Supporting Information for:

Luminescent europium and terbium complexes of dipyridoquinoxaline and dipyridophenazine ligands as photosensitizing antenna: structures and biological perspectives

Srikanth Dasari and Ashis K. Patra*

Department of Chemistry

Indian Institute of Technology Kanpur, Kanpur-208016, Uttar Pradesh, India

Table of Contents:	Page
Figures and Tables	
Stability in Solution and Electrochemistry	
Figure S1: Time-dependent UV-visible spectral changes of complexes in DMF.	S5
Figure S2: Overlay of cyclic voltammograms of the Eu^{3+} in complex $[Eu(dpq)(NO_3)_3(DMF)_2]$ (1) in	S 6
DMF at different scan rates.	
Figure S3: Cyclic voltammograms of the complexes [Eu(dpq)(DMF) ₂ (NO ₃) ₃] (1) and	S 7
$[Eu(dppz)_2(NO_3)_3]$ (2) in DMF.	
Figure S4: Cyclic voltammograms of the complexes [Tb(dpq)(DMF) ₂ Cl ₃] (3) and	S 8
$[Tb(dppz)(DMF)_2Cl_3]$ (4) in DMF.	
Structural data	
Figure S5: Unit cell packing diagrams of complexes 1 (a) and 2 (b).	S9
Figure S6: Unit cell packing diagrams of complexes 3 (a) and 4 (b).	S9
Table S1: Selected crystallographic data and structure refinement parameters for the complexes 1-4.	S10
Table S2: Selected bond lengths (Å) and bond angles (deg) for $[Eu(dpq)(DMF)_2(NO_3)_3]$ (1).	S11
Table S3: Selected Bond Lengths (Å) and Bond Angles (deg) for [Eu(dppz) ₂ (NO ₃) ₃]•dppz•Et ₂ O (2).	S12
Table S4: Selected Bond Lengths (Å) and Bond Angles (deg) for [Tb(dpq)(DMF) ₂ Cl ₃] (3).	S13
Table S5: Selected Bond Lengths (Å) and Bond Angles (deg) for [Tb(dppz)(DMF) ₂ Cl ₃] (4).	S14
Photophysical properties	
Luminescence properties of the complexes	S15
Figure S7. UV-visible spectra of dpq and dppz and excitation spectra of the complexes 1-4 in DMF.	S16
Figure S8. Time-delayed emission spectra of the complexes 1 and 3 in DMF.	S17
Figure S9. Time-delayed emission spectra of the complexes 1 and 2 in DMF.	S18
Figure S10. Time-delayed emission spectra of the complexes 3 and 4 in DMF.	S19
Figure S11. Time-delayed luminescence spectra of complexes 1 and 3 in DMF at $\lambda_{ex} = 365$ nm.	S20
Figure S12. Luminescence decay profile and lifetime measurement of the complexes $1 - 4$ in DMF.	S21
Figure S13. Luminescence decay profile and lifetime measurement of the complexes $1 - 4$ in H ₂ O	S22
and D_2O .	
Figure S14. Luminescence decay profile and lifetime measurement of the complexes $1 - 4$ in	S23
presence of CT-DNA in Tris-HCl buffer medium.	
Table S6. Luminescence lifetime (τ), determination of inner-sphere hydration number (q) and	S24

overall quantum yield ($\phi_{overall}$) of the complexes in H₂O and D₂O.

Table S7. Luminescence lifetime (τ), determination of inner-sphere hydration number (q) in S24 presence of CT-DNA.

DNA and BSA binding studies

Figure S15: Absorption spectral traces of complex 2 in Tris-buffer with increasing the	S25
concentration of CT-DNA. Inset shows the plot of $\Delta \varepsilon_{af} / \Delta \varepsilon_{bf}$ vs. [DNA].	
Figure S16: Absorption spectral traces of complex 3 in Tris-buffer with increasing the	S26
concentration of CT-DNA. Inset shows the plot of $\Delta \varepsilon_{af} / \Delta \varepsilon_{bf}$ vs. [DNA].	
Figure S17: Absorption spectral traces of complex 4 in Tris-buffer with increasing the	S27
concentration of CT-DNA. Inset shows the plot of $\Delta \varepsilon_{af} / \Delta \varepsilon_{bf}$ vs. [DNA].	
Figure S18: Emission spectral traces of ethidium bromide bound CT-DNA with varying	S28
concentration of complex 2 in 5 mM Tris buffer with inset showing (I/I_0) vs. [complex] plot.	
Figure S19: Emission spectral traces of ethidium bromide bound CT-DNA with varying	S29
concentration of complex 3 in 5 mM Tris buffer with inset showing (I/I_0) vs. [complex] plot.	
Figure S20: Emission spectral traces of ethidium bromide bound CT-DNA with varying	S30
concentration of complex 4 in 5 mM Tris buffer with inset showing (I/I_0) vs. [complex] plot.	
Figure S21: Emission spectral traces of bovine serum albumin (BSA) protein in the presence of	S31
increasing concentration of complex 2 with inset showing (I/I_0) vs. [complex] plot.	
Figure S22: Emission spectral traces of bovine serum albumin (BSA) protein in the presence of	S32
increasing concentration of complex 3 with inset showing (I/I_0) vs. [complex] plot.	
Figure S23: Emission spectral traces of bovine serum albumin (BSA) protein in the presence of	S33
increasing concentration of complex 4 with inset showing (I/I_0) vs. [complex] plot.	

DNA sensing studies

Figure S24. Time-gated emission spectral enhancement of complex 1 upon increasing concentrationS34of CT-DNA in Tris-HCl/NaCl buffer with inset showing the plot of I/I_0 vs. [DNA]/[1].S35Figure S25. Time-gated emission spectral enhancement of complex 2 upon increasing concentrationS35of CT-DNA in Tris-HCl/NaCl buffer with inset showing the plot of I/I_0 vs. [DNA]/[2].S36Figure S26. Time-gated emission spectral enhancement of complex 3 upon increasing concentrationS36of CT-DNA in Tris-HCl/NaCl buffer with inset showing the plot of I/I_0 vs. [DNA]/[3].S36

DNA cleavage studies

Figure S27. Gel electrophoresis diagram showing photocleavage of SC pUC19 DNA with	S37
complexes 1 and 2 on irradiation with UV-A light of 365 nm with varying exposure time.	
Figure S28. Gel electrophoresis diagram showing photocleavage of SC pUC19 DNA with	S38
complexes 3 and 4 on irradiation with UV-A light of 365 nm with varying exposure time.	
Figure S29. Bar diagram showing a comparison of the photocleavage of SC pUC19 DNA with	S39
complexes 1-4 on irradiation with UV-A light of 365 nm with varying exposure time.	
Figure S30: Gel electrophoresis diagram showing photocleavage of SC pUC19 DNA by complexes	S40
1 and 2 in presence of various additives.	
Figure S31: Gel electrophoresis diagram showing photocleavage of SC pUC19 DNA by complexes	S41
3 and 4 in presence of various additives.	

Figure S1: Time-dependent absorption spectral traces of complexes $[Eu(dpq)(DMF)_2(NO_3)_3]$ (1) (a) and $[Tb(dpq)(DMF)_2Cl_3]$ (3) (b) monitored for 4 h in DMF at 25 °C to access the stability of the complexes in solution.

Figure S2. Overlay of cyclic voltammograms of the Eu^{3+} in complex $[Eu(dpq)(NO_3)_3(DMF)_2]$ (1) in DMF and 0.1 M tertabutylammonium perchlorate (TBAP) as supporting electrolyte at scan speeds of 50, 100, 150 and 200 mV s⁻¹ at 25 °C.

Figure S3. Cyclic voltammograms of the complexes $[Eu(dpq)(DMF)_2(NO_3)_3]$ (1) and $[Eu(dppz)_2(NO_3)_3]$ (2) in DMF and 0.1 M tertabutylammonium perchlorate (TBAP) as supporting electrolyte at a scan speed of 50 mV s⁻¹ 25 °C.

Figure S4. Cyclic voltammograms of the complexes $[Tb(dpq)(DMF)_2Cl_3]$ (**3**) and $[Tb(dppz)(DMF)_2Cl_3]$ (**4**) in DMF and 0.1 M tertabutylammonium perchlorate (TBAP) as supporting electrolyte at a scan speed of 50 mV s⁻¹ at 25 °C.

Parameters [Eu(dpq)(DMF)_2 (Eu(dpq)(DMF)_2 (NO_3)_3] (1) [Eu(dpq)(DMF)_2 (2·dpq)(DMF)_2 (2·dpq)_2 ([Eu(dppz) ₂ (NO ₃)]· dppz· Et ₂ O (2·dppz·Et ₂ O)	[Tb(dpq)(DMF) ₂ Cl ₃] (3)	[Tb(dppz)(DMF) ₂ Cl ₃] (4)
Empirical formula	C ₂₀ H ₂₂ EuN ₉ O ₁₁	C ₈₀ H ₆₀ EuN ₁₉ O ₁₁	$C_{20}H_{22}Cl_3N_6O_2Tb$	$C_{24}H_{24}Cl_3N_6O_2Tb$
$M_{ m r}$	716.43	1615.43	643.71	693.76
crystal system	Monoclinic	Monoclinic	Monoclinic	Triclinic
space group	C2/c	C 2/c	C2/c	P-1
a (Å)	15.520(3)	26.496(4)	38.244(8)	7.909(2)
<i>b</i> (Å)	21.290(4)	15.353(4)	7.7857(16)	17.600(5)
<i>c</i> (Å)	8.3672(17)	17.486(4)	17.690(4)	20.746(6)
α (deg)	90.0	90.0	90.0	66.126(5)
β (deg)	109.75(3)	99.482(6)	104.67(3)	84.219(6)
$\gamma(\text{deg})$	90.0	90.0	90.0	80.941(6)
Volume (Å ³)	2602.1(9)	7016(3)	5095.5(18)	2605.6(12)
Ζ	4	4	8	4
$D_x ({ m Mg}{ m m}^{-3})$	1.829	1.529	1.678	1.769
μ (mm ⁻¹)	2.487	0.974	3.118	3.056
<i>F</i> (000)	1424	3296	2528	1368
<i>T (</i> K)	100(2)	100(2)	100(2)	100(2)
θ range for data collection (deg)	1.69 to 25.99°	1.54 to 26.00°	2.67 to 26.00	1.30 to 26.00
Limiting indices	$-19 \le h \le 19,$ $-26 \le k \le 26,$ $-10 \le l \le 10$	$-32 \le h \le 32$, $-18 \le k \le 18$, $-21 \le l \le 21$	$-39 \le h \le 46,$ $-9 \le k \le 9,$ $-21 \le l \le 19$	$-9 \le h \le 9$, $-21 \le k \le 21$, $-25 \le l \le 24$
Reflections collected	9861	26586	17445	19998
unique reflections	2535	6892	4974	10038
R(int)	0.0759	0.0600	0.0268	0.0759
$T_{\rm max} / T_{\rm min}$	0.599 / 0.636	0.9004 / 0.8290	0.604 / 0.574	0.6571/0.5801
Data/restraints/para meters	2558 / 0 / 189	6892 / 0 / 504	4974 / 0 / 289	10038 / 0 / 651
GOF on F^2	1.151	1.067	1.122	1.026
R_1^a and wR_2^b [$I > 2\sigma(I)$]	0.0353, 0.0707	0.0520, 0.1216	0.0238, 0.0660	0.0574, 0.1063
R_1 and wR_2 (all data)	0.0464, 0.0889	0.0759, 0.1445	0.0249, 0.0667	0.1121, 0.1409
Largest diff. peak and hole(e.A ⁻³)	2.078 and -1.028	1.513 and -0.819	0.874 and -0.988	1.832 and -1.693

 Table S1. Selected crystallographic data and structure refinement parameters for the complexes 1-4.

^a $R_1 = \Sigma ||F_0| - |F_C|| / \Sigma |F_0|; \ ^b w R_2 = \{ \Sigma [w(F_o^2 - F_C^2)] / \Sigma [w(F_o^2)^2] \}^{1/2}$

Bond lengths (Å)			
Eu(1)-N(1)	2.612(4)	O(6)-Eu(1)-N(1)#1	79.16(12)
Eu(1)-N(1)#1	2.612(4)	O(6)#1-Eu(1)-N(1)#1	137.77(12)
Eu(1)-O(1)	2.492(4)	O(1)#1-Eu(1)-N(1)#1	78.04(13)
Eu(1)-O(1)#1	2.492(4)	O(1)-Eu(1)-N(1)#1	68.95(13)
Eu(1)-O(2)	2.547(4)	O(4)-Eu(1)-N(1)#1	135.11(12)
Eu(1)-O(2)#1	2.547(4)	O(4)#1-Eu(1)-N(1)#1	147.27(12)
Eu(1)-O(4)	2.530(4)	O(2)#1-Eu(1)-N(1)#1	67.53(13)
Eu(1)-O(4)#1	2.530(4)	O(2)-Eu(1)-N(1)#1	106.04(13)
Eu(1)-O(6)	2.361(3)	O(6)-Eu(1)-N(1)	137.77(12)
Eu(1)-O(6)#1	2.361(3)	O(6)#1-Eu(1)-N(1)	79.16(12)
Bond Angles (deg)		O(1)#1-Eu(1)-N(1)	68.95(13)
O(6)-Eu(1)-O(6)#1	142.39(18)	O(1)-Eu(1)-N(1)	78.04(13)
O(6)-Eu(1)-O(1)#1	120.84(13)	O(4)-Eu(1)-N(1)	147.27(12)
O(6)#1-Eu(1)-O(1)#1	72.57(13)	O(4)#1-Eu(1)-N(1)	135.11(12)
O(6)-Eu(1)-O(1)	72.57(13)	O(2)#1-Eu(1)-N(1)	106.04(13)
O(6)#1-Eu(1)-O(1)	120.84(13)	O(2)-Eu(1)-N(1)	67.53(13)
O(1)#1-Eu(1)-O(1)	141.40(19)	N(1)#1-Eu(1)-N(1)	62.11(18)
O(6)-Eu(1)-O(4)	73.26(12)	O(6)-Eu(1)-N(3)#1	96.28(13)
O(6)#1-Eu(1)-O(4)	72.84(12)	O(6)#1-Eu(1)-N(3)#1	93.72(13)
O(1)#1-Eu(1)-O(4)	86.49(13)	O(1)#1-Eu(1)-N(3)#1	24.70(12)
O(1)-Eu(1)-O(4)	131.23(12)	O(1)-Eu(1)-N(3)#1	136.86(12)
O(6)-Eu(1)-O(4)#1	72.84(12)	O(4)-Eu(1)-N(3)#1	80.44(12)
O(6)#1-Eu(1)-O(4)#1	73.26(12)	O(4)#1-Eu(1)-N(3)#1	130.94(12)
O(1)#1-Eu(1)-O(4)#1	131.24(12)	O(2)#1-Eu(1)-N(3)#1	25.77(12)
O(1)-Eu(1)-O(4)#1	86.49(13)	O(2)-Eu(1)-N(3)#1	150.13(12)
O(4)-Eu(1)-O(4)#1	50.51(16)	N(1)#1-Eu(1)-N(3)#1	68.03(12)
O(6)-Eu(1)-O(2)#1	70.77(13)	N(1)-Eu(1)-N(3)#1	84.88(12)
O(6)#1-Eu(1)-O(2)#1	111.67(13)	O(6)-Eu(1)-N(3)	93.73(13)
O(1)#1-Eu(1)-O(2)#1	50.08(13)	O(6)#1-Eu(1)-N(3)	96.28(13)
O(1)-Eu(1)-O(2)#1	126.93(13)	O(1)#1-Eu(1)-N(3)	136.86(12)
O(4)-Eu(1)-O(2)#1	70.22(12)	O(1)-Eu(1)-N(3)	24.70(12)
O(4)#1-Eu(1)-O(2)#1	116.75(12)	O(4)-Eu(1)-N(3)	130.94(11)
O(6)-Eu(1)-O(2)	111.67(13)	O(4)#1-Eu(1)-N(3)	80.44(12)
O(6)#1-Eu(1)-O(2)	70.77(13)	O(2)#1-Eu(1)-N(3)	150.13(12)
O(1)#1-Eu(1)-O(2)	126.93(13)	O(2)-Eu(1)-N(3)	25.76(12)
O(1)-Eu(1)-O(2)	50.08(13)	N(1)#1-Eu(1)-N(3)	84.88(12)
O(4)-Eu(1)-O(2)	116.75(12)	N(1)-Eu(1)-N(3)	68.03(12)
O(4)#1-Eu(1)-O(2)	70.22(12)	N(3)#1-Eu(1)-N(3)	148.62(16)
O(2)#1-Eu(1)-O(2)	172.92(18)		

Table S2: Selected bond lengths (Å) and bond angles (deg) for $[Eu(dpq)(DMF)_2(NO_3)_3]$ (1).

Symmetry transformations used to generate equivalent atoms in complex 1: #1 - x + 1, y, -z + 3/2.

Bond lengths (Å)			
Eu(1)-N(1)	2.573(4)	O(2)-Eu(1)-N(1)	73.32(11)
Eu(1)-N(1)#1	2.573(4)	O(1)#1-Eu(1)-N(1)	102.65(12)
Eu(1)-N(2)	2.590(4)	O(1)-Eu(1)-N(1)	73.49(11)
Eu(1)-N(2)#1	2.590(4)	O(4)-Eu(1)-N(1)	134.04(12)
Eu(1)-O(1)	2.498(4)	O(4)#1-Eu(1)-N(1)	140.46(12)
Eu(1)-O(1)#1	2.498(4)	N(1)#1-Eu(1)-N(1)	71.34(16)
Eu(1)-O(2)	2.495(3)	O(2)#1-Eu(1)-N(2)	116.29(13)
Eu(1)-O(2)#1	2.495(3)	O(2)-Eu(1)-N(2)	66.43(13)
Eu(1)-O(4)	2.504(4)	O(1)#1-Eu(1)-N(2)	68.08(12)
Eu(1)-O(4)#1	2.504(4)	O(1)-Eu(1)-N(2)	111.57(12)
Bond Angles (deg)		O(4)-Eu(1)-N(2)	72.98(12)
O(2)#1-Eu(1)-O(2)	144.70(17)	O(4)#1-Eu(1)-N(2)	114.87(12)
O(2)#1-Eu(1)-O(1)#1	151.44(13)	N(1)#1-Eu(1)-N(2)	109.64(12)
O(2)-Eu(1)-O(1)#1	130.36(12)	N(1)-Eu(1)-N(2)	63.18(12)
O(2)#1-Eu(1)-O(1)	130.36(12)	O(2)#1-Eu(1)-N(2)#1	66.43(13)
O(2)-Eu(1)-O(1)	51.44(13)	O(2)-Eu(1)-N(2)#1	116.29(13)
O(1)#1-Eu(1)-O(1)	175.40(15)	O(1)#1-Eu(1)-N(2)#1	111.57(12)
O(2)#1-Eu(1)-O(4)	70.86(12)	O(1)-Eu(1)-N(2)#1	68.08(12)
O(2)-Eu(1)-O(4)	77.33(13)	O(4)-Eu(1)-N(2)#1	114.87(12)
O(1)#1-Eu(1)-O(4)	71.37(12)	O(4)#1-Eu(1)-N(2)#1	72.98(12)
O(1)-Eu(1)-O(4)	113.07(13)	N(1)#1-Eu(1)-N(2)#1	63.18(12)
O(2)#1-Eu(1)-O(4)#1	77.32(13)	N(1)-Eu(1)-N(2)#1	109.64(12)
O(2)-Eu(1)-O(4)#1	70.87(12)	N(2)-Eu(1)-N(2)#1	171.87(16)
O(1)#1-Eu(1)-O(4)#1	113.07(13)	O(2)#1-Eu(1)-N(6)#1	25.50(12)
O(1)-Eu(1)-O(4)#1	71.37(12)	O(2)-Eu(1)-N(6)#1	143.40(12)
O(4)-Eu(1)-O(4)#1	51.0(2)	O(1)#1-Eu(1)-N(6)#1	25.99(13)
O(2)#1-Eu(1)-N(1)#1	73.32(11)	O(1)-Eu(1)-N(6)#1	155.80(13)
O(2)-Eu(1)-N(1)#1	141.23(12)	O(4)-Eu(1)-N(6)#1	67.87(12)
O(1)#1-Eu(1)-N(1)#1	73.49(11)	O(4)#1-Eu(1)-N(6)#1	94.56(14)
O(1)-Eu(1)-N(1)#1	102.65(12)	N(1)#1-Eu(1)-N(6)#1	72.59(12)
O(4)-Eu(1)-N(1)#1	140.46(12)	N(1)-Eu(1)-N(6)#1	124.52(13)
O(4)#1-Eu(1)-N(1)#1	134.04(12)	N(2)-Eu(1)-N(6)#1	92.08(13)
O(2)#1-Eu(1)-N(1)	141.23(12)	N(2)#1-Eu(1)-N(6)#1	89.26(13)

 Table S3: Selected Bond Lengths (Å) and Bond Angles (deg) for [Eu(dppz)₂(NO₃)₃]·dppz·Et₂O (2).

Symmetry transformations used to generate equivalent atoms in complex 2:#1 - x + 1, y, -z + 1/2.

Bond lengths (Å)			
Tb(1)-N(1)	2.572(2)	O(1)-Tb(1)-Cl(1)	85.12(6)
Tb(1)-N(2)	2.630(2)	N(1)-Tb(1)-Cl(1)	89.64(5)
Tb(1)-Cl(1)	2.6338(8)	N(2)-Tb(1)-Cl(1)	74.27(5)
Tb(1)-Cl(2)	2.6779(10)	O(2)-Tb(1)-Cl(3)	88.62(6)
Tb(1)-Cl(3)	2.6511(10)	O(1)-Tb(1)-Cl(3)	80.52(6)
Tb(1)-O(1)	2.346(2)	N(1)-Tb(1)-Cl(3)	81.24(5)
Tb(1)-O(2)	2.277(2)	N(2)-Tb(1)-Cl(3)	111.56(6)
Bond Angles (deg)		Cl(1)-Tb(1)-Cl(3)	164.64(2)
O(2)-Tb(1)-O(1)	156.36(8)	O(2)-Tb(1)-Cl(2)	78.49(6)
O(2)-Tb(1)-N(1)	125.23(8)	O(1)-Tb(1)-Cl(2)	81.95(6)
O(1)-Tb(1)-N(1)	73.99(8)	N(1)-Tb(1)-Cl(2)	155.89(6)
O(2)-Tb(1)-N(2)	72.35(8)	N(2)-Tb(1)-Cl(2)	138.30(5)
O(1)-Tb(1)-N(2)	131.19(8)	Cl(1)-Tb(1)-Cl(2)	86.67(2)
N(1)-Tb(1)-N(2)	62.39(7)	Cl(3)-Tb(1)-Cl(2)	96.61(3)
O(2)-Tb(1)-Cl(1)	106.73(6)		

Table S4: Selected Bond Lengths (Å) and Bond Angles (deg) for $[Tb(dpq)(DMF)_2Cl_3]$ (3).

Molecule 1		Molecule 2	
Bond lengths (Å)		Bond lengths (Å)	
Tb(1)-N(1)	2.603(7)	Tb(2)-N(7)	2.566(8)
Tb(1)-N(2)	2.582(7)	Tb(2)-N(8)	2.640(8)
Tb(1)-Cl(1)	2.642(2)	Tb(2)- $Cl(4)$	2.632(3)
Tb(1)-Cl(2)	2.621(3)	Tb(2)-Cl(5)	2.671(3)
Tb(1)-Cl(3)	2.673(3)	Tb(2)-Cl(6)	2.670(3)
Tb(1)-O(1)	2.328(6)	Tb(2)-O(3)	2.367(6)
Tb(1)-O(2)	2.367(6)	Tb(2)-O(4)	2.244(6)
Bond Angles (deg)		Bond Angles (deg)	
O(1)-Tb(1)-O(2)	152.0(2)	O(4)-Tb(2)-O(3)	156.7(2)
O(1)-Tb(1)-N(2)	128.9(2)	O(4)-Tb(2)-N(7)	125.6(3)
O(2)-Tb(1)-N(2)	75.8(2)	O(3)-Tb(2)-N(7)	74.6(2)
O(1)-Tb(1)-N(1)	71.9(2)	O(4)-Tb(2)-Cl(4)	102.55(19)
O(2)-Tb(1)-N(1)	136.1(2)	O(3)-Tb(2)-Cl(4)	86.62(17)
N(2)-Tb(1)-N(1)	63.3(2)	N(7)-Tb(2)-Cl(4)	91.93(18)
O(1)-Tb(1)-Cl(2)	107.80(17)	O(4)-Tb(2)-N(8)	71.4(3)
O(2)-Tb(1)-Cl(2)	83.28(17)	O(3)-Tb(2)-N(8)	131.8(2)
N(2)-Tb(1)-Cl(2)	87.92(17)	N(7)-Tb(2)-N(8)	62.2(3)
N(1)-Tb(1)-Cl(2)	80.11(17)	Cl(4)-Tb(2)-N(8)	75.18(18)
O(1)-Tb(1)-Cl(1)	85.75(17)	O(4)-Tb(2)-Cl(6)	78.71(19)
O(2)-Tb(1)-Cl(1)	85.78(17)	O(3)-Tb(2)-Cl(6)	80.01(16)
N(2)-Tb(1)-Cl(1)	81.24(17)	N(7)-Tb(2)-Cl(6)	154.34(19)
N(1)-Tb(1)-Cl(1)	102.32(17)	Cl(4)-Tb(2)-Cl(6)	89.86(8)
Cl(2)-Tb(1)-Cl(1)	166.19(8)	N(8)-Tb(2)-Cl(6)	142.33(19)
O(1)-Tb(1)-Cl(3)	75.42(16)	O(4)-Tb(2)-Cl(5)	92.87(19)
O(2)-Tb(1)-Cl(3)	78.71(16)	O(3)-Tb(2)-Cl(5)	79.12(17)
N(2)-Tb(1)-Cl(3)	154.44(17)	N(7)-Tb(2)-Cl(5)	78.71(18)
N(1)-Tb(1)-Cl(3)	141.61(17)	Cl(4)-Tb(2)-Cl(5)	164.57(9)
Cl(2)-Tb(1)-Cl(3)	91.47(8)	N(8)-Tb(2)-Cl(5)	110.23(18)
Cl(1)-Tb(1)-Cl(3)	94.63(8)	Cl(6)-Tb(2)-Cl(5)	93.38(8)

 Table S5: Selected Bond Lengths (Å) and Bond Angles (deg) for [Tb(dppz)(DMF)₂Cl₃] (4).

General discussion on luminescence spectral properties of the complexes 1-4

Eu³⁺ and Tb³⁺ complexes have distinctive narrow emission bands, large Stokes shift with long excited state luminescence lifetimes, typically in the ms range are ideally suitable for time-gated probes in biological medium. Excitation spectra of complexes in DMF demonstrate similar absorbance profiles with $\lambda_{max} = 272$ nm (Fig. S7). Time-delayed luminescence studies under phosphorescent mode were performed to avoid rapid shortlived ligand fluorescence. Under this time-gated condition, Ln^{3+} complexes exclusively display typical $f \rightarrow f$ transition based luminescence on excitation at 272 nm (Figs. S8-S10). We have also observed similar spectral profile when excited at longer wavelength of 365 nm. Excitation of Eu³⁺ complexes 1 and 2 leads to characteristic strong red emission in the visible region due to the ${}^{5}D_{0} \rightarrow {}^{7}F_{J}f$ -f transitions of Eu³⁺ (J = 0-4) and dominated by electric dipole (ED) induced hypersensitive ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transition. The emission spectra of $[Tb(B)(DMF)_2Cl_3]$ (B= dpq, 3; dppz, 4) complexes show characteristic green luminescence assigned to the ${}^{5}D_{4} \rightarrow {}^{7}F_{J}f_{-}f$ transitions (J = 6-3) of Tb³⁺ (Fig. S8). In complexes **3** and **4**, the ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$ transition from excited Tb³⁺ dominates the emission spectra. This clearly demonstrates that photo-excited energy transfer from the dipyridoquinoxaline and dipyridophenazine based light harvesting antenna to the Ln³⁺ is responsible for the indirect population of the luminescent excited states in Eu^{3+} and Tb^{3+} complexes. The excited state lifetimes (τ) were measured from the luminescent decay profiles for the complexes at room temperature. Luminescence lifetime of the complexes ranges from 0.46-0.59 ms in DMF which reduced to 0.17-0.35 ms in water indicating nonradiative quenching via O-H oscillators of lanthanide bound H₂O. Typical decay profiles of complexes 1-4 are shown in Fig. S12-S13 in ESI. The lanthanide complexes exhibit higher overall quantum yield ($\phi = 0.16$ -0.38) in DMF than in water (($\phi = 0.06$ -0.08) due to nonradiative quenching process via O-H oscillators of lanthanide bound H₂O in aqueous media.

Figure S7. (a) UV-visible spectra of dpq and dppz in DMF. (b) Excitation spectra of the complexes 1-4 in DMF in at 298 K. Excitation and emission slit width = 10 nm, $\lambda_{em} = 616$ nm for complexes 1 and 2 and $\lambda_{em} = 545$ nm for complexes 3 and 4.

Figure S8. Time-delayed luminescence spectra of $[Eu(dpq)(DMF)_2(NO_3)_3]$ (1) (red) and $[Tb(dpq)(DMF)_2Cl_3]$ (3) (green) in DMF (delay time = 0.1 ms, $\lambda_{ex} = 272$ nm). The corresponding ${}^5D_0 \rightarrow {}^7F_J$ and ${}^5D_4 \rightarrow {}^7F_J$ transitions are shown on the respective spectra.

Figure S9. Time-delayed emission spectra of the complexes 1 (black) and 2 (red) (444 μ M) in DMF with an excitation at 272 nm (excitation slit width = 5 nm and emission slit width = 5 nm) at 25 °C. Corresponding ${}^{5}D_{0} \rightarrow {}^{7}F_{J}$ transitions are shown on the respective peaks.

Figure S10. Time-delayed emission spectra of the complexes 3 (black) and 4 (red) (444 μ M) in DMF with an excitation at 272 nm (excitation slit width = 5 nm and emission slit width = 5 nm) at 25 °C. Corresponding ${}^{5}D_{4} \rightarrow {}^{7}F_{J}$ transitions are shown on the respective peaks.

Figure S11. Time-delayed luminescence spectra of $[Eu(dpq)(DMF)_2(NO_3)_3]$ (1) (red) and $[Tb(dpq)(DMF)_2Cl_3]$ (3) (green) in DMF (delay time = 0.1 ms, λ_{ex} = 365 nm).

Figure S12. Luminescence decay profile from ${}^{5}D_{0}$ and ${}^{5}D_{4}$ states and lifetime measurements at 616 nm and 545 nm for Eu³⁺ and Tb³⁺ in complexes 1–4 respectively in DMF under ambient condition at 298 K. λ_{ex} = 272 nm, [complex] = 16 μ M, delay time and gate time = 0.1 ms, total decay time = 3.0 ms, Ex. and Em. Slit = 10 nm. The red curves are the best fits considering single-exponential behaviour of the decay.

Complex	$\tau_{\rm DMF}({\rm ms})$	$\Phi_{\rm overall}{}^{\rm b}$
1	0.467	0.325
2	0.492	0.385
3	0.478	0.163
4	0.592	0.161

The lifetime (τ) and overall quantum yield ($\Phi_{overall}$) of the complexes listed below.^a

^aQuinine sulphate was used as a standard for quantum yield calculation. ^bQuantum yield measurements were done in DMF and within an experimental error of $\pm 10\%$.

Figure S13. Luminescence decay profile from ${}^{5}D_{0}$ and ${}^{5}D_{4}$ states and lifetime measurements at 616 nm and 545 nm for Eu³⁺ and Tb³⁺ in complexes 1–4 (a, b, c, and d) respectively in H₂O and D₂O under ambient condition at 298 K. λ_{ex} = 272 nm, [complex] = 16 μ M, delay time and gate time = 0.1 ms, total decay time = 3.0 ms, Ex. and Em. Slit = 10 nm. The black (in H₂O) and green (in D₂O) curves are the best fits considering single-exponential behaviour of the decay.

Figure S14. Luminescence decay profile from ${}^{5}D_{0}$ and ${}^{5}D_{4}$ states and lifetime measurements at 616 nm and 545 nm for Eu³⁺ and Tb³⁺ in complexes 1–4 in the presence of CT-DNA (a, b, c, and d) respectively in 5 mM Tris-HCl/NaCl buffer in Milli-Q water (pH 7.2) and in 5 mM Tris-HCl/NaCl buffer in D₂O under ambient condition at 298 K. λ_{ex} = 272 nm, [complex] = 16 μ M, [DNA] = 50 μ M, delay time and gate time = 0.1 ms, total decay time = 3.0 ms, Ex. and Em. Slit = 10 nm. The black (in Tris-buffer) and green (in Tris-D₂O) curves are the best fits considering single-exponential behavior of the decay.

Complex	$\lambda_{\rm ex}({\rm nm})$	$\tau^{H_{2}}O(ms)$	$\tau^{D_{2}}O(ms)$	q	ϕ^{H_2} O	ϕ^{D_2} O
1	272	0.185	0.720	4.56	0.081 0.037 (365 nm)	0.565 0.292 (365 nm)
2	272	0.176	0.701	4.81	0.066 0.054 (365 nm)	0.575 0.359 (365 nm)
3	272	0.348	0.633	6.16	0.082 0.038 (365 nm)	0.710 0.318 (365 nm)
4	272	0.356	0.696	6.56	0.072 0.059 (365 nm)	0.611 0.415 (365 nm)
4 ^d	272	0.353 (aerat 0.667 (dega	ted) ussed)			~ /

Table S6. Luminescence lifetime $(\tau)^a$, determination of inner-sphere hydration number $(q)^b$ and overall quantum yield $(\phi_{overall})^c$ of the complexes in H₂O and D₂O.

^aLuminescence lifetime measured from decay profile from ${}^{5}D_{0}$ and ${}^{5}D_{4}$ excited states at 616 nm and 545 nm for Eu³⁺ and Tb³⁺ complexes respectively within experimental uncertainty of ±10%. ^b*q* is the number of water molecules coordinated to Ln³⁺ ion in solution measured from modified Horrock's equation⁴² described in experimental section of manuscript. ^cQuinine sulphate was used as a standard for quantum yield calculation, quantum yields value at $\lambda_{ex} = 365$ nm were also mentioned, values are within an experimental uncertainty of ±15%. ^dLifetime measurements of complex **4** under aerated and degassed condition.

Table S7. Luminescence lifetime $(\tau)^a$, determination of inner-sphere hydration number (q) in presence of CT-DNA.^a

Complex	$\lambda_{\rm ex}$ (nm)	$ au_{Tris \ buffer \ in} \ {}^{H_2}O \ (ms)^b$	$\tau_{\rm Tris \ bufer \ in} {}^{D_2}O$ (ms) ^c	q
1	272	0.546	0.796	0.39
2	272	0.537	0.782	0.40
3	272	0.596	0.701	0.95
4	272	0.606	0.713	0.93

^a[complex] = 16 μ M, [DNA] = 50 μ M, ^bIn 5 mM Tris-HCl/NaCl buffer in Milli-Q water (pH 7.2). ^cIn 5 mM Tris-HCl/NaCl buffer in D₂O.

Figure 15. Absorption spectral traces of complex **2** in 5 mM Tris- HCl buffer (pH 7.2) with increasing the concentration of CT-DNA. Inset shows the plot of $\Delta \varepsilon_{af} / \Delta \varepsilon_{bf}$ vs. [DNA].

Figure S16. Absorption spectral traces of complex **3** in 5 mM Tris- HCl buffer (pH 7.2) with increasing the concentration of CT-DNA. Inset shows the plot of $\Delta \varepsilon_{af} / \Delta \varepsilon_{bf}$ vs. [DNA].

Figure S17. Absorption spectral traces of complex **2** in 5 mM Tris- HCl buffer (pH 7.2) with increasing the concentration of CT-DNA. Inset shows the plot of $\Delta \varepsilon_{af} / \Delta \varepsilon_{bf}$ vs. [DNA].

Figure S18. Emission spectral traces of ethidium bromide bound CT-DNA with varying concentration of complex **2** in 5 mM Tris buffer (5 mM Tris-HCl + 5 mM NaCl, pH 7.2) at 25 °C. $\lambda_{ex} = 546$ nm, $\lambda_{em} = 603$ nm. The inset shows the plot of *I*/*I*₀ versus [complex].

Figure S19. Emission spectral traces of ethidium bromide bound CT-DNA with varying concentration of complex **3** in 5 mM Tris buffer (5 mM Tris-HCl + 5 mM NaCl, pH 7.2) at 25 °C. $\lambda_{ex} = 546$ nm, $\lambda_{em} = 603$ nm. The inset shows the plot of *I*/*I*₀ versus [complex].

Figure S20. Emission spectral traces of ethidium bromide bound CT-DNA with varying concentration of complex **4** in 5 mM Tris buffer (5 mM Tris- HCl + 5 mM NaCl, pH 7.2) at 25 °C. $\lambda_{ex} = 546$ nm, $\lambda_{em} = 603$ nm. The inset shows the plot of *I*/*I*₀ versus [complex].

Figure S21. Emission spectral traces of bovine serum albumin (BSA) protein (5 μ M) in the presence of complex **2**. The arrow shows the intensity changes on increasing complex concentration. The inset shows the plot of (I_0/I) versus [complex].

Figure S22. Emission spectral traces of bovine serum albumin (BSA) protein (5 μ M) in the presence of complex **3**. The arrow shows the intensity changes on increasing complex concentration. The inset shows the plot of (I_0/I) vs. [complex].

Figure S23. Emission spectral traces of bovine serum albumin (BSA) protein (5 μ M) in the presence of complex **4**. The arrow shows the intensity changes on increasing complex concentration. The inset shows the plot of (I_0/I) vs. [complex].

Figure S24. Time-gated emission spectral enhancement of complex 1 upon increasing concentration of CT-DNA in tris- HCl/NaCl buffer (5 mM, pH 7.2) at $\lambda_{ex} = 272$ nm (excitation slit width = 10 nm and emission slit width = 10 nm). Inset shows the plot of I/I_0 vs. [DNA]/[1].

Figure S25. Time-gated emission spectral enhancement of complex 2 upon increasing amount of CT-DNA in 5 mM Tris- HCl/ NaCl buffer (pH 7.2) with $\lambda_{ex} = 272$ nm (excitation slit width = 10 nm and emission slit width = 10 nm). Inset shows the plot of I/I_0 vs. [DNA]/[2].

Figure S26. Time-gated emission spectral enhancement of complex **3** upon increasing amount of CT-DNA in Tris-HCl /NaCl buffer (5 mM, pH 7.2) with $\lambda_{ex} = 272$ nm (excitation slit width = 10 nm and emission slit width = 10 nm). Inset shows the plot of I/I_0 vs. [DNA]/[**3**].

46	53	62	75	84	91	23	35	48	67	78	88 % NC
-	-	-	-	-	-				_	-	NC
-	_	_	_			_					90
1	2	3	4	5	6	7	8	9	10	11	12 Lane

Figure S27. Gel electrophoresis diagram showing the cleavage of SC pUC19 DNA ($30 \mu M$, $0.2 \mu g$) incubated with complexes 1 and 2 ($10 \mu M$) in 50 mM Tris-HCl/NaCl buffer (pH, 7.2) at 37 °C for 1 h on irradiation with UV-A light of 365 nm (6 W) at different time. Detailed conditions are given below in a tabular form.

Reaction Condition	λ/nm	Exposure time (t/min)	%NC
DNA+1	365	15	46
DNA+1	365	30	53
DNA+1	365	45	62
DNA+1	365	60	75
DNA+1	365	90	84
DNA+1	365	120	91
DNA+ 2	365	15	23
DNA+ 2	365	30	35
DNA+ 2	365	45	48
DNA+ 2	365	60	67
DNA+ 2	365	90	78
DNA+ 2	365	120	88
	Reaction Condition DNA+ 1 DNA+ 1 DNA+ 1 DNA+ 1 DNA+ 1 DNA+ 1 DNA+ 2 DNA+ 3	Reaction Condition λ/nm DNA+1 365 DNA+2 365	Reaction Condition λ/nm Exposure time (t/min) DNA+1 365 15 DNA+1 365 30 DNA+1 365 45 DNA+1 365 60 DNA+1 365 90 DNA+1 365 120 DNA+1 365 15 DNA+1 365 120 DNA+2 365 30 DNA+2 365 45 DNA+2 365 60 DNA+2 365 90 DNA+2 365 90 DNA+2 365 90 DNA+2 365 120

Figure S28. Gel electrophoresis diagram showing the photocleavage of SC pUC19 DNA ($30 \mu M$, $0.2 \mu g$) incubated with complexes **3** and **4** ($20 \mu M$) in 50 mM Tris-HCl/NaCl buffer (pH, 7.2) at 37 °C for 2 h on irradiation with UV-A light of 365 nm (6 W) at different time. Detailed conditions are given below in a tabular form.

Lane No.	Reaction Condition	λ/nm	Exposure time (t/min)	%NC	
1	DNA+ 3	365	15	49	
2	DNA+ 3	365	30	58	
3	DNA+ 3	365	45	67	
4	DNA+ 3	365	60	78	
5	DNA+ 3	365	90	88	
6	DNA+ 3	365	120	96	
7	DNA+ 4	365	15	22	
8	DNA+ 4	365	30	37	
9	DNA+ 4	365	45	50	
10	DNA+ 4	365	60	66	
11	DNA+ 4	365	90	77	
12	DNA+4	365	120	90	

Figure S29. Bar diagram showing the photocleavage of SC pUC19 DNA (30 μ M, 0.2 μ g) with complexes 1-2 (10 μ M) and 3 - 4 (20 μ M) in 50 mM Tris-HCl/NaCl buffer (pH, 7.2) on irradiation with UV-A light of 365 nm (6 W) with varying time.

Figure S30. Gel electrophoresis diagram showing the cleavage of SC pUC19 DNA (30 μ M, 0.2 μ g) incubated with complexes **1** and **2** (10 μ M) in 50 mM Tris-HCl/NaCl buffer (pH, 7.2) at 37 °C for 1 h on irradiation with UV-A light of 365 nm (6 W) for 2 h: lane 1, DNA control; lane 2, DNA + dpq (10 μ M); lane 3, DNA + dppz (10 μ M); lane 4, DNA + Eu(NO₃)₃·6H₂O (10 μ M); lane 5, DNA + **1**; lane 6, DNA + **2**; lane 7, DNA + **1** + DMSO (4 μ L); lane 8, DNA + **1** + KI (100 μ M); lane 9, DNA + **1** + NaN₃ (200 μ M); lane 10, DNA + **1** + L-histidine (200 μ M); lane 11, DNA + **1** + D₂O (16 μ L); lane 12, DNA + methyl green (200 μ M); lane 13, DNA + **1** + methyl green (200 μ M); lane 14, DNA + **2** + methyl green (200 μ M); lane 15, DNA + **1** + catalase (200 μ M); lane 16, DNA + **2** + catalase (200 μ M).

Figure S31. Gel electrophoresis diagram showing the cleavage of SC pUC19 DNA (30 μ M, 0.2 μ g) incubated with complexes **3** and **4** (20 μ M) in 50 mM Tris-HCl/NaCl buffer (pH, 7.2) at 37 °C for 1 h on irradiation with UV-A light of 365 nm (6 W) for 2 h: lane 1, DNA control; lane 2, DNA + dpq (20 μ M); lane 3, DNA + dppz (20 μ M); lane 4, DNA + TbCl₃·6H₂O (20 μ M); lane 5, DNA + **3**; lane 6, DNA + **4**; lane 7, DNA + **3** + DMSO (4 μ L); lane 8, DNA + **3** + KI (100 μ M); lane 9, DNA + **3** + NaN₃ (200 μ M); lane 10, DNA + **3** + L-histidine (200 μ M); lane 11, DNA + **3** + D₂O (16 μ L); lane 12, DNA + methyl green (200 μ M); lane 13, DNA + **3** + methyl green (200 μ M); lane 14, DNA + **4** + methyl green (200 μ M); lane 15, DNA + **3** + catalase (200 μ M); lane 16, DNA + **4** + catalase (200 μ M).