Electronic Supplementary Information (ESI)

for

Constructing novel Cd(II) metal-organic frameworks based on different highly connected secondary building units *via* reaction condition alteration

Yan-Qing Liu, Guo-Jian Ren, Ying-Hui Zhang*, Jian Xu* and Xian-He Bu

School of Materials Science and Engineering, School of Chemistry, Tianjin Key Lab on Metal and Molecule-based Material Chemistry, Nankai University, Tianjin 300071, China.

Fig. S1 Coordination environments of Cd1 and Cd2 in **1**. Symmetry code: A: x, 3/2-y, 3/2-z; B: 3/2+x, y, 2-z; C: 3/2-x, -1/2+y, 3/2-z; D: -1+x, y, z; E: 3/2-x, 2-y, z.

Fig. S2 Coordination environments of Cd1, Cd2 and Cd3 in **2**. Symmetry code: A: 1-x, 1-y, 1-z; B: x, -1+y, z; C: 1/2-x, -1/2+y, 3/2-z; D:3/2-x, -1/2+y, 3/2-z; E: -x, 1-y, 1-z.

Fig. S3 Coordination environments of Cd1-4 in **3**. Symmetry code: A: x, 1-y, z; B: x, 1+y, 1+z; C: x, 1-y, -1+z; D: 1/2-x, 1/2+y, 2-z; E: x, 2-y, z; F: -x, y, -z; G: -x, -y, -z; H: x, -y, z; I: x, 1-y, 1+z; J: -x, 1+y, 1-z.

Fig. S4 Simulated and experimental PXRD patterns of compound 1.

Fig. S5 Simulated and experimental PXRD patterns of as-synthesized 2 and samples soak in common organic solvents for three days.

Fig. S6 Simulated and experimental PXRD patterns of compound 3.

Fig. S7 Thermagravimetric profiles for 1-3. Red line: 1; Blue line: 2;Black line: 3; The insert figure: activated compound 2.

Fig. S8 The N_2 adsorption isotherms of 2.

Fig. S9 The isoteric heat of adsorption (Qst) for the CO_2 adsorption of 2.

Table S1 The summarization of the coordination modes of 4-ptz ligand inliteratures. Color scheme: metal centers (green) and the others are thesame with compound 1.

Bridging mode	Ref	Bridging mode	Ref
or H	1	Å.	5
μ_1 -bridging mode		μ ₅ -bridging mode	
or or	1,2		3a
μ ₂ -bridging mode		μ_3 -, μ_4 - bridging mode	
	2d,3		3a
µ ₃ -bridging mode		μ_3 -, μ_5 - bridging mode	
	2a,4		
μ_4 -bridging mode			

Compounds	1	2	3
Empirical formula	$C_{43}H_{66}Cd_3N_{28}O_{12}$	$C_{61}H_{80}Cd_5N_{42}O_{13}$	$C_{123}H_{158}Cd_9N_{78}O_{22}$
Formula weight	1504.40	2171.65	4092.86
Crystal system	Orthorhombic	Monoclinic	Monoclinic
Space group	Pnna	P21/n	C2/m
Temperature	293k	113k	293k
<i>a</i> [Å]	14.044(3)	12.6177(19)	39.073(8)
<i>b</i> [Å]	20.297(4)	12.5869(18)	19.229(4)
<i>c</i> [Å]	23.635(5)	28.561(4)	13.798(3)
α [°]	90	90	90
β [°]	90	96.843(2)	103.60(3)
γ [°]	90	90	90
V[Å ³]	6737(2)	4503.6(11)	10076(4)
Ζ	4	2	2
$Dc[g/cm^{-3}]$	1.478	1.598	1.346
μ [mm ⁻¹]	1.010	1.239	1.000
F(000)	3020.0	2160.0	4080.0
unique reflns	5939	7926	9205
GOF on F^2	0.975	1.366	1.033
$R_{I}(I > 2\sigma(I))^{a}$	0.0818(3758)	0.1205(7846)	0.0583(6762)
$wR_2(I > 2\sigma(I))^b$	0.2257(5939)	0.3212(7926)	0.1502(9205)
${}^{a}R_{I} = \sum F_{o} - F_{c} / \sum F_{o} $. ${}^{b} wR_{2} = \{\sum [w(F_{o}^{2} - F_{c}^{2})^{2}] / \sum w(F_{o}^{2})^{2}\}^{1/2}$			

Table S2 Crystal Data and Structure Refinements for MOFs 1-3.

1				
N(13)-Cd(1)#1	2.372(7)	N(6)-Cd(1)-N(13)#2	95.6(3)	
Cd(1)-O(1)	2.292(7)	O(1)-Cd(1)-N(9)	85.6(3)	
Cd(1)-N(1)	2.355(8)	N(1)-Cd(1)-N(9)	93.6(3)	
Cd(1)-O(2)	2.358(7)	O(2)-Cd(1)-N(9)	90.3(3)	
Cd(1)-N(6)	2.353(8)	N(6)-Cd(1)-N(9)	171.8(3)	
Cd(1)-N(13)#2	2.372(7)	N(13)#2-Cd(1)-N(9)	91.0(3)	
Cd(1)-N(9)	2.379(8)	O(1)-Cd(2)-N(5)#3	93.77(19)	
Cd(2)-O(1)	2.246(14)	O(1)-Cd(2)-N(5)#4	93.8(2)	
Cd(2)-N(5)#3	2.357(7)	N(5)#3-Cd(2)-N(5)#4	172.5(4)	
Cd(2)-N(5)#4	2.357(7)	O(1)-Cd(2)-N(8)#5	180.000(3)	
Cd(2)-N(8)#5	2.383(10)	N(5)#3-Cd(2)-N(8)#5	86.2(2)	
Cd(2)-N(10)	2.377(8)	N(5)#4-Cd(2)-N(8)#5	86.2(2)	
Cd(2)-N(10)#6	2.377(8)	O(1)-Cd(2)-N(10)	85.92(19)	
O(1)-Cd(1)#6	2.292(7)	N(5)#3-Cd(2)-N(10)	91.6(3)	
N(5)-Cd(2)#4	2.357(7)	N(5)#4-Cd(2)-N(10)	88.9(3)	
N(8)-Cd(2)#7	2.383(10)	N(8)#5-Cd(2)-N(10)	94.08(19)	
O(1)-Cd(1)-N(1)	90.46(19)	O(1)-Cd(2)-N(10)#6	85.92(19)	
O(1)-Cd(1)-O(2)	88.39(18)	N(5)#3-Cd(2)-N(10)#6	88.9(3)	
N(1)-Cd(1)-O(2)	175.9(3)	N(5)#4-Cd(2)-N(10)#6	91.6(3)	
O(1)-Cd(1)-N(6)	87.6(3)	N(8)#5-Cd(2)-N(10)#6	94.08(19)	
N(1)-Cd(1)-N(6)	91.0(3)	N(10)-Cd(2)-N(10)#6	171.8(4)	
O(2)-Cd(1)-N(6)	85.0(3)	Cd(2)-O(1)-Cd(1)	121.1(3)	

Table S3 Bond lengths (Å) and angles (°) for MOFs 1-3.

O(1)-Cd(1)-N(13)#2	175.7(3)	Cd(2)-O(1)-Cd(1)#6	121.1(3)
N(1)-Cd(1)-N(13)#2	92.4(3)	Cd(1)-O(1)-Cd(1)#6	117.8(6)
O(2)-Cd(1)-N(13)#2	89.0(3)		

Symmetry codes: #1 x-1/2,y,-z+2; #2 x+1/2,y,-z+2; #3 -x+3/2,y-1/2,-z+3/2; #4 - x+3/2,-y+2,z; #5 x-1,y,z; #6 x,-y+3/2,-z+3/2; #7 x+1,y,z.

	2	2	
Cd(1)-O(2)	2.291(11)	Cd(3)-N(17)	2.397(13)
Cd(1)-N(18)#1	2.337(16)	N(4)-Cd(2)#6	2.382(15)
Cd(1)-N(1)	2.345(15)	N(3)-Cd(1)#6	2.385(15)
Cd(1)-N(15)#2	2.371(15)	N(8)-Cd(1)#8	2.405(15)
Cd(1)-N(3)#3	2.385(15)	N(9)-Cd(2)#8	2.382(14)
Cd(1)-N(8)#4	2.405(15)	N(18)-Cd(1)#1	2.337(16)
Cd(2)-O(2)	2.267(11)	N(20)-Cd(2)#5	2.331(17)
Cd(2)-N(20)#5	2.331(17)	O(2)-Cd(1)-N(18)#1	89.1(5)
Cd(2)-N(6)	2.347(15)	O(2)-Cd(1)-N(1)	170.4(5)
Cd(2)-N(12)	2.360(15)	N(18)#1-Cd(1)-N(1)	97.9(6)
Cd(2)-N(4)#3	2.382(15)	O(2)-Cd(1)-N(15)#2	99.7(5)
Cd(2)-N(9)#4	2.382(14)	N(18)#1-Cd(1)-N(15)#2	99.9(6)
Cd(3)-O(2)#1	2.227(11)	N(1)-Cd(1)-N(15)#2	85.7(6)
Cd(3)-O(2)	2.227(11)	O(2)-Cd(1)-N(3)#3	85.5(4)
Cd(3)-O(1)	2.360(10)	N(18)#1-Cd(1)-N(3)#3	87.9(6)
Cd(3)-O(1)#1	2.360(10)	N(1)-Cd(1)-N(3)#3	88.2(6)
Cd(3)-N(13)	2.383(14)	N(15)#2-Cd(1)-N(3)#3	170.7(5)
Cd(3)-N(13)#1	2.383(14)	O(2)-Cd(1)-N(8)#4	82.1(4)

Cd(3)-N(17)#1	2.397(14)	N(18)#1-Cd(1)-N(8)#4	168.5(5)
N(1)-Cd(1)-N(8)#4	90.2(5)	O(2)-Cd(3)-O(1)#1	125.3(4)
N(15)#2-Cd(1)-N(8)#4	88.8(5)	O(1)-Cd(3)-O(1)#1	180.000(1)
N(3)#3-Cd(1)-N(8)#4	84.2(5)	O(2)#1-Cd(3)-N(13)	93.8(4)
O(2)-Cd(2)-N(20)#5	98.8(5)	O(2)-Cd(3)-N(13)	86.2(4)
O(2)-Cd(2)-N(6)	171.7(5)	O(1)-Cd(3)-N(13)	120.7(4)
N(20)#5-Cd(2)-N(6)	86.0(6)	O(1)#1-Cd(3)-N(13)	59.3(4)
O(2)-Cd(2)-N(12)	88.8(5)	O(2)#1-Cd(3)-N(13)#1	86.2(4)
N(20)#5-Cd(2)-N(12)	101.1(6)	O(2)-Cd(3)-N(13)#1	93.8(4)
N(6)-Cd(2)-N(12)	96.9(6)	O(1)-Cd(3)-N(13)#1	59.3(4)
O(2)-Cd(2)-N(4)#3	86.5(4)	O(1)#1-Cd(3)-N(13)#1	120.7(4)
N(20)#5-Cd(2)-N(4)#3	170.4(6)	N(13)-Cd(3)-N(13)#1	180.000(2)
N(6)-Cd(2)-N(4)#3	87.8(5)	O(2)#1-Cd(3)-N(17)#1	93.2(4)
N(12)-Cd(2)-N(4)#3	86.9(5)	O(2)-Cd(3)-N(17)#1	86.8(4)
O(2)-Cd(2)-N(9)#4	83.7(4)	O(1)-Cd(3)-N(17)#1	121.8(4)
N(20)#5-Cd(2)-N(9)#4	89.2(6)	O(1)#1-Cd(3)-N(17)#1	58.2(4)
N(6)-Cd(2)-N(9)#4	89.7(5)	N(13)-Cd(3)-N(17)#1	94.1(5)
N(12)-Cd(2)-N(9)#4	168.1(5)	N(13)#1-Cd(3)-N(17)#1	85.9(5)
N(4)#3-Cd(2)-N(9)#4	83.4(5)	O(2)#1-Cd(3)-N(17)	86.8(4)
O(2)#1-Cd(3)-O(2)	180.000(2)	O(2)-Cd(3)-N(17)	93.2(4)
O(2)#1-Cd(3)-O(1)	125.3(4)	O(1)-Cd(3)-N(17)	58.2(4)
O(2)-Cd(3)-O(1)	54.7(4)	O(1)#1-Cd(3)-N(17)	121.8(4)
O(2)#1-Cd(3)-O(1)#1	54.7(4)	N(13)-Cd(3)-N(17)	85.9(5)
N(17)#1-Cd(3)-N(17)	180.000(2)	N(13)#1-Cd(3)-N(17)	94.1(5)

Cd(3)-O(2)-Cd(2)	116.3(5)	Cd(3)-O(2)-Cd(1)	115.7(5)

Cd(2)-O(2)-Cd(1) 109.6(4)

Symmetry codes: #1 -x+1,-y+1,-z+1, #2 x,y-1,z, #3 -x+3/2,y+1/2,-z+3/2, #4 -x+1/2,y-1/2,-z+3/2, #5 -x,-y+1,-z+1, #6 -x+3/2,y-1/2,-z+3/2, #7 x,y+1,z, #8 -x+1/2,y+1/2,-z+3/2.

	3	3	
Cd(1)-O(1)	2.270(5)	O(3)-Cd(3)-N(19)#2	80.6(2)
Cd(1)-N(6)	2.287(8)	N(19)#3-Cd(3)-N(19)#2	94.5(3)
Cd(1)-N(1)	2.302(8)	N(19)-Cd(3)-N(19)#2	180.0(3)
Cd(1)-N(9)#1	2.340(5)	O(3)#2-Cd(3)-N(19)#4	99.4(2)
Cd(1)-N(9)	2.340(5)	O(3)-Cd(3)-N(19)#4	80.6(2)
Cd(1)-N(14)	2.379(8)	N(19)#3-Cd(3)-N(19)#4	180.0(2)
Cd(3)-O(3)#2	2.258(8)	N(19)-Cd(3)-N(19)#4	94.5(3)
Cd(3)-O(3)	2.258(8)	N(19)#2-Cd(3)-N(19)#4	85.5(3)
Cd(3)-N(19)#3	2.293(6)	O(1)-Cd(2)-N(17)	175.4(2)
Cd(3)-N(19)	2.293(6)	O(1)-Cd(2)-N(11)#1	88.08(18)
Cd(3)-N(19)#2	2.293(6)	N(17)-Cd(2)-N(11)#1	95.0(2)
Cd(3)-N(19)#4	2.293(6)	O(1)-Cd(2)-N(16)#5	81.80(19)
Cd(2)-O(1)	2.219(3)	N(17)-Cd(2)-N(16)#5	94.4(2)
Cd(2)-N(17)	2.271(6)	N(11)#1-Cd(2)-N(16)#5	95.9(2)
Cd(2)-N(11)#1	2.304(5)	O(1)-Cd(2)-N(8)#6	88.06(19)
Cd(2)-N(16)#5	2.331(5)	N(17)-Cd(2)-N(8)#6	89.1(2)
Cd(2)-N(8)#6	2.333(5)	N(11)#1-Cd(2)-N(8)#6	174.5(2)
Cd(2)-O(2)	2.450(9)	N(16)#5-Cd(2)-N(8)#6	87.4(2)

2.295(7)	O(1)-Cd(2)-O(2)	93.3(2)
2.330(5)	N(17)-Cd(2)-O(2)	90.3(2)
2.330(5)	N(11)#1-Cd(2)-O(2)	86.7(2)
2.363(7)	N(16)#5-Cd(2)-O(2)	174.4(2)
2.397(5)	N(8)#6-Cd(2)-O(2)	89.6(3)
2.397(6)	O(3)#7-Cd(4)-N(13)#8	108.7(2)
2.304(5)	O(3)#7-Cd(4)-N(13)	108.7(2)
2.333(5)	N(13)#8-Cd(4)-N(13)	100.3(3)
2.397(5)	O(3)#7-Cd(4)-N(5)#9	157.2(3)
2.331(5)	N(13)#8-Cd(4)-N(5)#9	85.4(2)
2.363(7)	N(13)-Cd(4)-N(5)#9	85.4(2)
2.219(3)	O(3)#7-Cd(4)-N(20)#10	77.7(2)
2.295(7)	N(13)#8-Cd(4)-N(20)#10	88.7(2)
167.5(3)	N(13)-Cd(4)-N(20)#10	166.2(2)
81.1(3)	N(5)#9-Cd(4)-N(20)#10	85.0(2)
86.4(3)	O(3)#7-Cd(4)-N(20)#11	77.7(2)
85.33(14)	N(13)#8-Cd(4)-N(20)#11	166.2(2)
95.65(14)	N(13)-Cd(4)-N(20)#11	88.7(2)
94.25(14)	N(5)#9-Cd(4)-N(20)#11	85.0(2)
85.33(14)	N(20)#10-Cd(4)-N(20)#11	80.7(3)
95.65(13)	Cd(2)-O(1)-Cd(2)#1	107.6(2)
94.25(14)	Cd(2)-O(1)-Cd(1)	116.42(16)
166.3(3)	Cd(2)#1-O(1)-Cd(1)	116.42(16)
104.4(3)	Cd(3)-O(3)-Cd(4)#7	115.6(4)
	2.295(7) 2.330(5) 2.330(5) 2.363(7) 2.397(5) 2.397(6) 2.304(5) 2.304(5) 2.333(5) 2.397(5) 2.331(5) 2.363(7) 2.219(3) 2.295(7) 167.5(3) 81.1(3) 86.4(3) 85.33(14) 95.65(14) 94.25(14) 85.33(14) 95.65(13) 94.25(14) 166.3(3) 104.4(3)	2.295(7)O(1)-Cd(2)-O(2)2.330(5)N(17)-Cd(2)-O(2)2.330(5)N(11)#1-Cd(2)-O(2)2.363(7)N(16)#5-Cd(2)-O(2)2.397(5)N(8)#6-Cd(2)-O(2)2.397(6)O(3)#7-Cd(4)-N(13)#82.304(5)O(3)#7-Cd(4)-N(13)2.333(5)N(13)#8-Cd(4)-N(13)2.397(5)O(3)#7-Cd(4)-N(5)#92.331(5)N(13)#8-Cd(4)-N(5)#92.363(7)N(13)-Cd(4)-N(5)#92.363(7)N(13)-Cd(4)-N(20)#102.295(7)N(13)#8-Cd(4)-N(20)#10167.5(3)N(13)-Cd(4)-N(20)#1081.1(3)N(5)#9-Cd(4)-N(20)#1185.33(14)N(13)#8-Cd(4)-N(20)#1195.65(14)N(13)-Cd(4)-N(20)#1195.65(13)Cd(2)-O(1)-Cd(2)#194.25(14)N(20)#10-Cd(4)-N(20)#1195.65(13)Cd(2)-O(1)-Cd(1)166.3(3)Cd(2)#1-O(1)-Cd(1)104.4(3)Cd(3)-O(3)-Cd(4)#7

N(6)-Cd(1)-N(14)	88.1(3)	O(3)#2-Cd(3)-N(19)#3	80.6(2)
N(1)-Cd(1)-N(14)	174.5(3)	O(3)-Cd(3)-N(19)#3	99.4(2)
N(9)#1-Cd(1)-N(14)	86.29(14)	O(3)#2-Cd(3)-N(19)	80.6(2)
N(9)-Cd(1)-N(14)	86.29(14)	O(3)-Cd(3)-N(19)	99.4(2)
O(3)#2-Cd(3)-O(3)	180.0(3)	N(19)#3-Cd(3)-N(19)	85.5(3)
O(3)#2-Cd(3)-N(19)#3	80.6(2)		

Symmetry codes: #1 x,-y+1,z; #2 -x,-y,-z; #3 x,-y,z; #4 -x,y,-z; #5 -x,y,-z+1; #6 x,y+1,z-1; #7 -x,-y+1,-z+1; #8 x,-y+2,z; #9 -x+1/2,-y+3/2,-z+2; #10 x,y+1,z+1; #11 x,y+1,z+1; #12 x,y-1,z-1.

References

- 1 W. Yang, X. Lin, A. J. Blake, C. Wilson, P. Hubberstey, N. R. Champness and M. Schroder, CrystEngCom, 2009, 11, 67-81.
- 2 (a) C. Jiang, Z. Yu, S. Wang, C. Jiao, J. Li, Z. Wang and Y. Cui, Eur. J. Inorg. Chem., 2004, 18, 3662-3667; (b) R. Nasani, M. Saha, S. M. Mobin, L. M. Martins, A. J. Pombeiro, A. M. Kirillov and S. Mukhopadhyay, Dalton. Trans., 2014, 43, 9944-9954; (c) S. Mukhopadhyay, B. G. Mukhopadhyay, M. F. C. G. d. Silva, J. Lasri, M. A. J. Charmier and A. J. L. Pombeiro, *Inorg. Chem.*, 2008, **47**, 11334-11341; (d) X. Xue, X.-S. Wang, L.-Z. Wang, R.-G. Xiong, B. F. Abrahams, X.-Z. You, Z.-L. Xue and C.-M. Che, Inorg. Chem., 2002, 41, 6544-6546.
- 3 (a) W. Ouellette and J. Zubieta, *Chem. Commun.*, 2009, **30**, 4533-4535; (b) T. Wen, X. P. Zhou, D. X. Zhang and D. Li, Chem.-Eur. J., 2014, 20, 644-648; (c) S. Bhandari, C. G. Frost, C. E. Hague, M. F. Mahon and K. C. Molloy, *Dalton. Trans.*, 2000, **5**, 663-669; (d) P. Pachfule and R. Banerjee, Cryst. *Growth Des.*, 2011, **11**, 5176-5181; (e) F. Yang, B. Li, W. Xu, G. Li, Q. Zhou, J. Hua, Z. Shi and S. Feng, Inorg. Chem., 2012, 51, 6813-6820; (f) W. Ouellette, H. Liu, C. J. O'Connor and J. Zubieta, Inorg. Chem., 2009, 48, 4655-4657; (g) T. T. Luo, H. L. Tsai, S. L. Yang, Y. H. Liu, R. D. Yadav, C. C. Su, C. H. Ueng, L. G. Lin and K. L. Lu, Angew. Chem., Int. Ed., 2005, 44, C. Su, C. H. Ocng, E. G. Elli and K. E. Ed, Angew. Chem., Int. Ed., 2003, 44, 6063-6067; (h) Y.-T. Yang, F.-H. Zhao, Y.-X. Che and J.-M. Zheng, Inorg. Chem. Commun., 2011, 14, 1855-1859.
 W.-C. Song, Q. Pan, P.-C. Song, Q. Zhao, Y.-F. Zeng, T.-L. Hu and X.-H. Bu, Chem. Commun., 2010, 46, 4890.
- 5 C.-C. Chang, Y.-C. Huang, S.-M. Huang, J.-Y. Wu, Y.-H. Liu and K.-L. Lu, Cryst. Growth Des., 2012, 12, 3825-3828.