Supporting Information

Transition Metal-mediated Donor-acceptor Coordination of Low-oxidation State Group 14 Element Halides

Anindya K. Swarnakar, Michael J. Ferguson, Robert McDonald, and Eric Rivard*
Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, Canada T6G 2 G2.

Contents

Crystallographic data of compound 1-6 S2

Table S1. Crystallographic data for compound 1

A. Crystal Data formula	
formula weight	$\mathrm{C}_{26} \mathrm{H}_{2} \mathrm{Cl}_{2} \mathrm{GeO}$
crystal dimensions (mm)	911.66
crystal system	$0.27 \times 0.14 \times 0.11$
space group	monoclinic
unit cell parameters ${ }^{a}$	$P 2 / n$ (an altern
$\quad a(\AA)$	
$\quad b(\AA)$	$8.9888(3)$
$\quad c(\AA)$	$24.3719(7)$
$\quad \beta(\mathrm{deg})$	$14.4140(4)$
$V\left(\AA^{3}\right)$	$104.3064(3)$
$\quad Z$	$3059.81(16)$
$\rho_{\text {calcd }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	4
$\mu\left(\mathrm{~mm}^{-1}\right)$	1.979

B. Data Collection and Refinement Conditions
 diffractometer
 radiation $(\lambda[\AA])$
 temperature $\left({ }^{\circ} \mathrm{C}\right)$
 scan type
 data collection 2θ limit (deg)
 total data collected
 independent reflections
 number of observed reflections ($N O$)
 Bruker D8/APEX II CCD ${ }^{b}$
 graphite-monochromated Mo $\mathrm{K} \alpha(0.71073)$
 -100
 ω scans (0.3°) (15 s exposures)
 56.65
 $28051(-11 \leq h \leq 11,-32 \leq k \leq 31,-19 \leq l \leq 19)$
 $7477\left(R_{\mathrm{int}}=0.0162\right)$
 $7036\left[F_{0}{ }^{2} \geq 2 \sigma\left(F_{0}{ }^{2}\right)\right]$

structure solution method
refinement method
absorption correction method
range of transmission factors data/restraints/parameters
goodness-of-fit $(S)^{e}$ [all data]
final R indices f
$R_{1}\left[F_{\mathrm{o}}^{2} \geq 2 \sigma\left(F_{\mathrm{o}}^{2}\right)\right] \quad 0.0160$
$w R_{2}$ [all data]
largest difference peak and hole
0.0379

Patterson/structure expansion (DIRDIF-2008 ${ }^{c}$)
full-matrix least-squares on F^{2} (SHELXL-2013d)
Gaussian integration (face-indexed)
0.6400-0.3265

7477 / 0 / 351
1.058
1.032 and -0.480 e \AA^{-3}
${ }^{a}$ Obtained from least-squares refinement of 9932 reflections with $4.44^{\circ}<2 \theta<56.48^{\circ}$.
${ }^{b}$ Programs for diffractometer operation, data collection, data reduction and absorption correction were those supplied by Bruker.
${ }^{c}$ P. T. Beurskens, G. Beurskens, R. de Gelder, J. M. M. Smits, S. Garcia-Granda and R. Gould,
O. (2008). The DIRDIF-2008 program system. Crystallography Laboratory, Radboud University Nijmegen,
${ }^{d}$ G. M. Sheldrick, Acta Crystallogr.2008, A64, 112-122.
$e S=\left[\Sigma w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2 /(n-p)}\right]^{1 / 2}(n=$ number of data; $p=$ number of parameters varied; $w=$ $\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0187 P)^{2}+1.4453 P\right]^{-1}$ where $\left.P=\left[\operatorname{Max}\left(F_{\mathrm{o}}^{2}, 0\right)+2 F_{\mathrm{c}}{ }^{2}\right] / 3\right)$.
$f_{R_{1}}=\Sigma| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right| \Sigma\left|F_{\mathrm{o}}\right| ; w R_{2}=\left[\Sigma w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2} / \Sigma w\left(F_{\mathrm{o}}{ }^{4}\right)\right]^{1 / 2}$.

Table S2. Crystallographic data for compound 2

A. Crystal Data	
formula	$\mathrm{C}_{26.25} \mathrm{H}_{27.5} \mathrm{Cl}_{2.5} \mathrm{O}_{5} \mathrm{P}_{2} \mathrm{RhSnW}$
formula weight	979.00
crystal dimensions (mm)	$0.27 \times 0.02 \times 0.02$
crystal system	monoclinic
space group	$P 2{ }_{1} / n\left(\right.$ an alternate setting of $P 2{ }_{1} / c$ [No. 14])
unit cell parameters ${ }^{a}$	
$\quad a(\AA)$	$15.3972(2)$
$\quad b(\AA)$	$9.0453(1)$
$c(\AA)$	$23.3877(3)$
$\quad \beta(\operatorname{deg})$	$90.5374(12)$
$\quad V\left(\AA^{3}\right)$	$3257.12(7)$
Z	4
$\rho_{\text {calcd }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.996
$\mu\left(\mathrm{~mm}^{-1}\right)$	19.58

B. Data Collection and Refinement Conditions

diffractometer
radiation $(\lambda[\AA])$
temperature $\left({ }^{\circ} \mathrm{C}\right)$
scan type
data collection 2θ limit (deg)
total data collected
independent reflections
number of observed reflections (NO)
structure solution method refinement method absorption correction method range of transmission factors
data/restraints/parameters
goodness-of-fit ($S)^{f}$ [all data]
final R indices ${ }^{g}$

$$
R_{1}\left[F_{\mathrm{o}}^{2} \geq 2 \sigma\left(F_{\mathrm{o}}^{2}\right)\right] \quad 0.0345
$$

$w R_{2}$ [all data] 0.0868
largest difference peak and hole
${ }^{a}$ Obtained from least-squares refinement of 9963 reflections with $6.84^{\circ}<2 \theta<143.88^{\circ}$.
${ }^{b}$ Programs for diffractometer operation, data collection, data reduction and absorption correction were those supplied by Bruker.
${ }^{c}$ P. T. Beurskens, G. Beurskens, R. de Gelder, J. M. M. Smits, S. Garcia-Granda and R. Gould,
O. (2008). The DIRDIF-2008 program system. Crystallography Laboratory, Radboud University Nijmegen,
${ }^{d}$ G. M. Sheldrick, Acta Crystallogr.2008, A64, 112-122.
${ }^{e}$ Attempts to refine peaks of residual electron density as disordered or partial-occupancy solvent dichloromethane chlorine or carbon atoms were unsuccessful. The data were corrected for disordered electron density through use of the SQUEEZE procedure (P. van der Sluis and A. L. Spek, Acta Crystallogr.1990, A46, 194-201) as implemented in PLATON (A.L. Spek, Acta Crystallogr.1990, A46, C34; A. L. Spek, J. Appl. Cryst.2003, 36, 7-13. PLATON - a multipurpose crystallographic tool. UtrechtUniversity, Utrecht, The Netherlands). A total solvent-accessible void volume of $225.6 \AA^{3}$ with a total electron count of 43 (consistent with one molecule of solvent $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, or 0.25 molecule per formula unit of the metal complex molecule) was found in the unit cell.
$f_{S}=\left[\Sigma w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2 /(n-p)}\right]^{1 / 2}(n=$ number of data; $p=$ number of parameters varied; $w=$ $\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0403 P)^{2}+0.9612 P\right]^{-1}$ where $\left.P=\left[\operatorname{Max}\left(F_{0}{ }^{2}, 0\right)+2 F_{\mathrm{c}}{ }^{2}\right] / 3\right)$.
$g_{R_{1}}=\Sigma| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right| \Sigma\left|F_{\mathrm{o}}\right| ; w R_{2}=\left[\Sigma w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}^{2}}^{2}\right)^{2} / \Sigma w\left(F_{\mathrm{o}}^{4}\right)\right]^{1 / 2}$.

Table S3. Crystallographic data for compound 3

A. Crystal Data formula	$\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{Cl}_{2} \mathrm{P}_{2} \mathrm{PbRh}$
formula weight	722.36
crystal dimensions (mm)	$0.09 \times 0.08 \times 0.07$
crystal system	monoclinic
space group	$P 2{ }_{1} / n$ (an alternate setting of $P 2{ }_{1} / c$ [No. 14])
unit cell parameters ${ }^{a}$	
$a(\AA)$	17.346 (5)
b (\AA)	15.351 (4)
$c(\AA)$	18.164 (5)
β (deg)	95.470 (3)
$V\left(\AA^{3}\right)$	4814 (2)
Z	8
$\rho_{\text {calcd }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.993
$\mu\left(\mathrm{mm}^{-1}\right)$	8.030
B. Data Collection and Refinement Conditions	
diffractometer	Bruker D8/APEX II CCD ${ }^{b}$
radiation $(\lambda[\AA])$	graphite-monochromated Mo $\mathrm{K} \alpha$ (0.71073)
temperature (${ }^{\circ} \mathrm{C}$)	-100
scan type	ω scans (0.3°) (20 s exposures)
data collection 2θ limit (deg)	55.52
total data collected	41795 (-22 $\leq h \leq 22,-19 \leq k \leq 19,-23 \leq l \leq 23)$
independent reflections	$11064\left(R_{\text {int }}=0.0573\right)$
number of observed reflections (NO)	$8280\left[F_{0}^{2} \geq 2 o\left(F_{0}^{2}\right)\right]$
structure solution method	intrinsic phasing (SHELXT-2014 ${ }^{\text {c }}$)
refinement method	full-matrix least-squares on F^{2} (SHELXL-2013c)
absorption correction method	Gaussian integration (face-indexed)
range of transmission factors	0.7619-0.5292
data/restraints/parameters	11064 / 0 / 495
goodness-of-fit ($S)^{d}$ [all data]	1.120
final R indices ${ }^{e}$	
$R_{1}\left[F_{\mathrm{o}}^{2} \geq 2 \sigma\left(F_{\mathrm{o}}{ }^{2}\right)\right]$	0.0364
$w R_{2}$ [all data]	0.0816
largest difference peak and hole	1.992 and -1.824 e \AA^{-3}

${ }^{a}$ Obtained from least-squares refinement of 9990 reflections with $4.50^{\circ}<2 \theta<53.30^{\circ}$.
${ }^{b}$ Programs for diffractometer operation, data collection, data reduction and absorption correction were those supplied by Bruker.
${ }^{d}$ G. M. Sheldrick, Acta Crystallogr.2008, A64, 112-122.
${ }^{d} S=\left[\Sigma w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}^{2}}\right)^{2 /(n-p)}\right]^{1 / 2}(n=$ number of data; $p=$ number of parameters varied; $w=$

$$
\begin{gathered}
\left.\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0316 P)^{2}\right]^{-1} \text { where } P=\left[\operatorname{Max}\left(F_{\mathrm{o}}^{2}, 0\right)+2 F_{\mathrm{c}}^{2}\right] / 3\right) . \\
e R_{1}=\Sigma| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right| / \Sigma\left|F_{\mathrm{o}}\right| ; w R_{2}=\left[\Sigma w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}^{2}}^{2}\right)^{2} / \Sigma w\left(F_{\mathrm{o}}^{4}\right)\right]^{1 / 2}
\end{gathered}
$$

Table S4. Crystallographic data for compound 4

A. Crystal Data formula	
formula weight	$\mathrm{C}_{48} \mathrm{H}_{43} \mathrm{BF}_{18} \mathrm{P}_{2} \mathrm{Rh}$
crystal dimensions (mm)	1137.48
crystal system	$0.26 \times 0.20 \times 0.16$
space group	triclinic
unit cell parameters ${ }^{a}$	$P \overline{1}(\mathrm{No} 2)$.
$\quad a(\AA)$	
$\quad b(\AA)$	$12.2135(3)$
$c(\AA)$	$12.5991(3)$
$\quad \alpha(\mathrm{deg})$	$17.0103(4)$
$\beta(\mathrm{deg})$	$80.6961(10)$
$\gamma(\mathrm{deg})$	$81.3382(8)$
$V\left(\AA^{3}\right)$	$75.2500(8)$
Z	$2481.49(10)$
$\rho_{\text {calcd }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	2
$\mu\left(\mathrm{~mm}^{-1}\right)$	1.522

B. Data Collection and Refinement Conditions
diffractometer
radiation $(\lambda[\AA])$
temperature $\left({ }^{\circ} \mathrm{C}\right)$
scan type
data collection 2θ limit (deg)
total data collected
independent reflections
number of observed reflections ($N O$)
structure solution method
refinement method
absorption correction method
range of transmission factors
data/restraints/parameters
goodness-of-fit ($S)^{f}$ [all data]
final R indices g
$R_{1}\left[F_{0}^{2} \geq 2 \sigma\left(F_{0}^{2}\right)\right] \quad 0.0319$
$w R_{2}$ [all data]
largest difference peak and hole

Bruker D8/APEX II CCD ${ }^{b}$
$\mathrm{Cu} \mathrm{K} \alpha$ (1.54178) (microfocus source)
-100
ω and ϕ scans (1.0°) (5 s exposures)
144.46
$17405(-15 \leq h \leq 15,-15 \leq k \leq 15,-21 \leq l \leq 20)$
$9416\left(R_{\mathrm{int}}=0.0129\right)$
$9241\left[F_{0}{ }^{2} \geq 2 \sigma\left(F_{0}^{2}\right)\right]$
intrinsic phasing (SHELXT-2014c)
full-matrix least-squares on F^{2} (SHELXL-2014d.e)
Gaussian integration (face-indexed)
0.6786-0.4912

9416 / $0 / 716$
1.026
0.0860
1.112 and -0.806 e $\AA-3$
${ }^{a}$ Obtained from least-squares refinement of 9844 reflections with $8.46^{\circ}<2 \theta<144.24^{\circ}$.
${ }^{b}$ Programs for diffractometer operation, data collection, data reduction and absorption correction were those supplied by Bruker.
${ }^{c}$ G. M. Sheldrick, Acta Crystallogr.2015, A71, 3-8. (SHELXT-2014)
${ }^{e}$ Attempts to refine peaks of residual electron density as disordered or partial-occupancy solvent hexane carbon atoms were unsuccessful. The data were corrected for disordered electron density through use of the SQUEEZE procedureas implemented in PLATON (A. L. Spek,. Acta Crystallogr.2015, C71, 9-18. PLATON - a multipurpose crystallographic tool. UtrechtUniversity, Utrecht, The Netherlands). A total solvent-accessible void volume of $221 \AA^{3}$ with a total electron count of 50 (consistent with 1 molecule of solvent hexane, or 0.5 molecules per formula unit of the rhodium complex) was found in the unit cell.
$f S=\left[\Sigma w\left(F_{0}^{2}-F_{\mathrm{c}^{2}}^{2}\right)^{2 /(n-p)}\right]^{1 / 2}(n=$ number of data; $p=$ number of parameters varied; $w=$ $\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0493 P)^{2}+2.1386 P\right]^{-1}$ where $\left.P=\left[\operatorname{Max}\left(F_{0}^{2}, 0\right)+2 F_{\mathrm{c}^{2}}{ }^{2}\right] / 3\right)$.
$g_{R_{1}}=\Sigma| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right| \Sigma\left|F_{\mathrm{o}}\right| ; w R_{2}=\left[\Sigma w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}^{2}}^{2}\right)^{\left.2 / \Sigma w\left(F_{\mathrm{o}}{ }^{4}\right)\right]^{1 / 2} .}\right.$

Table S5. Crystallographic data for compound 5

A. Crystal Data formula	
formula weight	$\mathrm{C}_{44} \mathrm{H}_{73} \mathrm{Cl}_{2} \mathrm{GeO}_{5} \mathrm{P}_{2} \mathrm{PtW}$
crystal dimensions (mm)	1266.39
crystal system	$0.29 \times 0.09 \times 0.06$
space group	triclinic
unit cell parameters ${ }^{a}$	$P \overline{1}(\mathrm{No} 2)$.
$\quad a(\AA)$	
$\quad b(\AA)$	$10.172(2)$
$c(\AA)$	$12.807(3)$
$\alpha(\mathrm{deg})$	$20.478(4)$
$\beta(\mathrm{deg})$	$105.848(2)$
$\gamma(\operatorname{deg})$	$103.959(2)$
$V\left(\AA^{3}\right)$	$93.004(3)$
Z	$2470.6(8)$
$\rho_{\text {calcd }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	2
$\mu\left(\mathrm{~mm}^{-1}\right)$	1.702

B. Data Collection and Refinement Conditions
diffractometer
radiation $(\lambda[\AA])$
temperature $\left({ }^{\circ} \mathrm{C}\right)$
scan type
data collection 2θ limit (deg)
total data collected
independent reflections
number of observed reflections ($N O$)
structure solution method
refinement method
absorption correction method
range of transmission factors
data/restraints/parameters
goodness-of-fit $(S)^{e}$ [all data]
final R indices f

$$
\begin{array}{ll}
R_{1}\left[F_{\mathrm{o}}^{2} \geq 2 \sigma\left(F_{\mathrm{o}}^{2}\right)\right] & 0.0212 \\
w R_{2} \text { [all data] } & 0.0603 \\
\text { largest difference peak and hole } & 1.248 \text { and }-1.042 \mathrm{e} \AA^{-3}
\end{array}
$$

BrukerD8/APEX II CCD ${ }^{b}$
graphite-monochromated Mo $\mathrm{K} \alpha(0.71073)$
-100
ω scans (0.3°) (20 s exposures)
55.18
$22384(-13 \leq h \leq 13,-16 \leq k \leq 16,-26 \leq l \leq 26)$
$11338\left(R_{\text {int }}=0.0148\right)$
$9930\left[F_{0}^{2} \geq 2 \sigma\left(F_{0}^{2}\right)\right]$
intrinsic phasing (SHELXT ${ }^{c}$)
full-matrix least-squares on F^{2} (SHELXL-2013c)
Gaussian integration (face-indexed)
0.7960-0.3812

11338 / 3d / 534
1.117
${ }^{a}$ Obtained from least-squares refinement of 9783 reflections with $4.46^{\circ}<2 \theta<55.04^{\circ}$.
${ }^{b}$ Programs for diffractometer operation, data collection, data reduction and absorption correction were those supplied by Bruker.
${ }^{c}$ G. M. Sheldrick, ActaCrystallogr.2008, A64, 112-122.
${ }^{d}$ The $\mathrm{C}-\mathrm{C}$ distances within the minor component of the disordered solvent hexane molecule were restrained to be approximately equal by use of the SHELXLSADI instruction.
$e S=\left[\Sigma w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2} /(n-p)\right]^{1 / 2}(n=$ number of data; $p=$ number of parameters varied; $w=$ $\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0333 P)^{2}+0.5140 P\right]^{-1}$ where $\left.P=\left[\operatorname{Max}\left(F_{\mathrm{o}}{ }^{2}, 0\right)+2 F_{\mathrm{c}}{ }^{2}\right] / 3\right)$.
$f_{R_{1}}=\Sigma| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right| \Sigma\left|F_{\mathrm{o}}\right| ; w R_{2}=\left[\Sigma w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}}^{2}\right)^{2} / \Sigma w\left(F_{\mathrm{o}}^{4}\right)\right]^{1 / 2}$.

Table S6. Crystallographic data for compound 6

A. Crystal Data	
formula	$\mathrm{C}_{41} \mathrm{H}_{66} \mathrm{Cl}_{2} \mathrm{O}_{5} \mathrm{P}_{2} \mathrm{PtSnW}$
formula weight	1355.58
crystal dimensions (mm)	$0.23 \times 0.18 \times 0.09$
crystal system	orthorhombic
space group	P2 $1_{21} 2_{1}$ (No. 19)
unit cell parameters ${ }^{a}$	
$a(\AA)$	14.8910 (4)
b (\AA)	16.3240 (4)
$c(\AA)$	22.1599 (6)
$V\left(\AA^{3}\right)$	5386.6 (2)
Z	4
$\rho_{\text {calcd }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.672
$\mu\left(\mathrm{mm}^{-1}\right)$	5.379
B. Data Collection and Refinement Conditions	
diffractometer	Bruker D8/APEX II CCD ${ }^{b}$
radiation $(\lambda[\AA])$	graphite-monochromated Mo K α (0.71073)
temperature (${ }^{\circ} \mathrm{C}$)	-100
scan type	ω scans (0.3°) (20 s exposures)
data collection 2θ limit (deg)	54.98
total data collected	47820 (-19 $\leq h \leq 19,-21 \leq k \leq 21,-28 \leq l \leq 28)$
independent reflections	12339 ($\left.R_{\text {int }}=0.0289\right)$
number of observed reflections (NO)	$11780\left[F_{0}{ }^{2} \geq 2 \sigma\left(F_{0}{ }^{2}\right)\right]$
structure solution method	intrinsic phasing (SHELXT ${ }^{\text {c }}$)
refinement method	full-matrix least-squares on F^{2} (SHELXL-2013c)
absorption correction method	Gaussian integration (face-indexed)
range of transmission factors	0.6982-0.4584
data/restraints/parameters	12339 / 18 ${ }^{\text {d }} 512$
Flack absolute structure parametere	0.0093 (19)
goodness-of-fit (S) f [all data]	1.005
final R indices g	
$R_{1}\left[F_{\mathrm{o}}{ }^{2} \geq 2 \sigma\left(F_{\mathrm{o}}^{2}\right)\right]$	0.0176
$w R_{2}$ [all data]	0.0404
largest difference peak and hole	0.737 and -0.323 e \AA^{-3}

${ }^{a}$ Obtained from least-squares refinement of 9906 reflections with $4.44^{\circ}<2 \theta<51.62^{\circ}$.
${ }^{b}$ Programs for diffractometer operation, data collection, data reduction and absorption correction were those supplied by Bruker.
${ }^{c}$ G. M. Sheldrick, Acta Crystallogr.2008, A64, 112-122.
${ }^{d}$ Distances within the disordered solvent n-hexane molecule were restrained to idealized target
distances during refinement: $\mathrm{d}(\mathrm{C} 1 \mathrm{SA}-\mathrm{C} 2 \mathrm{SA})=\mathrm{d}(\mathrm{C} 2 \mathrm{SA}-\mathrm{C} 3 \mathrm{SA})=\mathrm{d}(\mathrm{C} 3 \mathrm{SA}-\mathrm{C} 4 \mathrm{SA})=$ $\mathrm{d}(\mathrm{C} 4 \mathrm{SA}-\mathrm{C} 5 \mathrm{SA})=\mathrm{d}(\mathrm{C} 5 \mathrm{SA}-\mathrm{C} 6 \mathrm{SA})=\mathrm{d}(\mathrm{C} 1 \mathrm{SB}-\mathrm{C} 2 \mathrm{SB})=\mathrm{d}(\mathrm{C} 2 \mathrm{SB}-\mathrm{C} 3 \mathrm{SB})=\mathrm{d}(\mathrm{C} 3 \mathrm{SB}-\mathrm{C} 4 \mathrm{SB})$ $=\mathrm{d}(\mathrm{C} 4 \mathrm{SA}-\mathrm{C} 5 \mathrm{SB})=\mathrm{d}(\mathrm{C} 5 \mathrm{SB}-\mathrm{C} 6 \mathrm{SB})=1.50(1) \AA \AA \mathrm{d}(\mathrm{C} 1 \mathrm{SA} \cdots \mathrm{C} 3 \mathrm{SA})=\mathrm{d}(\mathrm{C} 2 \mathrm{SA} \cdots \mathrm{C} 4 \mathrm{SA})=$ $\mathrm{d}(\mathrm{C} 3 \mathrm{SA} \cdots \mathrm{C} 5 \mathrm{SA})=\mathrm{d}(\mathrm{C} 4 \mathrm{SA} \cdots \mathrm{C} 6 \mathrm{SA})=\mathrm{d}(\mathrm{C} 1 \mathrm{SB} \cdots \mathrm{C} 3 \mathrm{SB})=\mathrm{d}(\mathrm{C} 2 \mathrm{SB} \cdots \mathrm{C} 4 \mathrm{SB})=$ $\mathrm{d}(\mathrm{C} 3 \mathrm{SB} \cdots \mathrm{C} 5 \mathrm{SB})=\mathrm{d}(\mathrm{C} 4 \mathrm{SB} \cdots \mathrm{C} 6 \mathrm{SB})=2.45(1) \AA$.
${ }^{e}$ H. D. Flack, Acta Crystallogr.1983, A39, 876-881; H. D. Flack, G. Bernardinelli, Acta Crystallogr.1999, A55, 908-915; H.D. Flack, G. Bernardinelli, J. Appl. Cryst.2000, 33, 1143-1148. The Flack parameter will refine to a value near zero if the structure is in the correct configuration and will refine to a value near one for the inverted configuration.
$f_{S}=\left[\Sigma w\left(F_{0}^{2}-F_{\mathrm{c}^{2}}^{2}\right)^{2} /(n-p)\right]^{1 / 2}(n=$ number of data; $p=$ number of parameters varied; $w=$ $\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0115 P)^{2}\right]^{-1}$ where $\left.P=\left[\operatorname{Max}\left(F_{\mathrm{o}}^{2}, 0\right)+2 F_{\mathrm{c}}^{2}\right] / 3\right)$.
$g_{R_{1}}=\Sigma| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}}\right|\right| \Sigma\left|F_{\mathrm{o}}\right| ; w R_{2}=\left[\Sigma w\left(F_{\mathrm{o}}^{2}-F_{\mathrm{c}^{2}}\right)^{\left.2 / \Sigma w\left(F_{\mathrm{o}}{ }^{4}\right)\right]^{1 / 2} .}\right.$

