Nanocrystals of the Fe(phen)₂(NCS)₂ prototypical compound and the size-dependent spin-crossover characteristics

J. Laisney,^a A. Tissot,^a G. Molnar,^b L. Rechignat,^b E. Rivière,^a F. Brisset,^a A. Bousseksou^b

and M.-L. Boillot*a

¹ Université Paris Sud, ICMMO-ECI, UMR CNRS 8182, Bât. 420, 15 Rue G. Clémenceau, 91405

Orsay, France. marie-laure.boillot@u-psud.fr

^b LCC, UPR CNRS 8241, Route de Narbonne, 31077 Toulouse cedex 04, France.

Electronic supplementary information

Table S1: Selection of Bragg peaks extracted from powder X-ray diffractograms collected at RT.

Table S2: Raman frequencies of vibrational modes characterizing the low- and high-temperature phases of **2**.

Table S3: Comparison between the HS fraction determined from magnetic and Mössbauer measurements and the normalized areas of the vibrational peaks assigned to HS species.

Figure S1: Powder X-ray diffractograms at ambient temperature of polycrystalline powders of 1 (dehydrated form), 2 (prepared by thermolysis) and of micro- and nanoparticles of 1 and 2.

Figure S2: IR spectra at ambient temperature of the polycrystalline sample of 1 before/after thermolysis and of micro- and nanoparticles of 1 and 2.

Figure S3: TEM image of the $[1.6 (0.4)]^2 \ge 0.35 (0.16) \ \mu\text{m}^3$ particles of Fe(phen)₂(NCS)₂ formed by precipitation of **1** in methanol. IR spectrum of particles.

Figure S4: TEM image of the 110 (30) nm spherical particles (1e) of $[Fe(phen)_3](NCS)_2$. IR spectrum in the 2000-2100 cm⁻¹ region, powder X-ray diffractograms of particles.

Figure S5: TEM images and size-distribution of particles before (1c) and after (2c) thermolysis and redispersion in butanol. Related IR spectra in the 2060 cm⁻¹ region.

Figure S6: Temperature dependence of $\chi_M T$ of the polycrystalline sample of Fe(phen)₂(NCS)₂ prepared by thermolysis (2) as well as the one of 2a microparticles of Fe(phen)₂(NCS)₂.

Figure S7: Influence of the polymer (PEG) used for the particles dispersion on the spincrossover curve of microparticles of $Fe(phen)_2(NCS)_2$ (2a).

Figure S8: ⁵⁷Fe Mössbauer spectra of **2** (bulk) collected at 300 and 80 K.

Figure S9: Expansion of the Raman spectra recorded between 180 and 140 K for all the in-PEG dispersed particles of Fe(phen)₂(NCS)₂.

Figure S10: Variable-temperature IR spectra of 29 nm nanoparticles (**2c**) and for comparison purpose, superimposition with the RT spectrum of PEG used as dispersing polymer.

	Selection of Bragg peaks: $2\theta(^{\circ})$
1 (hydrated form)	9.6, 10.1, 10.8, 12.9, 14.8, 18.1, 19.9, 20.0,
	21.121.4, 21.7, 21.9, 22.9 and 23.4
1 (dehydrated form)	9.6, 9.7, 10.0, 10.8, 12.6, 12.9, 14.0, 14.3,
	14.7, 15.1, 16.2
1c (in PEG)	~9.7, 10.0, 12.9
1d (in PEG)	~9.6, 9.9, 12.8
1e	9.5, 9.9, 10.8 and 12.7
2 (thermolysis)	10.1, 11.0, 12.2, 15.0, 16.8, 17.5, 18.8, 19,
	22.0, 22.6 and 23.3
2a	10.2, 11.0, 12.1, 18.8
2b (in PEG)	10.2, 11.1, 12.2
2c , 2d (in PEG)	~11.0, 12.1

 Table S1: Selection of Bragg peaks extracted from powder X-ray diffractograms collected at RT.

Fe(phen) ₂ (NCS) ₂		Fe(phen) ₂ (NCS) ₂ (Bulk)		[Fe(phen) ₃](NCS) ₂
Litterature ¹		(2)		(1)
HS (300 K)	LS (100 K)	HS (200 K)	LS (150 K)	300 K
	I			157
188		181	(185)	
				208
224 (vFe-N _{phen})		224		
	251	(251)	255	
$262(vFe-N_{NCS})$		261		
285		286		
	300		301	301
	312		315	316
	367 (vFe-N _{phen})		370	371
	377 (vFe-N _{phen})		380	
408		407		
422		420		
	431		435	
	459		441	441
	469		465	466
	477		480	
	494		498	499
	728			
				737
				2053 (vNC _{NCS})
2070 (vNC _{NCS})	2114	2074	2119	

Table S2: Raman frequencies of vibrational modes characterizing the low- and high-temperature phases of **2**. For comparison purpose, corresponding frequencies observed for **1** at 300 K (A. Bousseksou et al., *Chem. Phys. Lett.*, 2000, **318**, 409).

Sample	Raman		Infrared	Magnetism	Mössbauer
	200	200	100	250	200
I (K)	500	200	100	230	300
Bulk	0.95	0.85	-	0.96	0.95
1.4 µm	-	-	-	0.90	0.90
1.4 µm*	0.98	0.85	-	-	-
650 nm*	1	0.95	-	-	-
29 nm*	0.95	0.62	< 0.3	-	-
25 nm*	0.91	0.67	-	-	-

Table S3: Comparison between the HS fraction determined from magnetic and Mössbauer measurements and the normalized areas of the vibrational peaks assigned to HS species.

Magnetic measurement: HS fraction estimated from $x_{HS} \sim \chi_M T/3.26$ (from data in E. König et al *Inorg. Chem.* 1967, **6**, 48); Mössbauer measurement: Normalized area of the HS doublet; Raman or IR measurement: Normalized area of HS vibrational peaks ($A_{HS}/(A_{HS}+A_{LS})$): A_{HS} peaks at 2061/2074 or 2074 cm⁻¹, A_{LS} at 2105, 2113 cm⁻¹ or 2119 cm⁻¹ from Raman or IR data respectively;. * highly diluted particles in PEG8000;

Figure S1: Powder X-ray diffractograms at ambient temperature of polycrystalline powders of **1** (dehydrated form), **2** (prepared by thermolysis) and of micro- and nanoparticles of **1** and **2**: 25 nm (1c), 16 nm (1d), 1.4 μ m (2a), 650 nm (2b), 29 nm (2c), 20 nm (2d). The peaks assigned to PEG are marked with (*). **2**^{calc}: calculated diffractogram of Fe(phen)₂(NCS)₂ (polymorph II, 293 K) from B. Gallois et al *Inorg. Chem.* 1990, **29**, 1152.

Figure S2: IR spectra at ambient temperature of the polycrystalline powder of 1 before/after thermolysis, micro- and nanoparticles of 1 (inset, 16 (1d) and 25 nm (1c)) and 2 (1.4 μ m (2a) and 650 nm (2b)). (*) Particles dispersed in PEG, peak assigned to PEG.

Figure S3: TEM image of the $[1.6 (0.4)]^2 \ge 0.35 (0.16) \ \mu\text{m}^3$ particles of Fe(phen)₂(NCS)₂ formed at room temperature by spontaneous precipitation of **1** in methanol (c= 1.4 x 10⁻² M). IR spectrum of particles.

Figure S4: TEM image of the 110 (30) nm spherical particles (1e) of $[Fe(phen)_3](NCS)_2$ isolated from the mixture of 1 and an excess of phen in methanol at 20°C. IR spectrum in the 2000-2100 cm⁻¹ region and powder X-ray diffractograms of particles at RT. (*) Specific peaks of PEG.

Figure S5: TEM images and related size-distribution of the 25 (3) nm particles of $Fe(phen)_2(NCS)_2$ before (1c) and after (2c) thermolysis and redispersion in butanol. RT IR spectra in the 2060 cm⁻¹ region, showing the NC stretching peaks of the NCS groups for both samples. The shift and the splitting of the frequency initially centered at 2050 cm⁻¹ for $[Fe(phen)_3](NCS)_2$ into 2074 and 2061 cm⁻¹ are typical for the coordination of NCS anion in Fe(phen)_2(NCS)_2.

Figure S6: Temperature dependence of $\chi_M T$ of the polycrystalline sample of Fe(phen)₂(NCS)₂ prepared by thermolysis as well as the one of [1.4 (0.4)]² x 0.35 (0.14) µm³ microparticles of Fe(phen)₂(NCS)₂. The data were collected at a scanning rate of 1 Kmin⁻¹.

Figure S7: Influence of the polymer (PEG) used for the particles dispersion on the spincrossover curve of microparticles of $Fe(phen)_2(NCS)_2$ (2a).

Figure S8: ⁵⁷Fe Mössbauer spectra of **2** (bulk) collected at 300 and 80 K. The experimental data collected at 300 K were analyzed either with a HS (300 K) or a mixture of HS and LS components (300 K a). Both procedures lead to satisfying R factors.

Figure S9 : Expansion in the 1500-2500 cm⁻¹ range of the Raman spectra recorded between 180 and 140 K for all the in-PEG dispersed particles of Fe(phen)₂(NCS)₂.

Figure S10: Variable-temperature IR spectra of 29 nm nanoparticles (**2c**) and for comparison purpose, superimposition with the RT spectrum of PEG used as dispersing polymer.