Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2015

Supporting Information

to the article

Photo Lewis Acid Generators: Photorelease of B(C₆F₅)₃ and Applications to Catalysis

by Andrey Y. Khalimon,* Bryan K. Shaw, Adam. J. V. Marwitz, Warren E. Piers,* James M. Blackwell and Masood Parvez

> wpiers@ucalgary.ca andrey.khalimon@nu.edu.kz

Contents

Experimetal details	2
Thermail stability of 1-Ph ₃ S, 1-Ph ₂ I, 3-Ph ₃ S, 7-Ph ₃ S, and 7-Ph ₂ I	5
Photolysis of PhLAGs in different solvents	8
Selected NMR spectra	10
Catalysis by hydridoborate PhLAGs	12
Photophysical properties	14
X-ray analysis	17
References	20

Experimetal details

An argon filled MBraun glove box was employed for manipulation and storage of all oxygen and moisture sensitive compounds. All reactions were performed on a double manifold high vacuum line using standard techniques.¹ Toluene and hexanes were dried and purified using the Grubbs/Dow purification system.² Other solvents as well as NMR solvents were dried by distillation from appropriate drying agents. NMR spectra were obtained using Bruker AVANCE III 400 MHz and AVANCE III 600 MHz spectrometers ¹H and ¹³C chemical shifts were referenced to residual proton and naturally abundant ¹³C resonance of the deuterated solvent, respectively. ¹⁹F NMR spectra were externally referenced to C_6F_6 (δ –163.0 ppm) in C_6D_6 .^{3 11}B NMR spectra were externally referenced to BF₃OEt₂ (δ 0 ppm) in d₆-DMSO. IR spectra were recorded in nujol using Nicolet Nexus 470 FT-IR spectrometer. UV-vis spectra were obtained with a Varian Cary 300 spectrometer using 1 cm quartz cuvettes. All UV-vis samples were prepared in a glove box using dry CH₂Cl₂. TGA/DSC analysis was performed using NETZSCH STA 409 PC/PG instrument. GC-MS analysis was obtained using an Agilent Technologies 6890N GC equipped with a 5975 mass detection unit. X-ray crystallographic analyses were performed on suitable crystals coated in Paratone 8277 oil (Exxon) and mounted on a glass fibre. Measurements were collected on a Nonius KappaCCD diffractometer by Dr. Masood Parvez; full details can be found in the independently deposited crystallography information files (cif). Tris(pentafluorophenyl)borane, B(C₆F₅)₃ was sublimed at 65 °C under high dynamic vacuum, dried over Me₂Si(H)Cl for 4 h and re-sublimed under the same conditions after vacuum removal of volatiles. [Ph₃S][Cl] and [Ph₂I][Cl] were purchased from Sigma-Aldrich and used without further purification. Et₃SiH and 2,2,6,6tetramethylpiperidine were purchased from TCI America and Sigma Aldrich, respectively. The silane was dried over and distilled from fresh LiAlH₄ while the amine was dried over and distilled from activated 4Å molecular sieves. Dry carbon dioxide, grade 3.0, was obtained from Praxair and used as received. Preparation, properties and reactivity of **1-Ph₃S** were reported previously.⁴ (Me₄C₅N)CO₂Li (4)⁵ and [K][HB(C₆F₅)₃] $(7-K)^6$ were synthesized according to literature procedures. 3-TMPH was described previously.⁷

Decomposition of 1-Ph₂I to B(C₆F₅)₃ under ambient light

CD₃CN (65.3 µL, 1.25 mmol) was added to a solution of **1-Ph₂I** (1.4 mg, 1.25×10^{-3} mmol) in 534.7 µL of CD₂Cl₂ in a quartz NMR tube ([**1-Ph₂I**]_{total} = 2.1×10^{-3} mol/L). No reaction was observed in dark within 30 min at room temperature. The sample was exposed to the ambient light at room temperature for 17.5 hours, followed by the NMR analysis which showed formation of a mixture of CD₃CN•B(C₆F₅)₃ (41% by ¹⁹F{¹H} NMR) and another unknown decomposition product (29% by ¹⁹F{¹H} NMR) with 70% total conversion of **1-Ph₂I**. In the absence of acetonitrile no formation of B(C₆F₅)₃ from **1-Ph₂I** under ambient light was observed. Only slow (3 weeks to approx. 50% conversion) decomposition of **1-Ph₂I** to a mixture of unknown products was observed by NMR.

Decomposition of 1-Ph₂I at room temperature in dark

A solution of **1-Ph₂I** (10 mg, 9.0×10^{-3} mmol) in 0.6 mL of CD₂Cl₂ in an NMR tube was left at room temperature in dark for 24 h. NMR analysis showed approx. 37% conversion of **1-Ph₂I** to a mixture of unknown decomposition products. No B(C₆F₅)₃ was observed by NMR.

Reactivity of 5 with ¹³CO₂, TMP and B(*p*-C₆F₄H)₃

A. Treatment of 5 with ¹³CO₂. ¹³CO₂ (approx. 2.0 atm) was added *via* vacuum transfer to a solution of 5 (5.0 mg, 0.0072 mmol) in 0.5 mL of CD_2Cl_2 in a J. Young NMR tube. The reaction mixture was left at room temperature for 4 hours showing by ¹³C NMR spectroscopy no incorporation of ¹³C label into a carbonyl carbon position of 5.

B. Treatment of 5 with TMP. TMP (2.0 μ L, 0.012 mmol) was added in one portion at room temperature to a solution of **5** from part A (after the release of ¹³CO₂ pressure). The mixture was left at room temperature for 5 min and then analysed by NMR spectroscopy, which showed full conversion of **5** to **3-TMPH**.

C. Treatment of 5 with B(*p*-C₆F₄H)₃. A solution of **5** (5.0 mg, 0.0072 mmol) in 0.5 mL of CD₂Cl₂ was added in one portion at room temperature to B(*p*-C₆F₄H)₃ (3.5 mg, 0.0076 mmol). The mixture was left at room temperature for 1h showing by ¹⁹F{¹H} NMR spectroscopy no release of B(C₆F₅)₃ and no incorporation of B(*p*-C₆F₄H)₃ into **5**.

Attempted photoinduced hydrosilylation of PhC(O)Me with Et₃SiH in the presence of 3-Ph₃S.

A: Acetophenone (17.5 μ L, 0.15 mmol), Et₃SiH (24.0 μ L, 0.15 mmol), and **3-Ph₃S** (1.4 mg, 0.0015 mmol) were mixed together in 0.5 mL of CD₂Cl₂ in a quartz NMR tube. The mixture was left at room temperature and ambient light for 30 min showing by NMR spectroscopy no reaction. The sample was exposed to 254 nm light for 30 min showing no hydrosilylation reaction occurring.

B: Reaction in the presence of acetonitrile. Acetophenone (17.5 μ L, 0.15 mmol), Et₃SiH (24.0 μ L, 0.15 mmol), **3-Ph₃S** (1.4 mg, 0.0015 mmol), and CH₃CN (0.1 μ L, 0.0019 mmol) were mixed together in 0.5 mL of CD₂Cl₂ in a quartz NMR tube. The mixture was left at room temperature and ambient light for 30 min showing by NMR spectroscopy no reaction. The sample was exposed to 254 nm light for 30 min showing no hydrosilylation reaction occurring.

Decomposition of 7-Ph₃S under ambient light.

A solution of **7-Ph₃S** in CD₃CN ($2.1 \cdot 10^{-3}$ mol/L) was placed into a quartz NMR tube. The mixture was left at room temperature and ambient light for 96 hours and then analysed by NMR spectroscopy, which showed 14% conversion (by ¹⁹F NMR) of **7-Ph₃S** to CD₃CN·B(C₆F₅)₃.

Decomposition of 7-Ph₂I under ambient light.

The reaction was done analogously to 7-Ph3S. Exposure of the sample of $7-Ph_2I$ in CD₃CN (2.1·10⁻³ mol/L) to ambient light for 96 hours resulted in full conversion (by ¹⁹F NMR) of $7-Ph_2I$ to CD₃CN·B(C₆F₅)₃.

Thermal stability of 1-Ph₃S, 1-Ph₂I, 3-Ph₃S, 7-Ph₃S, and 7-Ph₂I

Figure S1. TGA/DSC diagram for 1-Ph₃S.⁴

Figure S2. TGA/DSC diagram for 1-Ph₂I.

Figure S3. TGA/DSC diagram for 3-Ph₃S

Figure S4. TGA/DSC diagram for 7-Ph₃S.

Figure S5. TGA diagram for 7-Ph₂I.

Photolysis of PhLAGs in different solvents

Table S1. Photodecomposition of 1-Ph₃S, 1-Ph₂I, 3-Ph₃S, 7-Ph₃S, and 7-Ph₂I in different solvents.

#	Comp.	Conc., mol/L	Solvent	<i>t</i> _{irr} , min	Conv. ^{<i>a</i>}	$k_{\rm obs},{\rm s}^{-1}$
1	$1-Ph_3S^4$	$2.1 \cdot 10^{-3}$	CD ₃ CN	12	58%	$(1.4\pm0.3)\cdot10^{-3b}$
2	$1-Ph_3S^4$	$2.0 \cdot 10^{-3}$	CD ₂ Cl ₂ /CD ₃ CN (1/4)	8	74%	$(2.7\pm0.4)\cdot10^{-3}$
3	$1-Ph_3S^4$	$2.1 \cdot 10^{-3}$	CD ₂ Cl ₂ /CD ₃ CN (8.7/1)	12	>99%	(3.3±0.3)·10 ⁻³
4	1-Ph ₂ I	$2.1 \cdot 10^{-3}$	CD ₂ Cl ₂ /CD ₃ CN (8.7/1)	12	>99%	$(4.4\pm0.1)\cdot10^{-3}$
5	3-Ph ₃ S	$2.1 \cdot 10^{-3}$	CD ₃ CN	13	46%	$(1.0\pm0.4)\cdot10^{-3}$
6	7-Ph ₃ S	$2.1 \cdot 10^{-3}$	CD ₃ CN	12	81%	$(2.3\pm0.2)\cdot10^{-3}$
7	7-Ph ₂ I	$2.1 \cdot 10^{-3}$	CD ₃ CN	12	>99%	C

^{*a*} determined by ¹H NMR. ^{*b*} determined at 50% conversion of **1-Ph₃S**. ^{*c*} k_{obs} was not determined.

Figure S6. (A): kinetic profile for decomposition of **1-Ph₃S** in CD₃CN ($2.1 \cdot 10^{-3}$ mol/L) to CD₃CN·B(C₆F₅)₃ under 254 nm light; (**B**): kinetic profile for decomposition of **1-Ph₃S** in CD₂Cl₂/CD₃CN (1/4) ($2.0 \cdot 10^{-3}$ mol/L) to CD₃CN·B(C₆F₅)₃ under 254 nm light. (**C**): kinetic profile for decomposition of **1-Ph₃S** in CD₂Cl₂/CD₃CN (8.7/1) ($2.1 \cdot 10^{-3}$ mol/L) to CD₃CN·B(C₆F₅)₃ under 254 nm light; (**D**)): kinetic profile for decomposition of **3-Ph₃S** in CD₃CN ($2.1 \cdot 10^{-3}$ mol/L) to CD₃CN·B(C₆F₅)₃ under 254 nm light; (**D**)): kinetic profile for decomposition of **3-Ph₃S** in CD₃CN ($2.1 \cdot 10^{-3}$ mol/L) to CD₃CN·B(C₆F₅)₃ under 254 nm light; (**E**): kinetic profile for decomposition of **1-Ph₂I** in CD₂Cl₂/CD₃CN (8.7/1) ($2.1 \cdot 10^{-3}$ mol/L) to CD₃CN·B(C₆F₅)₃ under 254 nm light; (**F**): kinetic profile for decomposition of **7-Ph₃S** in CD₃CN ($2.1 \cdot 10^{-3}$ mol/L) to CD₃CN·B(C₆F₅)₃ under 254 nm light; (**F**): kinetic profile for decomposition of **7-Ph₃S** in CD₃CN ($2.1 \cdot 10^{-3}$ mol/L) to CD₃CN·B(C₆F₅)₃ under 254 nm light; (**F**): kinetic profile for decomposition of **7-Ph₃S** in CD₃CN ($2.1 \cdot 10^{-3}$ mol/L) to CD₃CN·B(C₆F₅)₃ under 254 nm light; (**F**): kinetic profile for decomposition of **7-Ph₃S** in CD₃CN ($2.1 \cdot 10^{-3}$ mol/L) to CD₃CN·B(C₆F₅)₃ under 254 nm light; (**F**): kinetic profile for decomposition of **7-Ph₃S** in CD₃CN ($2.1 \cdot 10^{-3}$ mol/L) to CD₃CN·B(C₆F₅)₃ under 254 nm light.

Figure S7. ¹³C NMR spectra of the decomposition of **1-Ph₃S-¹³C** under 254 nm in CD₃CN (4.5·10⁻³ mol/L). Signals at δ 154.0, 153.4, and 126.2 ppm correspond to carbonyl carbons of **1-Ph₃S-¹³C**, ^{*t*}Bu₂Cab¹³CO₂H, and ¹³CO₂, respectively.⁴

Figure S8. ¹H NMR spectrum of **5**. The broad resonance at δ 6.93 ppm corresponds to the *N*-bound proton.

Figure S9. ¹H-¹⁵N HMQC NMR (**A**) and ¹H-¹⁵N HMQCND (no decoupling) NMR (**B**) spectra of **5** in CD₂Cl₂ showing coupling for *N*-bound proton (¹J(N-H) \approx 70 Hz).

#	Substrate	PhLAG	$t_{\rm hv}, \min^b$	Conv., % ^c	Products
1	PhMeC(O)	7-Ph ₃ S	15	>99	PhMeCH(OSiEt ₃)
2		7-Ph ₂ I	10	>99	
4	PhHC(O)	7-Ph ₃ S	15	90	PhCH ₂ (OSiEt ₃)
5		7-Ph ₂ I	10	>99	
7	Cyclohex-2-enone	7-Ph ₃ S	10	>99	OSiEt₃
8		7-Ph ₂ I	5	>99	
10	PhOH	7-Ph ₃ S	5	>99	PhOSiEt ₃
11		7-Ph ₂ I	5	>99	
13	Et ₂ O	7-Ph ₃ S	10^d	>99	Et ₃ SiOEt $(86\%)^e$
					Et ₃ SiOSiEt ₃ $(12\%)^e$
14		7-Ph ₂ I	10^d	>99	Et ₃ SiOEt (91%) ^{e}
					Et ₃ SiOSiEt ₃ $(9\%)^e$

Catalysis by hydridoborate PhLAGs

Table S2. Photoinduced hydrosilylation with Et_3SiH and **7-Ph₃S** and **7-Ph₂I**^{*a*}

^{*a*} <u>Conditions:</u> [substrate] = 0.25 M, 1.0 mol % of PhLAG, substrate:Et₃SiH = 1:1, CD₂Cl₂ (solvent). ^{*b*} Time sample was irradiated at 254 nm. ^{*c*} Conversion of substrate determined by ¹H NMR. ^{*d*} Sample was left for 2 h at RT in the absence of light following irradiation. ^{*e*} Conversion determined by GC-MS.

#	Substrate	Hydrosilane	PhLAG	$t_{hv}/t_{\rm RT}$	Products (yield, %)
1 2	Me ₃ SiOH	Et ₃ SiH	7-Ph ₃ S 7-Ph ₂ I	15 min/2 h	$Me_3Si(OSiEt_3) (>99)^b$
4	Me ₃ SiOEt	Et ₃ SiH	7-Ph ₃ S	15 min/48 h	$Et_3SiOEt (2)^c$
					$Me_3Si(OSiEt_3)(37)^c$
5			7-Ph ₂ I		Et ₃ Si(OSiEt ₃) (60) ^{c} Et ₃ SiOEt (1) ^{c} Me ₃ Si(OSiEt ₃) (47) ^{c} Et ₃ Si(OSiEt ₃) (49) ^{c}
7 8	Me ₃ SiOEt	PMHS	7-Ph ₃ S 7-Ph ₂ I	15 min/10 min	(MeHSiO) _x (MeSi(OSiMe ₃)O) _y (>99) ^b
10 11	Si(OMe) ₄	TMCTS ^d	7-Ph ₃ S 7-Ph ₂ I	15 min/5 min	Tetra(trimethoxysiloxy)TMCTS (99)

Table S3. Photoinduced silvlation of silanols and Piers-Rubinsztajn reactions with $7-Ph_3S$ and $7-Ph_2I^a$

^{*a*} <u>Conditions:</u> [substrate] = 0.25 M, 1.0 mol % of PhLAG, substrate:hydrosilane = 1:1, 254 nm, CD_2Cl_2 (solvent). ^{*b*} Conversion determined by ¹H NMR spectroscopy. ^{*c*} Conversion determined by GC-MS. ^{*d*} TMCTS - 2,4,6,8-tetramethylcyclotetrasiloxane, Si(OMe)4/TMCTS = 4:1.

Photophysical properties

Table S4. The values of of λ_{max} (nm) and ε (10³·M⁻¹·cm⁻¹) for [Ph₃S][OTf], 3,6-di-(*t* butyl)carbazole, lithium borate 4, and PhLAGs 5, 6, 10, 11, 12, 18, 19, and 21 summarized in **Table 1**.

Compound	Concentration, mol/L	λ_{\max} , nm	ε , x10 ³ ·M ⁻¹ ·cm ⁻¹
[Ph ₃ S][OTf]	$1.1 \cdot 10^{-5}$	242	12.75
^t Bu ₂ CarbH ⁴	$1.1 \cdot 10^{-5}$	238	40.08
2-LiMTEDA ⁴	$1.1 \cdot 10^{-5}$	233	44.18
$1-Ph_3S^4$	$1.1 \cdot 10^{-5}$	234	77.84
7-Ph ₃ S	$1.0 \cdot 10^{-5}$	228	59.34
3-Ph ₃ S	$1.1 \cdot 10^{-5}$	228	23.66
1-Ph ₂ I	$1.1 \cdot 10^{-5}$	234	88.04
7-Ph ₂ I	$1.1 \cdot 10^{-5}$	226	28.64

Figure S11. UV-vis spectrum of $1-Ph_2I$ in CH_2Cl_2 (1.1·10⁻⁵ mol/L).

Figure S12. UV-vis spectrum of $3-Ph_3S$ in CH_2Cl_2 (1.1·10⁻⁵ mol/L).

Figure S13. UV-vis spectrum of 7-Ph₃S in CH₂Cl₂ ($1.1 \cdot 10^{-5}$ mol/L).

Figure S14. UV-vis spectrum of 7-Ph₂I in CH₂Cl₂ ($1.1 \cdot 10^{-5}$ mol/L).

X-ray analysis

Single crystals of **3-Ph₃S** suitable for X-ray diffraction analysis were grown by layering toluene solution with hexanes (approx. 1:1) at -30 °C. X-ray quality crystals of **7-Ph₂I** were obtained by layering dichloromethane solution with hexanes (approx. 1:1) at -20 °C The colorless crystals were coated with polyperfluoro oil and measured on a Bruker Nonius APEX2 CCD diffractometer, using graphite-monochromated Mo K α radiation (λ = 0.71073 Å). Data collection and structure refinement details **3-Ph₃S** and **7-Ph₂I** are given in Tables S7 and S8, respectively. Structures of **3-Ph₃S** and **7-Ph₂I** are shown in Figures 1 and 2 in the main text, respectively.

formula	$C_{46}H_{33}BF_{15}NO_2S$
formula weight	959.60
color	colorless
crystal system	monoclinic
space group	P2(1)/n
radiation wavelength, Å	0.71073
a / b / c, Å	13.388(3) / 20.097(4) / 16.261(3)
$\alpha / \beta / \gamma$, deg	90.00 / 107.65(3) / 90.00
<i>V</i> , Å ³	4169.1(15)
Ζ	4
<i>Т</i> , К	150(2)
$\rho_{\rm calc}, {\rm g/cm^3}$	1.529
<i>F</i> (000)	1952
μ , mm ⁻¹	0.187
crystal size, mm ³	0.32 x 0.21 x 0.19
θ range, deg	1.66-27.48
index ranges	$\text{-}17 \le h \le 17, \text{-}26 \le k \le 14, \text{-}21 \le l \le 21$
max. and min. transmission	0.9654 and 0.9427
reflections collected	9439
independent reflections	8017 [R(int) = 0.0205]
completeness to theta = 27.48°	98.7 %
absorption correction	Multi-scan
refinement method	Full-matrix least-squares on F ²
data/restrains/parameters	9439/0/595
GoF	1.204
final R indices $[I > 2\sigma(I)]$	R1 = 0.0562, wR2 = 0.1540
R indices (all data)	R1 = 0.0716, $wR2 = 0.1806$
largest diff. peak and hole, $e/Å^3$	0.502 and -0.503

Table S7. Data collection and structure refinement details for 3-Ph₃S.

formula	C ₃₀ H ₁₁ BF ₁₅ I
formula weight	794.10
color	colorless
crystal system	monoclinic
space group	C2/c
radiation wavelength, Å	0.71073
a / b / c, Å	28.2437(7) / 10.4776(3) / 18.8072(4)
$\alpha / \beta / \gamma$, deg	90.00 / 93.5440(14) / 90.00
<i>V</i> , Å ³	5554.9(2)
Ζ	8
Т, К	173(2)
$\rho_{\text{cale}}, \text{g/cm}^3$	1.899
<i>F</i> (000)	3072
μ , mm ⁻¹	1.276
crystal size, mm ³	0.20 x 0.18 x 0.14
θ range, deg	2.53-27.49
index ranges	$-36 \le h \le 36, -12 \le k \le 13, -24 \le l \le 24$
max. and min. transmission	0.8416 and 0.7844
reflections collected	6348
independent reflections	5299 [R(int) = 0.0330]
completeness to theta = 27.49°	99.4 %
absorption correction	Multi-scan
refinement method	Full-matrix least-squares on F ²
data/restrains/parameters	6348/0/427
GoF	1.119
final R indices $[I > 2\sigma(I)]$	R1 = 0.0442, wR2 = 0.0891
R indices (all data)	R1 = 0.0568, wR2 = 0.0.0967
largest diff. peak and hole, $e/Å^3$	0.476 and -0.523

Table S8. Data collection and structure refinement details for $7-Ph_2I$.

References

- 1 B. J. Burger and J. E. Bercaw, *Experimental Organometallic Chemistry*; American Chemical Society: Washington, D.C., 1987.
- 2 A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen and F. J. Timmers, Organometallics 1996, 15, 1518.
- 3 R. K. Harris and B. E. Mann, Eds., *NMR and the Periodic Table*; Academic Press: New York, 1978.
- 4 A. Y. Khalimon, W. E. Piers, J. M. Blackwell, D. J. Mickalak and M. Parvez, J. Am. Chem. Soc. 2012, 134, 9601.
- 5 A. R. Kennedy, R. E. Mulvey, D. E. Oliver and S. D. Robertson, *Dalton Trans.* 2010, **39**, 6190.
- 6 W. E. Piers, A. J. V. Marwitz and L.G. Mercier, Inorg. Chem. 2011, 50, 12252.
- 7 A. Berkefeld, W. E. Piers and M. Parvez, J. Am. Chem. Soc., 2010, 132, 10660.