ESI for

Complexes of (η^6 -benzene)ruthenium(II) with 1,4-bis(phenylthio/seleno-methyl)-1,2,3-triazoles: synthesis, structure and applications in catalytic activation of oxidation and transfer hydrogenation

Fariha Saleem, Gyandshwar Kumar Rao, Satyendra Kumar, Mahabir Pratap Singh and Ajai Kumar Singh*

Department of Chemistry, Indian Institute of Technology, Delhi, New Delhi 110016, India **Table S1** *Crystal data and structural refinements for Complexes* 1–4

Compounds	1	2	3	4
Empirical formula	C22 H21 Cl N3	C22 H21 Cl N3	C22 H21 Cl N3	C22 H21 Cl N3
	Ru S2, F6 P	Ru S Se, F6 P	Ru S Se, F6 P	Ru Se2, F6 P
Formula wt.	673.03	719.94	719.94	766.83
Crystal size [mm]	0.29×0.22×0.20	0.41×0.27×0.17	0.33×0.29×0.21	0.33×0.31×0.29
Crystal system	Monoclinic	Monoclinic	Orthorhombic	Orthorhombic
Space group	$P2_{1}/c$	$P2_{1}/c$	P212121	P212121
Unit Cell	a = 10.729(3)Å	a = 10.753(19) Å	<i>a</i> = 9.3249(8) Å	a = 9.591(5) Å
dimension	<i>b</i> = 10.019(3) Å	b = 10.110(18) Å	<i>b</i> = 10.7293(9) Å	<i>b</i> =10.922(6) Å
	c = 24.414(7) Å	c = 24.622(4) Å	c = 24.776(2) Å	c = 25.180(14) Å
	$\alpha = 90.00^{\circ}$	$\alpha = 90.00^{\circ}$	$\alpha = 90.00^{\circ}$	$\alpha = 90.00^{\circ}$
	$\beta = 96.518(5)$	$\beta = 97.496(3)^{\circ}$	$\beta = 90.00^{\circ}$	$\beta = 90.00^{\circ}$
	$\gamma = 90.00^{\circ}$	$\gamma = 90.00^{\circ}$	$\gamma = 90.00^{\circ}$	$\gamma = 90.00^{\circ}$
Volume [Å ³]	2607.5(13)	2651.3(8)	2478.8(4)	2638(2)
Ζ	4	4	4	4
$\rho_{\text{calcd}}[\text{g/cm}^3]$	1.714	1.804	1.929	1.931
μ (MoK α) [mm ⁻¹]	0.986	2.264	2.421	3.576
F(000)	1344.0	1416	1416.0	1488.0
θ range [°]	1.68-25.00	1.91-25.00	1.64-25.00	1.62 - 25.00
Index ranges	$-12 \le h \le 12$	$-12 \le h \le 12$	$-11 \le h \le 11$	$-11 \le h \le 11$
	$-11 \le k \le 11$	$-11 \le k \le 11$	$-12 \le k \le 12$	$-12 \le k \le 12$
	$-29 \le l \le 29$	$-29 \le l \le 21$	$-29 \le l \le 29$	$-29 \le l \le 29$
Reflections	22902	24116	22815	19589
collected				
Independent	4309 (0.1095)	4656 (0.0701)	4341 (0.0379)	4609 (0.1329)
reflections($R_{int.}$)				
Completeness to	94.0	99.7	99.9	98.9
max. θ [%]				
Max./min.	0.824 / 0.769	0.684/ 0.481	0.604 / 0.451	0.358/ 0.317
Transmission				
Data/restraints/	4309 / 0 / 325	4656 / 0 / 325	4341 / 0 / 325	4609 / 0 / 325
parameters				
Goodness-of-fit	1.241	1.180	1.046	1.099
on F^2				
Final R indices	$R_1 = 0.0995,$	$R_I = 0.0687,$	$R_1 = 0.0202,$	$R_I = 0.0569,$
[<i>I</i> >2σ(<i>I</i>)]	$wR_2 = 0.1646$	$wR_2 = 0.1498$	$wR_2 = 0.0524$	$wR_2 = 0.1293$
R indices (all	$R_1 = 0.1219,$	$R_1 = 0.0872,$	$R_1 = 0.0208,$	$R_1 = 0.0844,$
data)	$wR_2 = 0.1736$	$wR_2 = 0.1572$	$wR_2 = 0.0527$	$wR_2 = 0.1432$
Largest diff.	0.617 / -1.565	1.581 / -0.707	0.745 / -0.311	1.057 / -1.103
peak/hole[e.Å-3]				
CCDC No.	1401444	1401445	1401446	1401447

Compounds	Bond length [Å]	Bond angle [°]
1	C(6)—S(1)1.777(11)	N(1)— $Ru(1)$ — $C(17)$ 91.3(5)
	C(7) - S(1) 1.832(11)	C(17)— $Ru(1)$ — $C(21)$ 67.2(6)
	C(8) —N(1) 1.359(13)	C(17)— $Ru(1)$ — $C(22)$ 37.6(6)
	C(9)—N(3) 1.333(15)	N(1)— $Ru(1)$ — $C(18)$ 104.1(6)
	C10)—N(3) 1.449(14)	C(17)— $Ru(1)$ — $C(18)$ 37.1(6)
	C(10)—S(2) 1.784(13)	C(17)— $Ru(1)$ — $C(19)$ 67.4(7)
	C(11) - S(2)1.786(13)	N(1)— $Ru(1)$ — $S(1)$ 80.4(3)
	C(17)—Ru(1) 2.139(14)	C(17)— $Ru(1)$ — $S(1)$ 135.4(6)
	C(18)—Ru(1) 2.174(15)	C(21)— $Ru(1)$ — $S(1)$ 92.1(4)
	C(19) - Ru(1) 2.187(13)	C(22)— $Ru(1)$ — $S(1)$ 103.5(5)
	C(20) - Ru(1) 2.179(13)	$C(18)$ — $Ru(1)$ — $S(1\ 170.3(5)$
	C(21)— $Ru(1) 2.151(12)$	C(20)— $Ru(1)$ — $S(1)108.1(5)$
	C(22)— $Ru(1) 2.173(13)$	C(19)— $Ru(1)$ — $S(1) 141.2(6)$
	Cl(1) - Ru(1) 2.394(3)	N(1)— $Ru(1)$ — $Cl(1)$ 87.2(2)
	N(1)—N(2) 1.313(12)	C(17)— $Ru(1)$ — $Cl(1)$ 142.6(6)
	N(1)— Ru(1) 2.091(9)	C(21)— $Ru(1)$ — $Cl(1)$ 130.1(6)
	N(2)—N(3) 1.318(12)	C(22)— $Ru(1)$ — $Cl(1)$ 165.6(4)
	Ru(1) - S(1) 2.388(2)	C(18)— $Ru(1)$ — $Cl(1)$ 107.5(6)
		C(20)— $Ru(1)$ — $Cl1)$ 99.6(5)
		C(19) - Ru(1) - Cl(1) 88.7(4)
		S(1) - Ru(1) - Cl(1) - 81.09(10)
		C(6) - S(1) - C(7) 104.8(5)
		C(6) - S(1) - Ru(1) 108.3(4)
		C(7) - S(1) - Ru(1) 99.9(4)
		C(10)— $S(2)$ — $C(11)99.5(6)$
2	C(6) - S(1) 1.783(7)	N(1)— $Ru(1)$ — $C(20)$ 140.1(4)
	C(7) = S(1) 1.834(7)	N(1) - Ru(1) - C(22) 91.4(3)
	C(8) - N(1) 1.350(9)	N(1) - Ru(1) - C(17) 104.8(4)
	C(9) = N(3) 1.319(10)	N(1) - Ru(1) - C(21) 106.5(4)
	C(10) - N(3) 1.450(9)	N(1) - Ru(1) - C(19) 169.9(3)
	C(10) Se(1) 1.970(8)	$N(1) - Ru(1) - C(18) \frac{137.7(4)}{137.7(4)}$
	C(11) = Se(1) 1.909(9) C(17) = Pr(1) 2.1(C(0))	N(1) - Ru(1) - S(1) 80.55(16) C(17) - Pr(1) - C(21) (7.2(4))
	C(17)—Ru(1) 2.100(9) C(18)—Ru(1) 2.104(0)	C(1/) - Ru(1) - C(21) 6/.3(4)
	C(18) - Ru(1) 2.194(9) C(10) - Ru(1) 2.101(0)	C(20) Ru(1) S(1) 92.4(3) C(22) Ru(1) S(1) 125 $A(4)$
	C(19) - Ku(1) 2.191(9) C(20) - Bu(1) 2.124(0)	C(22) – $Ru(1)$ – $S(1)$ 155.4(4) C(17) – $Pu(1)$ – $S(1)$ 170.5(2)
	C(20) – $Ru(1) 2.134(9)C(21) = Ru(1) 2.173(0)$	C(17)— $Ku(1)$ — $S(1) 170.S(3)C(21)$ — $Bu(1)$ — $S(1) 102.8(3)$
	C(21) Ru(1) 2.175(9) C(22) Ru(1) 2.156(8)	C(21) $Ku(1)$ $S(1)$ $105.0(5)C(10)$ $Pu(1)$ $S(1)$ $107.4(2)$
	C(22) Ru(1) 2.150(8) C(11) Pu(1) 2.200(2)	$C(19) \longrightarrow Ru(1) \longrightarrow S(1) 107.4(3)$ $C(18) \longrightarrow Pu(1) = S(1) 140.2(4)$
	N(1) = N(2) (2) (2) (2)	N(1) Ru(1) $C(1)$ 140.3(4) N(1) $Ru(1)$ $C(1)$ 87 14(16)
	$N(1) = R_{11}(1) 2 104(6)$	$C(20)$ $R_{10}(1)$ $C(1) = C(1) = C(1)$
	N(2) = N(3) + 350(8)	C(22) = Ru(1) = Cl(1) + 130.7(4) C(22) = Ru(1) = Cl(1) + 143.0(4)
	$R_{\rm H}(1)$ = S(1) 2 3902(10)	C(12) = Ru(1) = Cl(1) 145.0(4). C(17) = Ru(1) = Cl(1) 107.0(4).
	100(1) 0(1) 2.3702(17)	$C(21) = R_{11}(1) = C(1) + 107.0(4)$ $C(21) = R_{11}(1) = C(1) + 166.1(3)$
		C(19) = Ru(1) = C1(1) 100.1(3)
		C(18) = Ru(1) = Cl(1) 100.1(3)
		S(1) = Ru(1) = Cl(1) 80.85(7)

Table S2 Bond Lengths and Bond Angles of 1-4

		C(6)—S(1)—C(7) 103.9(3)
		C(11)— $Se(1)$ — $C(10)95.9(3)$
3	Ru(1)—N(1) 2.092(2)	N(1)—Ru(1)—C(22) 90.26(10)
	Ru(1)—C(22) 2.168(3)	N(1)— $Ru(1)$ — $C(21)110.67(10)$
	Ru(1)—C(21) 2.169(3)	N(1)— $Ru(1)$ — $C(20)147.48(11)$
	Ru(1)—C(20) 2.181(3)	N(1)— $Ru(1)$ — $C(19)165.43(11)$
	Ru(1)—C(19) 2.184(3)	N(1)—Ru(1)—C(17)97.99(10)
	Ru(1)—C(17) 2.186(3)	C(19)— $Ru(1)$ — $C(17) 67.92(12)$
	Ru(1)—C(18) 2.196(3)	N(1)—Ru(1)—C(18)127.71(11)
	Ru(1) - Cl(1) 2.4032(7)	C(17)— $Ru(1)$ — $C18) 37.12(13)$
	Ru(1)—Se(1) 2.5007(4)	N(1)— $Ru(1)$ — $Cl(1)$ 88.93(6)
	Se(1)—C(6) 1.939(3)	C(22)— $Ru(1)$ — $Cl(1)$ 151.06(10)
	Se(1)—C(7) 1.969(3)	C(21)— $Ru(1)$ — $Cl(1) 160.12(9)$
	N(1)—N(2) 1.323(3)	C(20)— $Ru(1)$ — $Cl(1)$ 121.86(9)
	S(1)—C(11) 1.789(3)	C(19)— $Ru(1)$ — $Cl(1) 93.45(9)$
	S(1)—C(10)1.812(3)	C(17)— $Ru(1)$ — $Cl(1)$ 113.85(9)
	N(1)—C(8) 1.360(4)	C(18)— $Ru(1)$ — $Cl(1) 90.14(9)$
	N(3)—C(9) 1.349(4)	N(1)— $Ru(1)$ — $Se(1) 81.03(6)$
	N(3)—C(10) 1.463(4)	C(22)— $Ru(1)$ — $Se(1) 130.18(10)$
	N(2)—N(3) 1.333(3)	C(21)— $Ru(1)$ — $Se(1) 100.97(8)$
		C(20)— $Ru(1)$ — $Se(1)$ 94.42(9)
		C(19)— $Ru(1)$ — $Se(1)$ 113.53(9)
		C(17)— $Ru(1)$ — $Se(1)$ 167.96(9)
		C(18)— $Ru(1)$ — $Se(1)$ 149.14(9)
		C(11)— $Ru(1)$ — $Se(1)$ 78.18(2)
		C(6)— $Se(1)$ — $C(7)$ 101.60(13)
		C(6)— $Se(1)$ — $Ru(1)$ 108.15(8)
		C(7)— $Se(1)$ — $Ru(1)$ 95.29(8)
		N(2)—N(1)—C(8) 110.9(2)
		N(2)—N(1)—Ru(1) 124.40(17)
		C(8)—N(1)—Ru(1) 124.30(18)
		C(11)—S(1)—C(10) 100.03(14)
		C(12)— $C(11)$ — $S(1)$ 119.8(2)
		C(16) - C(11) - S(1) 120.2(2)
		C(8)—C(7)—Se(1) 110.02(19)
4	C(6)—Se(1) 1 946(10)	N(1) - C(8) - C9 105 1(9)
•	C(7)—Se(1) 1.986(10)	N(1) - C(8) - C7 121 2(9)
	C(8) = N(1) + 404(12)	N(3) - C(9) - C(8) + C(8)
	C(9) - N(3) + 355(14)	N(3) - C(10) - Se2 112 2(8)
	C(10) - N(3) + 456(14)	N(2) - N(1) - Ru1 126.1(6)
	C(10)—Se(2) 1.970(11)	C(8) - N(1) - Ru1 123.1(7)
	C(11)—Se(2) 1.952(10)	N(1) - Ru(1) - C17 90.9(4)
	C(17)—Ru(1) 2.175(11)	N(1)—Ru(1)—C18 99.0(5)
	C(18)—Ru(1) 2.184(11)	C(17)—Ru(1)—C18 38.0(5)
	C(19)—Ru(1) 2.196(12)	N(1)—Ru(1)—C20 166.0(5)
	C(20)—Ru(1) 2.188(11)	C(17)—Ru(1)—C20 79.3(5)
	C(21)—Ru(1) 2.204(10)	C(18)—Ru(1)—C20 67.2(6)
	C(22)—Ru(1) 2.193(9)	N(1)—Ru(1)—C22 110.6(4)
	Cl(1)—Ru(1) 2.419(3)	N(1)—Ru(1)—C19 129.5(5)

N(3)—N(2) 1.335(11)	N(1)—Ru(1)—C21 147.3(5)
N(2)—N(1) 1.316(11)	C(17)—Ru(1)—C21 67.2(5)
N(1)—Ru(1) 2.096(7)	C(18)— $Ru(1)$ — $C(21)$ 78.8(5)
Ru(1)—Se(1) 2.5262(19)	N(1)— $Ru(1)$ — $Cl(1)$ 88.2(2)
	C(17)— $Ru(1)$ — $Cl(1)$ 150.4(4)
	C(18)— $Ru(1)$ — $Cl(1)$ 113.1(4)
	C(20)— $Ru(1)$ — $Cl(1)$ 95.4(4)
	C(22)— $Ru(1)$ — $Cl(1) 161.1(3)$
	C(19)— $Ru(1)$ — $Cl(1) 90.0(4)$
	C(21)— $Ru(1)$ — $Cl(1)$ 123.0(4)
	N(1)— $Ru(1)$ — $Se(1) 81.5(3)$
	C(17)— $Ru(1)$ — $Se(1) 130.7(4)$
	C(18)— $Ru(1)$ — $Se(1)$ 168.4(4)
	C(20)— $Ru(1)$ — $Se(1)$ 112.5(4)
	C(22)— $Ru(1)$ — $Se(1) 101.8(3)$
	C(19)— $Ru(1)$ — $Se(1)$ 146.9(5)
	C(21)— $Ru(1)$ — $Se(1)$ 94.5(4)
	Cl(1)— $Ru(1)$ — $Se(1)$ 78.40(9)
	C(6)— $Se(1)$ — $C(7)$ 101.7(4)
	C(6)— $Se(1)$ — $Ru(1)$ 108.0(3)
	C(7)— $Se(1)$ — $Ru(1)$ 95.1(3)
	C(11)— $Se(2)$ — $C(10)$ 96.9(5)

Figure S1. Non-covalent C–H \cdots F interactions in 2

Figure S2. Non-covalent C–H…F interactions in 4

1		2	
C(13)–H(13)…F(6)	2.763	$C(17)-H(17)\cdots F(2)$	2.817
$C(15) - H(15) \cdots F(4)$	2.775	$C(2)-H(2)\cdots F(3)$	2.420
$C(4)-H(4)\cdots F(4)$	2.750	$C(4)-H(4)\cdots F(4)$	2.721
$C(5)-H(5)\cdots F(3)$	2.719	$C(13)-H(13)\cdots F(5)$	2.710
$C(18)-H(18)\cdots F(3)$	2.840	$C(9)-H(9)\cdots F(3)$	2.790
$C(21)-H(21)\cdots F(1)$	2.791	$C(9)-H(9)\cdots F(1)$	3.786
$C(5)-H(5)\cdots F(1)$	2.589	$C(9)-H(9)\cdots F(2)$	2.607
$C(5)-H(5)\cdots F(2)$	2.819	$C(17)-H(17)\cdots F(2)$	2.817
$C(20)-H(20)\cdots F(1)$	2.710	$C(16)-H(16)\cdots F(3)$	2.601
$C(16) - H(16) \cdots F(5)$	2.583	$C(15)-H(15)\cdots F(4)$	2.819
$C(2) - H(2) \cdots F(5)$	2.417	$C(5) - H(5) \cdots F(1)$	2.607
$C(9) - H(9) \cdots F(3)$	2.610	$C(5) - H(5) \cdots F(2)$	2.693
$C(10A) - H(10A) \cdots F(1)$	2.825	$C(3) - H(3) \cdots F(0)$	2.801
$C(9) - H(9) \cdots F(3)$	2.770	$C(19) - H(19) \cdots F(1)$ $C(20) H(20) \cdots F(6)$	2.840
		$C(20) - \Pi(20) \cdots \Gamma(0)$	2.704
3	1	4	
C(16)–H(16)…F(1)	2.693	C(20)–H(20)…F(6)	2.729
C(19)–H(19)…F(5)	2.770	$C(21) - H(21) \cdots F(6)$	2.798
$C(20)-H(20)\cdots F(6)$	2.815	$C(21)-H(21)\cdots F(1)$	2.673
$C(21) - H(21) \cdots F(6)$	2,736	$C(1)-H(1)\cdots F(1)$	2.769
$C(14)-H(14)\cdots F(4)$	2 703	$C(1)-H(1)\cdots F(5)$	2.687
$C(21) - H(21) \cdots F(2)$	2 616	$C(19)-H(19)\cdots F(5)$	2.823
C(21) H(21) I(2) $C(18) - H(18) \cdots F(2)$	2.010	$C(19)-H(19)\cdots F(3)$	2.750
$C(10) = \Pi(10) = \Pi(2)$ $C(2) = \Pi(2) = \Pi(10)$	2.460	$C(14) - \Pi(14) \cdots \Gamma(3)$ $C(4) = \Pi(4) \cdots \Gamma(3)$	2.810
$C(2) = \Pi(2)^{-1} \Gamma(1)$	2.409	C(4) = II(4) = I(4) $C(12) = H(12) \cdots F(4)$	2.505
$C(10B) - H(10B) \cdots F(1)$	2.812	C(12) - H(12) - F(3)	2.826
$C(9) - H(9) \cdots F(1)$	2.540	C(12) H(12) F(3) $C(13)-H(13)\cdots F(3)$	2 818
$C(9)-H(9)\cdots F(3)$	2.665		2.010
$C(16)-H(16)\cdots F(2)$	2.705		
$C(15)-H(15)\cdots F(2)$	2.610		
$C(5)-H(5)\cdots F(3)$	2.669		
$C(20)-H(20)\cdots F(5)$	2.791		
$C(20)-H(20)\cdots F(4)$	2.696		
$C(5)-H(5)\cdots F(4)$	2.748		
$C(21)-H(21)\cdots F(4)$	2.741		

 Table S3 Non-covalent interactions $C-H\cdots F$ distances [Å] of 1-4

	1	2
	Bond length / optimized	Bond length / optimized
	Angle value	Angle value
N(1)—Ru(1)	2.091(9) 2.102	Ru(1)—N(1) 2.100(6) 2.098
S(1)—Ru(1)	2.391(3) 2.429	Ru(1)—S(1) 2.386(19) 2.431
Cl(1)—Ru(1)	2.394(3) 2.421	Ru(1)—Cl(1) 2.399(2) 2.416
C — Ru(1)	1.675(1) 1.735	C —Ru(1) 1.679(1) 1.759
N1—Ru1—S1	80.4(3) 80.25	N1—Ru1—S1 80.55(16) 80.32
N1—Ru1—Cl1	87.2(2) 84.15	N1—Ru1—Cl1 87.14(16) 84.40
S1—Ru1—Cl1	81.09(10) 81.77	Cl(1)—Ru1—S1 80.85(7) 81.53
	3	4
N(1)—Ru(1)	2.092(2) 2.105	Ru(1)—N(2) 2.096(7) 2.102
Ru(1)—Se(1)	2.5007(4) 2.523	Ru(1)—Cl(1) 2.419(3) 2.419
Cl(1)—Ru(1)	2.4032(7) 2.419	Ru(1)—Se(1) 2.526(19) 2.523
C — Ru(1)	1.666 1.738	C—Ru1 1.687 1.737
N1—Ru1—Se1	81.03(6) 81.25	N1—Ru1—Se1 81.5(3) 81.40
N1—Ru1—Cl1	88.93(6) 84.46	N1—Ru1—Cl1 88.2(2) 84.34
Se1—Ru1—Cl1	81.03(6) 80.25	Cl1—Ru1—Se1 78.40(9) 80.13

Table S4 Comparison of Selected Bond Lengths (Å) and Angles (°) of 1–4Determined Experimentally and Optimized by DFT

Figure S4 ¹³C{¹H}NMR spectrum of L1

Figure S5 ¹H NMR spectrum of L2

Figure S6 ¹³C{¹H} NMR spectrum of L2

Figure S8¹H NMR spectrum of L3

Figure S10 ⁷⁷Se NMR spectrum of L3

Figure S12 ¹³C{¹H} NMR spectrum of L4

Figure S14 ¹H NMR spectrum of 1

Figure S15 ${}^{13}C{}^{1}H$ NMR spectrum of 1

Figure S16 ¹H NMR spectrum of 2

Figure S18 ⁷⁷Se NMR spectrum of 2

Figure S19¹H NMR spectrum of 3

Figure S20 ¹³C{¹H} NMR spectrum of 3

Figure S21 ⁷⁷Se NMR spectrum of 3

Figure S22 ¹H NMR spectrum of 4

Figure S23 ¹³C{¹H} NMR spectrum of 4

Figure S24 ⁷⁷Se NMR spectrum of 4

Figure S25 Mass spectrum of L1

Figure S26 Mass spectrum of L2

Figure S27 Mass spectrum of L3

Figure S28 Mass spectrum of L4

	Mass S	Spectrum Sn	nartForm	ula Report			
Analysis Info				Acquisition Date	11/21/20	012 10:22:0	07 AM
Analysis Name Method Sample Name Comment	D:\Data\NOV_12\F 1.d tune_low.m TM 1:100			Operator Instrument / Ser#	Sharma micrOT(/Singh DF-Q II 102	262
Acquisition Par Source Type Focus Scan Begin Scan End	rameter ESI Not active 50 m/z 1500 m/z	Ion Polarity Set Capillary Set End Plate Offset Set Collision Cell RF	Positive 4500 V -500 V 100.0 Vpp	Set Nebulizer Set Dry Heate Set Dry Gas Set Divert Va	er Ive	0.3 Bar 180 °C 4.0 I/min Source	
						+MS, 0	2min #1-
		527 9905				+MS, 0	.2min #14

Figure S29 Mass spectrum of 1

Figure S30 Mass spectrum of 2

Figure S31 Mass spectrum of 3

Figure S32 Mass spectrum of 4

Figure S33 ¹HNMR spectrum of Oppenauer-type oxidation of benzyl alcohol

showing M-H bond

Figure S34 ¹HNMR spectrum of TH of Benzaldehyde showing M-H bond