Supporting Information

Prussian Blue analogues Mn[Fe(CN)₆]_{0.6667}·nH₂O cubes as an anode material for lithium-ion batteries

Peixun Xiong,^{a,b} Guojin Zeng,^{a,b} Lingxing Zeng,^{a,b} Mingdeng Wei^{*a,b}

^a State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian 350002, China
^b Institute of Advanced Energy Materials, Fuzhou University, Fuzhou, Fujian 350002, China

*Corresponding author: Mingdeng Wei Tel./fax: +86-591-83753180 *E-mail address:* wei-mingdeng@fzu.edu.cn

Fig. S1 Particle size distribution histograms of Mn[Fe(CN)₆]_{0.6667}·nH₂O cubes.

Fig. S2 Elemental mapping images of Mn[Fe(CN)₆]_{0.6667}·nH₂O cubes.

Fig. S3 N_2 adsorption-desorption isotherm and the corresponding pore size distribution (inset) of $Mn[Fe(CN)_6]_{0.6667} \cdot nH_2O$ cubes.

Samples	Current density (mA g^{-1})	Cycle number	Capacity (mA h g ⁻¹)	Ref.
$Mn[Fe(CN)_6]_{0.6667} \cdot nH_2O$	200	100	295.7	This work
$Mn_3[Co(CN)_6]_2 \cdot nH_2O$	50	100	35.3	19
CoHCF NPs	100	30	325	25
$K_{1-x}Fe_{2+x/3}(CN)_6 \cdot yH_2O$	175	100	<200	31

Fig S4 XRD patterns of the as-prepared Mn-PBA: (a) without thermal treatment; (b) with thermal treatment at 110 $^{\circ}$ C under vacuum for 12 h; (c) with thermal treatment at 220 $^{\circ}$ C for 3 h under N₂ atmosphere (Mn-PBA-T).

Fig S5 (a) Charge-discharge profiles of Mn-PBA and Mn-PBA-T for the 1st, 2nd, and 5th cycles; (b) Cycling performance of Mn-PBA and Mn-PBA-T at a current density of 200 mA g^{-1} .