CO₂ Adsorption of Three Isostructural Metal-Organic Frameworks Depending on the Incorporated Highly Polarized Heterocyclic Moieties

Chengling Song,^{*a*} Yajing Ling,^{*a*} Yajing Ling,^{*a*} Liting Jin,^{*a*} Mingxing Zhang,^{*b*} De-Li Chen,^{c^*} and Yabing He^{a^*}

^{*a*} College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China. E-mail: heyabing@zjnu.cn

^b State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.

^c Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University. E-mail: chendl@zjnu.cn

Fig. S1 PXRD patterns of as-synthesized MOFs (**ZJNU-41**, **ZJNU-40** and **ZJNU-42**) together with the ones simulated from cif files. Calculated PXRD patterns were generated using Mercury 1.4.1.

Fig. S2 TGA curves of as-synthesized MOFs (ZJNU-41 (red), ZJNU-40 (green) and ZJNU-42 (blue)), as well as activated MOFs (ZJNU-41a (magenta), ZJNU-40a (olive) and ZJNU-42a (navy)) under a nitrogen atmosphere with a heating rate of 5 $^{\circ}$ C min⁻¹.

 $S_{\text{BET}} = \frac{1}{(5.17949 \times 10^{-7} + 0.00172)} \\ \frac{22414 \times 6.023 \times 10^{23} \times 0.162 \times 10^{-18}}{S_{\text{Langmuir}}} = \frac{(1/0.00155)}{22414 \times 6.023 \times 10^{23} \times 0.162 \times 10^{-18}} \\ = 2809 \text{ m}^2 \text{ g}^{-1}$

Fig. S3 BET and Langmuir plots for ZJNU-41a.

 $S_{\text{BET}} = \frac{1}{(6.92533 \times 10^{-7} + 0.0021)}{22414 \times 6.023 \times 10^{23} \times 0.162 \times 10^{-18}} = 2072 \text{ m}^2 \text{ g}^{-1}$ $S_{\text{Langmuir}} = \frac{(1/0.00185)}{22414 \times 6.023 \times 10^{23} \times 0.162 \times 10^{-18}} = 2353 \text{ m}^2 \text{ g}^{-1}$

Fig. S4 BET and Langmuir plots for ZJNU-40a.

 $S_{\text{BET}} = (1/(2.14515 \times 10^{-6} + 0.0076)/22414) \times 6.023 \times 10^{23} \times 0.162 \times 10^{-18} = 572 \text{ m}^2 \text{ g}^{-1}$ $S_{\text{Langmuir}} = (1/0.00676)/22414 \times 6.023 \times 10^{23} \times 0.162 \times 10^{-18} = 644 \text{ m}^2 \text{ g}^{-1}$

Fig. S5 BET and Langmuir plots for ZJNU-42a.

Fig. S6 CO₂ adsorption-desorption isotherms of **ZJNU-41a** at 278 K, 288 K and 298 K. Solid and open symbols represent adsorption and desorption, respectively.

Fig. S7 CO₂ adsorption-desorption isotherms of **ZJNU-40a** at 278 K, 288 K and 298 K. Solid and open symbols represent adsorption and desorption, respectively.

Fig. S8 CO₂, CH₄ and N₂ adsorption-desorption isotherms of **ZJNU-42a** at 288 K and 298 K. Solid and open symbols represent adsorption and desorption, respectively.

Fig. S9 Geometric PSD as a function of the pore diameter d (Å) for **ZJNU-40** (black line), **ZJNU-41** (red line), and **ZJNU-42** (blue line), which were calculated using poreblazer_v3.0.2 software.¹

Fig. S10 FTIR spectra.

Fig. S11 ¹H NMR spectra (DMSO- d_6 , 600.1 MHz) and ¹³C NMR (DMSO- d_6 , 150.9 MHz) of the organic building blocks H₄L1.

Fig. S12 ¹H NMR (DMSO- d_6 , 600.1 MHz) and ¹³C NMR (DMSO- d_6 , 150.9 MHz) spectra of the organic linker H₄L2.

Fig. S13 ¹H NMR (DMSO- d_6 , 600.1 MHz) and ¹³C NMR (DMSO- d_6 , 100.6 MHz) spectra of the organic linker H₄L3.

MOFs	ZJNU-41	ZJNU-42
Empirical formula	$C_{11}H_6CuNO_{5.5}$	$C_{22}H_{12}Cu_2N_2O_{10}Se$
Formula weight	303.72	670.39
Temperature (K)	100(2)	100(2)
Wavelength (Å)	0.71073	0.71073
Crystal system	Trigonal	Trigonal
Space group	<i>R</i> -3m	<i>R</i> -3m
Unit cell dimensions	a = 18.7632(7)	a = 18.554(5)
	<i>b</i> = 18.76320(10)	<i>b</i> = 18.554(5)
	c = 38.6558(13)	c = 38.822(8))
	$\alpha = 90^{\circ}$	$\alpha = 90^{\circ}$
	$\beta = 90^{\circ}$	$\beta = 90^{\circ}$
	$\gamma = 120^{\circ}$	$\gamma = 120^{\circ}$
Volume (Å ³)	11785.8(6)	11574(5)
Ζ	18	9
Calculated density (g cm ⁻³)	0.770	0.866
Absorption coefficient (mm ⁻¹)	0.845	1.562
<i>F</i> (000)	2804	522
θ range for data collection (°)	1.36 to 28.33	3.29 to 27.49
Limiting indices	$-23 \le h \le 25,$	$-20 \le h \le 24,$
	$-25 \le k \le 19,$	$-24 \le k \le 24,$
	$-51 \le l \le 39$	$-50 \le l \le 50$
Reflections collected / unique	28573 / 3569	37278 / 3226
	[R(int) = 0.0747]	[R(int) = 0.1544]
Completeness to θ	$\theta = 28.33, 99.9 \%$	$\theta = 27.49, 99.6 \%$
Refinement method	Full-matrix least-squares on F^2	Full-matrix least-squares on F^2
Data / restraints / parameters	3569 / 20 / 135	3226 / 27 / 145
Goodness-of-fit on F^2	1.026	1.619
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0399,$	$R_1 = 0.1500,$
	$wR_2 = 0.1272$	$wR_2 = 0.4195$
R indices (all data)	$R_1 = 0.0481,$	$R_1 = 0.1619,$
	$wR_2 = 0.1317$	$wR_2 = 0.4287$
Largest diff. peak	0.885 and -0.261	1.142 and -0.724
and hole (e.A ⁻³)		
CCDC	1413736	1413737

Table S1 Crystal data and structure refinement for **ZJNU-41** and **ZJNU-42**.

Reference

1. Sarkisov, L.; Harrison, A., Computational structure characterisation tools in application to ordered and disordered porous materials. *Molecular Simulation* **2011**, *37*, 1248-1257.