Supporting Information

Yttrium and Aluminium Complexes bearing Dithiodiolate Ligands: Synthesis and Application in Cyclic Esters Polymerization

A. Meduri,^a M. Cozzolino,^a S. Milione,^a K. Press,^b E. Sergeeva,^b C. Tedesco,^a M. Mazzeo^a and M. Lamberti^{c,*}

^a Dipartimento di Chimica e Biologia, Università di Salerno, via Giovanni Paolo II 132, I-84084, Fisciano, Salerno, Italy. ^b School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel

^c Dipartimento di Fisica "E. Caianiello", Università di Salerno, via Giovanni Paolo II 132, I-84084, Fi-sciano, Salerno, Italy

Corresponding author: mlamberti@unisa.it

Table of contents

Figure S1. ¹ H NMR of complex 1	S2
Figure S2. ¹³ C NMR of complex 1	S2
Figure S3. ¹ H NMR of complex 2	S3
Figure S4. ¹³ C NMR of complex 2	S3
Figure S5. ¹ H NMR of complex 3	S4
Figure S6. ¹³ C NMR of complex 3	S4
Figure S7. ¹ H NMR of complex 4	S3
Figure S8. ¹³ C NMR of complex 4	S3
Figure S9. Eyring plot for the temperature-dependent fluxional process for 1	S6
Figure S10. Plot of $M_{n,GPC}$ of the poly ε -caprolactone versus time	S6
Figure S11. ESI-MS spectrum of oligomers of <i>rac</i> -lactide	S8
Figure S12. Homonuclear decoupled ¹ H NMR of a PLA sample	S8
Table S1. Selected bond lengths (Å) and angles (°) for 2	S8
Table S2. Experimental and Theorerical Tetrad Probabilities	S8
Table S3. Relationship between M_n and the initial [CL] ₀ /[4-iPrOH] molar ratio	S9
Figure S13. Plot of $M_{n,GPC}$ of the poly ε -caprolactone versus [CL] ₀ /[4-iPrOH] molar ratio	S9
Cartesian coordinates and energies of calculated structures	S10

Figure S1. ¹H NMR (250 MHz, C₆D₆, RT) of complex 1.

Figure S2. ¹³C NMR (75.5 MHz, C₆D₆, RT) of complex 1.

Figure S4. ¹³C NMR (75.5 MHz, C₆D₆, RT) of complex 2

Figure S5. ¹H NMR (400 MHz, toluene-d₈, -40 °C) of complex 3.

Figure S6. ¹³C NMR (62.9 MHz, C₆D₆, RT) of complex 3.

Figure S7. ¹H NMR (300 MHz, C₆D₆, RT) of complex 4.

Figure S8. ¹³C NMR (62.9 MHz, C₆D₆, RT) of complex **4**.

Figure S9. Eyring plot for the temperature-dependent fluxional process for 1. A = 3.50988 (0.10865) B = -925.3615 (27.06213) R = -0.99744 SD = 0.0359 ΔH^{\ddagger} = 1.84 Kcal/mol ΔS^{\ddagger} = -40.24 cal/mol K ΔG^{\ddagger} = 13.8 Kcal/mol

Figure S10. Plot of $M_{n,GPC}$ of the polymer versus conversion. Polymerization of ε -caprolactone by $1 + {}^{i}$ PrOH (1 equiv) at 70 °C.

 $\begin{aligned} \mathsf{A}_{\mathsf{n}} &= 60.10 + 2\mathsf{n}(72.06) + 23.00 \\ \mathsf{a}_{\mathsf{n}} &= 60.10 + (2\mathsf{n}+1)(72.06) + 23.00 \end{aligned}$

 $B_n = 18.01 + 2n(72.06) + 23.00$ $b_n = 18.01 + (2n + 1)(72.06) + 23.00$

Figure S11. ESI mass spectrum of the oligomerization product of *rac*-lactide by 1 (Table 3, run 13).

Figure S12. Homonuclear decoupled ¹H NMR (600 MHz, CDCl₃, RT) of the methine region of heterotactically-enriched PLA prepared with complex **1** (Table 2, run 10).

Y1 - O1	2.153(5)	O1 - Y1 - O2	109.26(19)	O1 - Y1 - S1	65.64(13)
Y1 - O2	2.122(5)	O1 - Y1 - O3	83.36(17)	O2 - Y1 - S1	109.22(15)
Y1 - N1	2.253(6)	O2 - Y1 - O3	81.84(18)	O3 - Y1 - S1	148.94(11)
Y1 - O3	2.358(4)	N1 - Y1 - O1	131.0(2)	O1 - Y1 - S2	125.82(13)
Y1 - S1	2.980(2)	N1 - Y1 - O2	118.1(2)	O2 - Y1 - S2	67.02(13)
Y1 - S2	3.046(3)	N1 - Y1 - O3	91.26(19)	O3 - Y1 - S2	142.32(12)
Si1 - N1	1.715(6)	N1 - Y1 - S1	107.27(15)	S1 - Y1 - S2	65.72(6)
Si2 - N1	1.708(6)	N1 - Y1 - S2	85.61(16)	Si2 - N1 - Y1	122.3(3)
Y1…Si1	3.230(3)	Si2 - N1 - Si1	129.2(4)	Si1 - N1 - Y1	108.2(3)
Y1…Si2	3.480(3)				

Table S1. Selected bond lengths (Å) and angles (°) for 2.

Table S2. Tetrad probabilities based on Bernoullian Statistic (Th) for a P_r of 0.72 and experimental values (Exp) as obtained by NMR analysis.

Tetrad	Formula	Exp	Th
[mmm]	$P_m^2 + P_r P_m/2$	0.18	0.18
[mmr]	$P_r P_m/2$	0.10	0.10
[<i>rmm</i>]	$P_r P_m/2$	0.09	0.10
[rmr]	$P_{r}^{2}/2$	0.26	0.26
[mrm]	$(P_r^2 + P_r P_m)/2$	0.37	0.36

Run	[ɛ-CL]/[Al]	Yield ^b (%)	M _{n,th} ^c (kDa)	M _n ^{d,,e} (kDa)	$M_{ m w}/M_{ m n}{}^d$
14	25	98	2.8	3.1	1.14
15	50	72	4.1	3.5	1.16
16	250	99	28.2	25.7	1.21
17	500	80	45.7	50.2	1.66

Table S3. Polymerization of ε -caprolactone by 4 + 'PrOH. Relationship between M_n of the obtained polymer and the initial mole ratio [CL]₀/[4-iPrOH]

"Polymerization conditions: precatalyst **4**: 10 μmol; ^{*i*}PrOH: 10 μmol; 10 μL of a 0.1 M toluene solution; toluene: 2 mL; temperature: 70°C; polymerization time: 6h. ^{*b*} Determined by ¹H NMR (CDCl₃, RT). ^{*c*}Theoretical molecular masses. ^{*d*}Molecular masses and their dispersities as determined by GPC (THF, 35°C) vs. polystyrene standards and corrected by 0.56 factor.

Figure S13. Relationship between M_n of the obtained PCL and the initial mole ratio [CL]₀/[4-iPrOH] for the polymerization of ε -CL (data reported in Table S3)

Cartesian coordinates and energies of calculated structures

L²YOiPr(THF)

Charge = 0Multiplicity = 1

Y	-	-0.073317	-0.767350	0.647262
S		-1.227005	2.035480	1.230398
S		1.865824	1.389267	1.742363
F		4.859811	-1.549867	0.490873
F		4.067197	-2.078685	-1.476364
F		5.208499	-0.214372	-1.222420
F		1.121655	0.819778	-1.353359
F		2.421159	-0.365751	-2.657950
F		3.117824	1.570169	-1.904171
F		-3.923610	-0.492694	-2.443161
F		-4.390326	1.638405	-2.172527
F		-2.414336	1.028423	-2.907934
F		-3.496896	0.197416	1.680805
F		-4.350372	-1.124197	0.153519
F		-5.077163	0.940103	0.346623
0		-1.809673	-0.267443	-0.562712
0		2.036682	-1.159376	0.168486
0		-0.334792	-2.833829	-0.558535
С		0.029291	3.211559	0.709534
С		-0.337601	4.455004	0.151627
Н		-1.397803	4.690580	0.011051
С		0.637221	5.388613	-0.220817
Н		0.333236	6.341675	-0.666768
С		1.995127	5.111152	0.007310
Н		2.763487	5.845048	-0.258163
С		2.369493	3.899352	0.600429
Н		3.426591	3.703509	0.808418
С		1.402256	2.929025	0.932000
С		-2.404341	2.078218	-0.199400
Н		-3.269965	2.714031	0.044108
Н		-1.855160	2.506978	-1.051664
С		3.341199	0.790688	0.808569
Н		3.922541	1.638137	0.414543
Н		3.945141	0.277571	1.572361
С		-2.840821	0.620561	-0.584005
С		-3.966880	0.151119	0.395696
С		-3.410610	0.697563	-2.042537
С		2.969481	-0.274616	-0.281962
С		2.440712	0.442587	-1.574432
С		4.291380	-1.041441	-0.635875

С	-1.546631	-3.314234	-1.213636
Н	-2.237452	-2.460137	-1.250043
Н	-1.975356	-4.124338	-0.591216
С	-1.077157	-3.834895	-2.589570
Н	-1.622568	-4.751696	-2.871347
Н	-1.259583	-3.081893	-3.374212
С	0.453979	-4.085375	-2.409290
Н	1.036669	-3.401961	-3.049402
Н	0.748482	-5.118201	-2.661722
С	0.717021	-3.774251	-0.924311
Н	0.613675	-4.675850	-0.288058
Н	1.671633	-3.269352	-0.717037
0	-0.480883	-1.452680	2.520740
С	-0.763389	-1.928023	3.818821
Н	-1.613189	-1.339697	4.232809
С	0.457710	-1.722358	4.732832
Н	0.245573	-2.048606	5.768193
Н	1.318639	-2.302459	4.351562
Н	0.742980	-0.655587	4.755892
С	-1.189790	-3.405843	3.759489
Н	-0.358534	-4.027300	3.377360
Н	-1.473771	-3.780807	4.760375
Н	-2.054549	-3.527331	3.083493

E = -3147.71426332 A.U. *E*+ *ZPE* = -3147.288865 A.U.

G = -3147.373681 A.U.

[L²YOiPr]₂

Charge = 0				
Multipl	icity = 1			
Y	1.744849	-0.315470	0.248060	
S	3.898321	-1.386373	-1.672014	
S	2.712506	1.675482	-1.909185	
F	0.881767	4.173656	1.097224	
F	2.155097	3.795404	2.836952	
F	2.845269	5.145960	1.246068	
F	4.807347	1.469526	0.579077	
F	4.327453	2.289955	2.549437	
F	5.069832	3.616881	0.963947	
F	4.374966	-3.148830	3.215326	
F	6.013729	-3.657798	1.841592	
F	5.645677	-1.563630	2.398859	
F	2.493102	-3.718392	-0.486403	

F	2.684533 -4	4.425888	1.580061
F	4.265905 -4	4.867178	0.125246
0	3.111822 -	1.636601	1.216040
0	2.049494	1.657273	0.997754
С	4.926406 -	0.016876	-2.230401
С	4.425415	1.306726	-2.318515
Č	4 954821 -	2 098143	-0.318423
с u	5 564102	2.025608	0.712055
п	5.004102 -	2.923096	-0./12933
П	3.000303 -	1.265255	0.029855
C	2.786588	3.144220	-0./92909
Н	3.620040	3.803974	-1.080212
Н	1.839465	3.663997	-1.008387
С	4.068736 -	2.555987	0.887685
С	3.384456 -	3.919485	0.541391
С	5.035088 -	2.743642	2.109100
Ċ	2 795674	2 768873	0 732789
C	4 264319	2 548608	1 226080
C	2 171611	3 086077	1 /00815
C	2.1/1011	0.((717)	1.499613
0	0.184596 -	0.00/1/0	-1.343039
0	-0.182895 -	0.6/08/9	1.343090
Н	-5.559111 -	2.929696	0.713641
С	-4.950896 -	2.101522	0.318757
S	-3.893090 -	1.389715	1.671275
Н	-5.603460 -	1.286939	-0.028362
С	-4.065781 -	2.558278	-0.888513
Ċ	-4 921412 -	0 021827	2 232902
0	3 100///	1 638301	-1 217154
C	2 280728	3 021800	0 5/2871
C	-5.580758	-3.921809	-0.343671
C	-5.033255	-2./4533/	-2.109126
C	-4.421451	1.302132	2.321446
F	-4.261633 -	-4.870314	-0.128337
F	-2.681069 -	-4.426817	-1.583402
F	-2.489030 -	-3.721425	0.483687
F	-4.374176 -	-3.149961	-3.216191
F	-6.011610	-3.659671	-1.841152
F	-5 644146	1 565206	-2.397680
S	-2 709926	1 673551	1 908559
0	2.709920	1 654804	1.000671
0 C	-2.036239	2.142210	-1.000071
C	-2./88/88	3.142210	0.792514
C	-2.802474	2.767042	-0./332/6
Н	-3.621864	3.801264	1.082535
Н	-1.841432	3.662737	1.005213
С	-4.272673	2.547885	-1.222444
С	-2.179643	3.984759	-1.501804
F	-4.815031	1.469780	-0.573467
F	-5.076351	3.617214	-0.958656
F	-4 339583	2 288725	-2 545510
F	2 168305	2.200725	2.345510
Г	-2.100393	3./94100	-2.039133
Г	-0.888055	4.1694/1	-1.103931
F	-2.850802	5.144523	-1.244/45
Y	-1.743626	-0.315636	-0.249950
С	0.305019	-0.963456	-2.762338
Н	1.311166	-0.622346	-3.087285
С	-0.303231	-0.966995	2.759803
Н	-1.309849	-0.627047	3.084540
С	-0 198654	-2 481498	2 980481
й	-0.964135	_3 019507	2 306030
н	0.707120	-2 8/6527	2.570059
11 U	0.17/127	2.04033/	4 040220
П	-0.343260	-2.728909	4.048339
C	0./44974	-0.190550	3.568723
Н	0.694841	0.889972	3 354141

Η	0.581101	-0.342737	4.651305
Н	1.765890	-0.549725	3.336145
С	0.202058	-2.478126	-2.982745
Н	0.968284	-3.015275	-2.398469
Н	-0.793242	-2.844229	-2.674083
Н	0.346620	-2.725557	-4.050604
С	-0.744345	-0.188391	-3.571078
Н	-0.695744	0.892166	-3.356335
Н	-0.580325	-0.340168	-4.653692
Н	-1.764764	-0.548961	-3.338484
С	-6.242841	-0.291896	2.650090
Н	-6.616644	-1.320683	2.611094
С	-7.075032	0.736775	3.107386
Н	-8.102579	0.510343	3.411225
С	-6.577108	2.047063	3.201530
Η	-7.211515	2.855062	3.581305
С	-5.254072	2.319068	2.834302
Η	-4.858125	3.334419	2.944303
С	6.248955	-0.285255	-2.645125
Η	6.623630	-1.313739	-2.606533
С	7.081194	0.744710	-3.099418
Н	8.109578	0.519556	-3.401369
С	6.582324	2.054680	-3.192945
Н	7.216831	2.863728	-3.570312
С	5.258255	2.325058	-2.828249
Η	4.861706	3.340218	-2.937857

E = -5830.54751481 A.U. E + ZPE = -5829.926519 A.U. G = -5830.046465 A.U.

THF

Charge	e = 0		
Multip	licity = 1		
0	-0.746084	-2.621183	-1.223265
С	0.064347	-3.801842	-1.269104
С	-1.221083	-2.456591	-2.564856
С	-0.696409	-4.804523	-2.175255
Н	1.064531	-3.569148	-1.701605
Н	0.206232	-4.147717	-0.231149
С	-1.585944	-3.878955	-3.062014
Н	-2.072821	-1.756187	-2.532219
Н	-0.425565	-2.012793	-3.206654
Н	-1.320006	-5.485520	-1.571235
Н	-0.003892	-5.425386	-2.769671
Н	-2.656368	-4.089484	-2.896441
Н	-1.384614	-4.000700	-4.140436

E = -232.44770068 A.U.

E + ZPE = -232.333437 A.U.

G = -232.361750 A.U.