Electronic Supporting Information

Synthesis, DNA binding, cellular DNA lesion and cytotoxicity of a series of new benzimidazole-based Schiff base copper(II) complexes

Anup Paul,^a*Sellamuthu Anbu,^a Gunjan Sharma,^bMaxim L. Kuznetsov,^aBiplob Koch,^b* M.Fátima C. Guedes da Silva,^a* Armando J. L. Pombeiro^a*

^aCentro de Química Estrutural, Complexo I, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa. Portugal. E-mail: <u>kanupual@gmail.com</u>, <u>kochbiplob@gmail.com</u>, <u>fatima.guedes@tecnico.ulisboa.pt</u>, <u>pombeiro@tecnico.ulisboa.pt</u>,

^bDepartment of Zoology, Faculty of Science, Banaras Hindu University, Varanasi - 221 005 (U.P.) India.

Suppl	Pages	
1.	Scheme S1, Syntheses of P1, P2 and P3	S2
2.	Scheme S2, Syntheses of HL ¹ , HL ² and HL ³	S3
3.	Fig. S1, ¹ H NMR spectrum of HL ¹	S3
4.	Fig. S2, ¹³ C NMR spectrum of HL ¹	S4
5.	Fig. S3, ¹ H NMR spectrum of HL ²	S4
6.	Fig. S4, ¹³ C NMR spectrum of HL ²	S5
7.	Fig. S5, ¹ H NMR spectrum of HL ³	S5
8.	Fig. S6, ¹³ C NMR spectrum of HL ³	S6
9.	Fig. S7, ESI-MS spectrum of 1	S6
10	. Fig. S8 , ESI-MS spectrum of 2	S7
11	. Fig. S9, ESI-MS spectrum of 3	S7

12. Fig. S10, UV-vis spectra of 1, 2 and 3 in DMF and DMSO	S8
13. Fig. S11. Quaternion fit of the two independent copper molecules in the crystal structure of 3 .	S8
14. Fig. S12.X-ray molecular structure of 2 with atom numbering scheme.	S9
15. Fig. S13 , Absorption titration spectra of 2 with CT DNA	S9
16. Fig. S14, Absorption titration spectra of 3 with CT DNA	S10
17. Fig. S15, Emission spectrum of 2 from EB bound to the DNA	S10
18. Fig. S16, Emission spectrum of 3 from EB bound to the DNA	S11
19. Fig. S17 , Molecular docked model of compound 2 with DNA	S11
20. Fig. S18 , Molecular docked model of compound 3 with DNA	S12
21. Fig. S19 , MTT assay for complexes 1-3 on A-549 cancer cells	S12
22. Fig. S20, MTT assay for complexes 1-3 on MDA-MB-231 cancer cells	\$13
23. Fig. S21, M111 assay for complexes 1-3 on HeLa cancer cells	514

S15-S16

Scheme S1.Synthesesof P1, P2 and P3.

Scheme S2. Syntheses of HL¹, HL² and HL³.

Fig. S1. ¹HNMR spectrum of HL¹in CDCl₃.

Fig. S2. ¹³C NMR spectrum of HL¹in CDCl₃.

Fig. S3. ¹H NMR spectrum of HL² in CDCl₃.

Fig. S4. $^{\rm 13}\text{C}$ NMR spectrum of HL^2 in CDCl3.

Fig. S5. ¹H NMR spectrum of HL³ in CDCl₃.

Fig. S6.¹³CNMR spectrum of HL³ in CDCl₃.

Fig. S7. ESI-MS of 1 in MeOH.

Fig. S8. ESI-MS of 2 in MeOH.

Fig. S9. ESI-MS of 3 in MeOH.

Fig. S10 UV/vis spectra recorded for **1** (A, DMF; B, DMSO; 10 μ M), **2** (C, DMF; D, DMSO; 10 μ M) and **3** (E, DMF; F, DMSO; 10 μ M) for a fresh solution and a solution after 0, 24 and 48 h, respectively. Inset concerns the visible spectral range.

Fig. S11. Quaternion fit of the two independent copper molecules in the crystal structure of**3**(two different orientations). Calculation was performed with PLATON.

Fig. S12. X-ray molecular structure of **2** with atom numbering scheme. Space group: *P* $2_1/c$. Unit cell parameters: a = 14.913, b = 8.777 and c = 34.178 Å; β = 90.02°; V = 4473.78 Å³.

Fig. S13. (A) Absorption titration spectra of **2** in 5 mM Tris-HCl/50 mM NaCl buffer at *ca.* pH 7.5 with an increase in molar ratio of CT DNA to complex (0-12µM) at room temperature. Arrow shows the absorbance changes upon increasingCT DNA concentration. (B) Non-linear fit of the plot of $(\varepsilon_a - \varepsilon_f)/(\varepsilon_b - \varepsilon_f)$ *vs.* [DNA].

Fig. S14. (A) Absorption titration spectra of **3** in 5 mM Tris-HCl/50 mM NaCl buffer at *ca.* pH 7.5 with an increase in molar ratio of CT DNA to complex (0-12µM) at room temperature. Arrow shows the absorbance changes upon increasingCT DNA concentration. (B) Non-linear fit of the plot of $(\varepsilon_a - \varepsilon_f)/(\varepsilon_b - \varepsilon_f)$ *vs.* [DNA].

Fig. S15. Emission spectra from EB bound to the DNA in the absence (---) and in the presence of **2**. [EB] = 3.3μ M, [DNA] = 3.3μ M, [**2**] = $0-30\mu$ M.

Fig. S16. Emission spectra from EB bound to the DNA in the absence (---) and in the presence of **3**. [EB] = 3.3μ M, [DNA] = 3.3μ M, [**3**] = $0-30\mu$ M.

Fig. S17. Molecular docked model of compound **2** with DNA (PDB ID: 1BNA). DG:Guanine, DC: Cytosine, DA: Adenine.

Fig. S18. Molecular docked model of compound **3** with DNA (PDB ID: 1BNA). DG:Guanine, DC: Cytosine, DA: Adenine.

Fig. S19. MTT assay for complexes **1-3** on human lung (A-549) cancer cells. Cell viability is studied in comparison with cisplatin. Bars represent \pm SD (p < 0.05, n = 4).

Fig. S20. MTT assay for complexes **1-3** on MDA-MB-231 cancer cells. Bars represent ± SD (p < 0.05, n = 4).

Fig. S21. MTT assay for complexes **1-3** on HeLa cancer cells. Bars represent ± SD (p < 0.05, n = 4).

		1	2			
Bond length	Exp.	Theor.	Theor.	Bond length	Exp.	Theor.
Cu-N(1)	1.939	2.042	2.045	Cu-N(1)	1.973	2.045
Cu–N(3)	1.944	2.006	2.007	Cu–N(3)	1.962	2.007
Cu-O(1)	1.869	1.932	1.931	Cu-O(1)	1.862	1.933
Cu-O(2)	2.433	2.298	2.009	Cu-O(11)	2.201	2.008
Cu-O(3)	2.023	2.011	2.301	Cu-O(13)	2.455	2.303
O(2)-N(4)	1.238	1.255	1.292	N(10)-O(11)	1.285	1.292
O(3)-N(4)	1.264	1.292	1.254	N(10)-O(13)	1.244	1.254
N(4)-O(4)	1.213	1.208	1.209	N(10)-O(12)	1.202	1.209
N(1)-C(1)	1.387	1.386	1.385	O(1)-C(1)	1.310	1.277
C(1)-C(6)	1.382	1.403	1.403	C(1)-C(2)	1.413	1.447
N(2)-C(6)	1.384	1.386	1.388	C(2)-C(3)	1.339	1.354
N(2)-C(7)	1.363	1.368	1.368	C(3)-C(4)	1.392	1.438

Table S1. Selected experimental and calculated bond lengths (Å) of complexes **1–3**.

N(1)-C(7)	1.333	1.322	1.321	C(4)-C(5)	1.422	1.409
C(1)-C(2)	1.395	1.400	1.400	C(5)-C(6)	1.360	1.379
C(2)-C(3)	1.382	1.386	1.386	C(6)-C(7)	1.382	1.409
C(3)-C(4)	1.386	1.410	1.410	C(7)-C(8)	1.388	1.438
C(4)-C(5)	1.357	1.388	1.387	C(8)-C(9)	1.388	1.354
C(5)-C(6)	1.395	1.396	1.397	C(9)-C(10)	1.482	1.447
C(1)-C(6)	1.382	1.403	1.403	C(1)-C(10)	1.416	1.431
C(7)-C(8)	1.465	1.470	1.463	C(10)-C(11)	1.401	1.413
C(8)-C(9)	1.392	1.400	1.412	N(3)-C(11)	1.322	1.313
C(9)-C(10)	1.381	1.389	1.389	N(3)-C(12)	1.421	1.410
C(10)-C(11)	1.362	1.393	1.393	C(12)-C(13)	1.386	1.401
C(11)-C(12)	1.383	1.389	1.389	C(13)-C(14)	1.384	1.390
C(12)-C(13)	1.390	1.401	1.390	C(14)-C(15)	1.369	1.393
C(13)-N(3)	1.424	1.410	1.401	C(15)-C(16)	1.354	1.389
N(3)-C(14)	1.301	1.314	1.412	C(16)-C(17)	1.392	1.400
C(14)-C(15)	1.421	1.414	1.410	C(12)-C(17)	1.407	1.412
C(15)-C(16)	1.458	1.459	1.313	C(17)-C(18)	1.452	1.471
C(16)-C(17)	1.398	1.415	1.413	N(1)-C(18)	1.317	1.321
C(17)-C(18)	1.374	1.382	1.430	N(2)-C(18)	1.391	1.385
C(18)-C(19)	1.385	1.401	1.463	N(2)-C(20)	1.381	1.385
C(19)-C(20)	1.348	1.379	1.472	C(20)-C(21)	1.394	1.400
C(20)-C(21)	1.413	1.409	1.400	C(21)-C(22)	1.386	1.386
C(16)-C(21)	1.413	1.418	1.389	C(22)-C(23)	1.312	1.410
C(21)-C(22)	1.418	1.437	1.393	C(23)-C(24)	1.410	1.387
C(22)-C(23)	1.340	1.354	1.390	C(24)-C(25)	1.362	1.397
C(23)-C(24)	1.417	1.447	1.401	N(1)-C(25)	1.403	1.388
C(15)-C(24)	1.411	1.430	1.412	N(2)-C(26)	1.479	1.461
O(1)-C(24)	1.302	1.277	1.410	C(26)-C(27)	1.530	1.528

			C(27)-C(28)	1.522	1.526
--	--	--	-------------	-------	-------