2.7	1.46(3)	2.85(11)	0.31(3)	33.5(37)	8.44(2)	0.14(1)	630(10)	0.37	1.7
2.9	1.40(2)	2.60(5)	0.30(2)	20.6(17)	7.92(1)	0.07(1)	320(1)	0.29	0.87
3.1	1.40	2.41(2)	0.33(2)	29.5(13)	7.51(1)	0.04(1)	151(1)	0.26	0.71
3.3	1.40	2.17(3)	0.32(3)	34.4(29)	7.12(2)	0.04(1)	72(1)	0.45	1.2
3.5*	1.40	2.03(3)	0.36(3)	32.0(30)	6.73(1)	0.00(1)	36(1)	0.34	3.2
3.7*	1.40	1.86(3)	0.33(5)	33.6(43)	6.41(2)	0.07(2)	16(1)	0.42	4.8
3.9*	1.40	1.71(3)	0.26(7)	54.5(85)	6.13(1)	0.28(4)	4.37(74)	0.45	6.2
4.1*	1.40	1.64(3)	0.28(7)	70.4(121)	5.89(1)	0.41(6)	0.76(36)	0.35	8.9
4.3**	1.40	1.53(4)	0.17(16)	95(23)	5.65(1)	0.71(9)	0.0026(74)	0.39	6.5

^a SI unit for the molar magnetic susceptibility [10⁻⁶ m³ mol⁻¹]. Standard deviations in parentheses (last digit). R – discrepancy factor of the fit for dispersion χ' and absorption χ'' , respectively.

Notes to the fitting procedure

The fitting is considered as reliable when experimental data of χ ' pass through both maxima.

* If not, the points in the Arrhenius-like graph are marked by empty symbols and they do not enter the equation for the relaxation time. In such a case the adiabatic susceptibility χ_S becomes unstable during the fitting procedure and correlated with the isothermal susceptibility χ_{T1} for the first (faster) process; this needs be fixed either to the best estimate or to the zero.

** The fitting was finished for those temperatures when the standard deviations of parameters are higher than the absolute values of them.

Notice: 2.03(3) means 2.03 □ 0.03; 32.0(29) means 32.0 □ 2.9; 70.4(121) means 70.4 □ 12.1.

I abit D.			Attenued De	bye model i		ciaxation p	10005505 <i>)</i> at	$D_{\rm DC}$ 0.5 I	•
<i>T</i> /K	χs	χ_{T1}	α_1	$ au_1$ /10 ⁻³ s	X T2	α_2	$ au_2 / 10^{-6} \mathrm{s}$	$R(\chi')/\%$	$R(\chi')/\%$
1.9	0.92(6)	6.14(21)	0.30(1)	70.9(31)	10.94(4)	0.29(2)	859(37)	0.53	2.4
2.1	0.97(2)	5.53(9)	0.32(1)	57.3(15)	10.19(2)	0.25(1)	862(15)	0.30	0.64
2.3	0.92(9)	4.37(33)	0.27(3)	53.8(59)	9.39(6)	0.25(3)	893(57)	1.3	1.2
2.5	0.93(3)	4.06(10)	0.31(1)	47.8(21)	8.90(2)	0.19(1)	715(12)	0.41	1.3
2.7	0.99(2)	3.73(7)	0.33(1)	41.4(16)	8.35(2)	0.12(1)	495(5)	0.33	1.5
2.9	0.95(2)	3.24(5)	0.32(1)	37.6(9)	7.86(1)	0.07(1)	276(2)	0.28	0.95
3.1	0.95(5)	2.86(6)	0.33(1)	38.3(11)	7.44(1)	0.04(1)	143(2)	0.33	0.81
3.3	0.95	2.49(3)	0.34(2)	41.2(16)	7.07(1)	0.05(1)	71.1(6)	0.40	1.9
3.5*	0.95	2.16(3)	0.34(2)	45.7(21)	6.72(2)	0.08(1)	33.4(6)	0.38	2.7
3.7*	0.95	1.89(4)	0.33(3)	52.8(44)	6.41(2)	0.21(3)	13.2(10)	0.57	5.2
3.9*	0.95	1.66(3)	0.30(3)	61.3(49)	6.11(2)	0.31(4)	4.11(71)	0.46	6.0
4.1*	0.95	1.48(4)	0.30(5)	69.4(82)	5.85(2)	0.50(7)	0.55(33)	0.46	8.7
4.3**	0.95	1.32(4)	0.27(5)	79.6(88)	5.61(1)	0.64(7)	0.032(42)	0.35	5.7

Table S12 Parameters	of the extended Deb	ve model for 1	two relaxation	processes)	at $B_{\rm DC} = 0.3 {\rm T}$
	of the extended Dec	ye model for i t	two relaxation	p100003505)	(u, D) = 0.51

Fig. S11 Magnetic data for $2 = [Co(biq)Br_2]$.

Lukáš Smolko, Juraj Černák, Michal Dušek, Jozef Miklovič, Ján Titiš, Roman Boča

Table S	Table S13 Parameters of the extended Debye model for 2 (two relaxation processes) at $B_{DC} = 0.2$ T.								
T/K	χs	χ_{T1}	α_1	$ au_1$ /10 ⁻³ s	χ_{T2}	α_2	$ au_2 / 10^{-6} m s$	$R(\chi')/\%$	$R(\chi'')/\%$
1.9	2.40(5)	4.77(21)	0.25(3)	32.1(31)	10.74(2)	0.25(1)	830(30)	0.49	1.7
2.1	2.17(4)	4.06(20)	0.34(3)	30.5(45)	9.99(2)	0.24(1)	768(22)	0.37	1.4
2.3	2.08(3)	3.68(15)	0.36(3)	30.9(45)	9.37(2)	0.19(1)	622(11)	0.32	1.6
2.5	2.05(4)	3.44(11)	0.35(3)	25.7(31)	8.71(2)	0.10(1)	377(5)	0.37	1.8
2.7	2.05(4)	3.19(8)	0.34(3)	24.0(19)	8.18(1)	0.04(1)	197(2)	0.33	1.4
2.9	2.00	2.93(4)	0.37(3)	22.0(20)	7.72(2)	0.02(1)	89.1(7)	0.42	0.98
3.1	2.00	2.77(2)	0.40(2)	24.5(15)	7.29(1)	0.02(1)	39.4(4)	0.23	1.3
3.3	2.00	2.57(2)	0.38(3)	32.4(26)	6.91(1)	0.05(2)	16.4(6)	0.26	2.9
3.5*	2.00	2.42(3)	0.38(5)	41.6(60)	6.56(2)	0.20(5)	4.96(82)	0.35	4.8
3.7*	2.00	2.27(3)	0.29(7)	62(10)	6.26(1)	0.51(8)	0.22(19)	0.31	10
3.9**	2.00	2.14(6)	0.23(15)	82(14)	5.99(3)	0.80(11)	0.00002(16)	0.23	14
Table S	S14 Param	eters of the	extended I	Debye mode	l for 2 (two	relaxation	processes) at E	$B_{\rm DC} = 0.3 {\rm T}$	•
T/K	χs	χ_{T1}	α_1	$ au_1 / 10^{-3} m s$	χ_{T2}	α_2	$ au_2$ /10 ⁻⁶ s	$R(\chi')/\%$	$R(\chi'')/\%$
1.9	1.36(7)	5.53(16)	0.28(1)	46.5(21)	10.42(3)	0.19(2)	467(13)	0.67	2.2
2.1	1.36(5)	5.24(17)	0.36(2)	36.3(23)	9.85(4)	0.14(2)	437(10)	0.58	2.1
2.3	1.30(5)	4.47(13)	0.35(2)	36.5(22)	9.19(3)	0.13(1)	384(7)	0.55	1.9
2.5	1.22(5)	3.56(9)	0.28(1)	35.3(15)	8.51(2)	0.11(1)	291(4)	0.43	1.9
2.7	1.22(6)	3.35(9)	0.36(1)	32.6(14)	8.10(2)	0.06(1)	165(2)	0.36	1.9
2.9	1.22(13)	2.99(15)	0.35(1)	30.6(13)	7.62(2)	0.03(1)	81.5(29)	0.35	2.0
3.1	1.20	2.60(3)	0.35(1)	30.2(11)	7.20(1)	0.05(1)	38.4(5)	0.34	1.9
3.3	1.20	2.37(4)	0.40(2)	38.9(25)	6.89(2)	0.06(2)	17.3(8)	0.40	4.8
3.5*	1.20	2.07(4)	0.38(3)	49.9(42)	6.55(2)	0.27(5)	4.00(80)	0.43	4.7
3.7*	1.20	1.84(3)	0.32(3)	58.3(46)	6.22(1)	0.35(7)	1.00(49)	0.36	7.2
3.9**	1.20	1.58(7)	0.25(7)	75.2(74)	5.96(3)	0.76(10)	0.00078(288)	0.33	8.5
4.1**	1.20	1.48(10)	0.25(12)	77.5(117)	5.71(6)	0.80(21)	0.00001(17)	0.40	14

ESI - Electronic Supplementary Information Three Tetracoordinate Co(II) Complexes [Co(biq) X_2] (X = Cl, Br, I) with Easy-Plane Magnetic Anisotropy as Field-Induced Single-Molecule Magnets Lukáš Smolko, Juraj Černák, Michal Dušek, Jozef Miklovič, Ján Titiš, Roman Boča

Fig. S12 Magnetic data for $\mathbf{3} = [Co(biq)I_2]$.

Three Tetracoordinate Co(II) Complexes $[Co(biq)X_2]$ (X = Cl, Br, I) with Easy-Plane Magnetic Anisotropy as Field-Induced Single-Molecule Magnets

Lukáš Smolko, Juraj Černák, Michal Dušek, Jozef Miklovič, Ján Titiš, Roman Boča

Table S15 Parameters of the extended Debye model for 3 (two relaxation processes) at $B_{DC} = 0.2$ T.									
T/K	χs	χ_{T1}	α_1	$\tau_1 / 10^{-3} \text{ s}$	X T2	α_2	$ au_2 / 10^{-6} m s$	$R(\chi)/\%$	$R(\chi'')/\%$
1.9	5.19(5)	5.93(10)	0.42(5)	45.4(75)	8.91(2)	0.17(2)	201(5)	0.26	2.2
2.1	4.78(5)	5.40(12)	0.49(6)	37.9(11)	8.31(3)	0.15(2)	178(4)	0.28	1.9
2.3	4.42(5)	4.87(9)	0.44(6)	46.0(98)	7.81(2)	0.15(1)	155(4)	0.25	1.4
2.5	4.19(6)	4.60(10)	0.49(8)	45.4(135)	7.36(2)	0.12(2)	133(4)	0.25	2.4
2.7	3.91(7)	4.19(9)	0.41(7)	59.7(130)	6.93(1)	0.13(1)	103(4)	0.26	1.3
2.9	3.42(10)	3.63(11)	0.35(6)	64.2(105)	6.56(1)	0.17(1)	61.2(36)	0.17	2.1
3.1*	2.47(46)	2.61(47)	0.22(12)	160(38)	6.25(1)	0.25(2)	24.6(58)	0.26	3.7
3.3*	1.60	1.70(2)	0.23(14)	215(63)	5.94(1)	0.30(1)	9.38(43)	0.28	3.5
3.5*	1.10	1.18(1)	0.16(15)	141(41)	5.67(1)	0.29(2)	4.69(41)	0.32	3.8
3.7*	1.10	1.16(1)	0.09(17)	170(49)	5.44(1)	0.37(2)	1.85(28)	0.26	7.7
3.9*	1.10	1.15(1)	0.04(20)	230(73)	5.23(1)	0.42(2)	0.784(179)	0.23	12
4.1*	1.10	1.13(1)	0	300(226)	5.02(1)	0.56(5)	0.334(201)	0.45	18

Table S16 Parameters of the extended Debye model for **3** (two relaxation processes) at $B_{DC} = 0.3$ T.

					(L /	20	
T/K	χs	χ_{T1}	α_1	$\tau_1 / 10^{-3} \text{ s}$	X T2	$lpha_2$	$ au_2 / 10^{-6} m s$	$R(\chi')/\%$	$R(\chi')/\%$
1.9	3.11(19)	4.20(24)	0.26(4)	51.8(43)	8.59(2)	0.30(2)	110(9)	0.45	2.5
2.1	3.08(15)	4.14(20)	0.38(4)	51.2(61)	8.13(3)	0.30(2)	107(7)	0.38	3.1
2.3	3.03(22)	4.02(31)	0.45(6)	49.8(121)	7.73(5)	0.19(4)	100(9)	0.64	2.7
2.5	2.49(14)	3.16(17)	0.37(3)	63.1(62)	7.24(1)	0.23(2)	75.2(48)	0.30	1.6
2.7	2.46(21)	3.06(24)	0.38(5)	62.7(92)	6.87(2)	0.21(2)	65.4(64)	0.38	2.7
2.9	1.53(37)	2.01(39)	0.38(5)	65.1(89)	6.50(2)	0.23(2)	34.5(52)	0.29	2.2
3.1*	1.0	1.34(3)	0.32(7)	101(17)	6.19(2)	0.30(1)	17.4(6)	0.36	4.2
3.3*	1.0	1.25(3)	0.30(9)	134(29)	5.91(2)	0.24(2)	10.4(6)	0.41	4.1
3.5*	1.0	1.19(3)	0.20(13)	162(42)	5.64(2)	0.37(3)	4.74(67)	0.49	10.9
3.7*	1.0	1.14(2)	0.13(9)	175(29)	5.40(1)	0.41(2)	2.45(31)	0.28	8.3
3.9*	1.0	1.10(1)	0.00(13)	172(33)	5.18(1)	0.46(3)	1.05(25)	0.34	11.7
4.1*	1.0	1.07(1)	0.00(20)	176(50)	4.98(1)	0.47(4)	0.583(228)	0.25	25.5

DC magnetic data fitting procedure

Spin Hamiltonian of the form

$$\hat{H}_{k,l} = D(\hat{S}_z^2 - \hat{S}^2/3)\mathbf{h}^{-2} + E(\hat{S}_x^2 - \hat{S}_y^2)\mathbf{h}^{-2} + \mu_{\rm B}B_m(g_x\sin\theta_k\cos\varphi_l\hat{S}_x + g_y\sin\theta_k\sin\varphi_l\hat{S}_y + g_z\cos\theta_k\hat{S}_z)\mathbf{h}^{-1}$$

has been applied in interpreting the magnetic data. The zero-field splitting (ZFS) is described by two parameters: D – the axial ZFS parameter, and E – the rhombic ZFS one, respectively. The Zeeman term needs averaging over a number of grid points (k, l) distributed uniformly over a sphere (210 points at the top hemisphere). The generated energy levels for three magnetic fields B_m enter the partition function from which the magnetization and magnetic susceptibility are obtained through the formulae of the statistical thermodynamics. The susceptibility data were corrected for the molecular-field correction (zj) and the temperature-independent magnetism χ_{TIM}

$$\chi_{\rm corr} = \chi_{\rm mol} / [1 - (zj)\chi_{\rm mol}] + \chi_{\rm TIM}$$

The latter term accounts for the uncompensated underlying diamagnetism and the temperatureindependent paramagnetism, along with the signal of the sample holder. The susceptibility and magnetization data sets have been fitted simultaneously by applying a joint error functional

$$F_2 = w_1 \left[(1/N) \sum_{i}^{N} \left| \frac{\chi_i^{\rm c} - \chi_i^{\rm o}}{\chi_i^{\rm o}} \right| \right] + w_2 \left[(1/K) \sum_{j}^{K} \left| \frac{M_j^{\rm c} - M_j^{\rm o}}{M_j^{\rm o}} \right| \right]$$

where w_1 and w_2 are postulated weights of the two data-sets. An advanced fitting procedure using a genetic algorithm has been applied.

DC magnetic data fitting with final negative D values

Complex	g_{iso}	D/hc	E/hc	χтім	zj/hc	$R(\chi)$	R(M)
		/cm ⁻¹	/cm ⁻¹	$/10^{-9} \text{ m}^3 \text{ mol}^{-1}$	/cm ⁻¹		
1	2.444	-9.00	-	-10.99	-0.02	0.046	0.025
2	2.363	-11.52	-	-4.12	-0.01	0.015	0.056
3	2.112	-9.25	-	-0.69	-0.04	0.011	0.042

 Table S17 Spin Hamiltonian parameters

Fig. S13 Best negative *D*-value fit of the DC magnetic data for 1.

Fig. S14 Best negative *D*-value fit of the DC magnetic data for 2.

Fig. S15 Best negative *D*-value fit of the DC magnetic data for 3.

Magnetic hyperfine structure for complex 1

Nucleus OCo: A:ISTP= 59 I= 3.5 P=125.8968 MHz/au** Q:ISTP= 59 I= 3.5 Q= 0.3800 barn	*3
ZORA HFC tensor (only A(iso) and A(dip) are corrected)	
Raw HFC matrix (all values in MHz):	
-36.7006 51.9452 -3.8193	
52.0685 -116.3598 -19.2705	
-3.8466 -19.2553 -40.5104	
A(FC) -132.4420 -132.4420 -132.4420	
A(SD) 45.2099 16.9425 -62.1524	
A(SO) 80.6611 72.8958 50.1981 $A(PC) = 67.92$	183
A(Tot) -6.5709 -42.6036 -144.3963 A(iso)= -64.52	236
Orientation:	
X 0.8215471 -0.3796460 -0.4253579	
Y 0.4502755 -0.0256002 0.8925226	
Z -0.3497319 -0.9247776 0.1499135	

Magnetic hyperfine structure for complex 2

-----Nucleus 2Co: A:ISTP= 59 I= 3.5 P=125.8968 MHz/au**3 Q:ISTP= 59 I= 3.5 Q= 0.3800 barn -----ZORA HFC tensor (only A(iso) and A(dip) are corrected) Raw HFC matrix (all values in MHz): -50.9393 -28.6726 3.8706 -51.5344 -104.4478 -19.9140 4.2836 -20.0672 -35.8193 A(FC) -128.5796 -128.5796 -128.5796 A(SD) 40.8689 14.8904 -55.7592 A(SO) 89.3705 76.0472 51.3815 A(PC) = 72.2664A(Tot) 1.6597 -37.6421 -132.9573 A(iso)= -56.3132 Orientation: Х 0.8217454 0.3755206 0.4286243 Y -0.4591949 -0.0090572 0.8882894

Z 0.3374531 -0.9267698 0.1649945

Magnetic hyperfine structure for complex 3

Nucleus 2Co: A:ISTP= 59 I= 3.5 P=125.8968 MHz/au**3 Q:ISTP= 59 I= 3.5 Q= 0.3800 barn
ZORA HFC tensor (only A(iso) and A(dip) are corrected) Raw HFC matrix (all values in MHz):
-10.3378 -51.5964 5.3985 -53.5521 -88.6422 -20.9859 6.8063 -22.2006 -25.2497
A(FC) -122.1247 -122.1247 -122.1247 A(SD) 36.0416 12.7297 -48.7713 A(SO) 107.1352 82.1614 52.8478 A(PC) = 80.7148
$\overline{A(Tot)}$ 21.0521 -27.2336 -118.0482 $A(iso)$ = -41.4099
Orientation: X 0.8068735 0.4155197 0.4198792 Y -0.4552053 -0.0156526 0.8902489 Z 0.3764882 -0.9094495 0.1765171

Compound	Chromophore	D/cm^{-1}	U/cm^{-1}	Ref.
			$(B_{\rm DC}/{\rm T})$	
[CoL1Cl ₂]	$\{CoN_3Cl_2\}$	151	9.4 (0.1)	[1]
[Co(<i>terpy</i>)Cl ₂]	$\{CoN_3Cl_2\}$	100	19.4 (0.06)	[2]
<i>cis</i> -[Co(<i>dmphen</i>) ₂ (NCS) ₂]	$\{CoN_6\}$	98	18.1 (0.25)	[3]
$[Co(acac)_2(H_2O)_2]$	${CoO_6}$	57	~14 - 17	[4]
$[Co(abpt)_2(tcm)_2]$	$\{CoN_6\}$	48	59.9 (0.3)	[5]
$[Co(\mu-L2)(\mu-OAc) Y(NO_3)_2]$	$\{CoO_3N_3\}$	41.7	15.7 (0.1)	[6]
$[Co(H_2 dapb)(H_2 O)(NO_3)](NO_3)$	$\{CoO_4N_3\}$	32.4	56.3 (0.1)	[7]
$[(L3)_4Co^{II}Co^{III}_2(H_2O)_2](NO_3)$	$\{CoO_4N_2\}$	31.9	5.6 (0.1)	[8]
$[Co(dapb)(im)_2]$ ·H ₂ O	$\{CoO_2N_5\}$	24.8	62.3 (0.1)	[7]
$[CoL4(H_2O)_2]Cl_2 \cdot 4H_2O$	$\{CoO_2N_5\}$	24.6	20.7 (0.1)	[7]
$K[Co(N[CH_2C(O)NC(CH_3)_3]_3)]$	$\{CoN_4\}$	16	8.7 (0.15)	[9]
[CoL5Cl ₂ (MeCN)]	{CoONCl ₂ }	15.6	10.3 (0.25)	[10]
[CoCl(3G)](CF ₃ SO ₃)	{CoN ₃ Cl}	12.7	24 (0.15)	[11]
[CoL5Br ₂ (MeCN)]	{CoONBr ₂ }	11.2	8.2 (0.25)	[10]
[Co(<i>dmphen</i>)Br ₂]	$\{CoN_2Br_2\}$	10.6	22.9 (0.1)	[12]

Table 510 Withfuller at Co(11) Swith Swith positive D value.	Table S18	3 Mononuclear	Co(II) SMM	s with positiv	ve D values
--	-----------	---------------	------------	----------------	-------------

L1 = 4'-1-heptynyl-2',6'-dipyrazolyl-pyridine; *terpy* = terpyridine; *dmphen* = 2,9-dimethyl-1,10phenanthroline; *abpt* = 4-amino-3,5-bis(2-pyridyl)-1,2,4-triazole; tcm = tricyanomethanide anion; H2L2 = N,N',N''-trimethyl-N,N''-bis(2-hydroxy-3-methoxy-5-methylbenzyl)-diethylenetriamine; H2dapb = 2,6-diacetylpyridine bis(benzoyl hydrazine; HL3 = (E)-N'-(pyridin-2ylmethylene)pyrazine-2-carbohydrazide; L4 = 2,13-dimethyl-3,6,9,12-tetraaza-1(2,6)pyridinacyclotridecaphane-2,12-diene, im = imidazole; L5 = 2,3-diphenyl-1,2,3,4-tetrazolium-5olate; 3G = 1,1,1-tris-[2N-(1,1,3,3-tetramethylguanidino)methyl]ethane.

References:

[1] C. Rajnak, J. Titis, O. Fuhr, M. Ruben, R. Boca, Inorg. Chem. 53 (2014)8200–8202.

[2] F. Habib, O.R. Luca, V. Vieru, M. Shiddiq, I. Korobkov, S.I. Gorelsky, M.K. Takase, L.F.

Chibotaru, S. Hill, R.H. Crabtree, M. Murugesu, Angew. Chem. Int. Ed. Engl.52 (2013) 11290–11293.

Three Tetracoordinate Co(II) Complexes [Co(biq) X_2] (X = Cl, Br, I) with Easy-Plane Magnetic Anisotropy as Field-Induced Single-Molecule Magnets

Lukáš Smolko, Juraj Černák, Michal Dušek, Jozef Miklovič, Ján Titiš, Roman Boča

[3] J. Vallejo, I. Castro, R. Ruiz-Garcia, J. Cano, M. Julve, F. Lloret, G. De Munno, W.

Wernsdorfer, E. Pardo, J. Am. Chem. Soc., 134 (2012) 15704-15707.

[4] S. Gomez-Coca, A. Urtizbarea, E. Cremades, P.J. Alonso, A. Camón, E. Ruiz, F. Luis, Nat. Commun., 5 (2014) 4300.

- [5] R. Herchel, L. Váhovská, I. Potocnák, Z. Trávnícek, Inorg. Chem., 53 (2014) 5896-5898.
- [6] E. Colacio, J. Ruiz, E. Ruiz, E. Cremades, J. Krzystek, S. Carretta, J. Cano, T. Guidi, W.

Wernsdorfer, E.K. Brechin, Angew. Chem. Int. Ed., 52 (2013) 9130-9134.

[7] X.-C. Huang, C. Zhou, D. Shao, X.-Y. Wang, Inorg. Chem., 53 (2014) 12671-12673.

- [8] D. Wu, X. Zhang, P. Huang, W. Huang, M. Ruan, Z.W. Ouyang, Inorg. Chem., 52 (2013) 10976-10982.
- [9] S. Gómez-Coca, E. Cremades, N. Aliaga-Alcalde, E. Ruiz, J. Am. Chem. Soc., 135 (2013) 7010-7018.
- [10] S. Vaidya, A. Upadhyay, S.K. Singh, T. Gupta, S. Tewary, S.K. Langley, J.P.S. Walsh, K.S.

Murray, G. Rajaraman, M. Shanmugam, Chem. Commun., Chem. Commun., 2015, 51, 3739 - 3742.

[11] J.M. Zadrozny, J. Liu, N.A. Piro, C.J. Chang, S. Hill, J.R. Long, Chem. Commun., 48 (2012) 3927-3929.

[12] W. Huang, T. Liu, D. Wu, J. Cheng, Z.W. Ouyang, C. Duan, Dalton Trans., 42 (2013) 15326-15331.