Supporting Information

Two porous luminescent metal-organic frameworks: quantifiable evaluation of dynamic and static luminescent sensing mechanisms towards Fe³⁺

Jun-Cheng Jin,^{ab} Ling-Yan Pang,^a Guo-Ping Yang,^a Lei Hou^a and Yao-Yu Wang^{*a}

^[a]Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University. Xi'an 710069, China.

^[b]Technology Promotion Center of Nano Composite Material Preparation and Application; Anhui Provincial Laboratory of Biomimetic Sensor and Detecting Technology, West Anhui University, Anhui 237012, China.

The corresponding author, E-mail: <u>wyaoyu@nwu.edu.cn</u>; Tel: +86 29 88308031

Fig. S1 Local coordination environments of the Cd(II) ions in 1.

Fig. S2 The coordination modes of the Cd(II) ions in 2.

Fig. S3 (a) TGA plots of 1 and 2 under N₂ environment. Thermogravimetric analysis (TGA) reveals that 1 can be stable up to 245 °C. The weight loss of 12.23 % corresponds to the loss of DMF and coordinated H₂O molecules (calc. 11.57%). For 2, a total weight loss of 8.72% at 35–175 °C, corresponding to the loss of 1.5DMA and 2H₂O guest molecules (calc. 8.69%). (b) The thermal stability of $Fe^{3+}@1$ and $Fe^{3+}@2$.

Fig. S4 Excitation and emission spectra of H₆dpa.

Fig. S5 The visual change on the addition of various $M(NO_3)_x$ with laboratory UV light ($\lambda_{ex} = 254$ nm; (a) for 1; (b) for 2].

Fig. S6 PXRD patterns of M(NO₃)_x immersion.

Fig. S7 The XPS of Fe³⁺@1 and Fe³⁺@2

Fig. S8 Electron paramagnetic resonance (EPR) spectra of Fe³⁺@1 and Fe³⁺@2

Fig. S9 The excitation peaks of 1 and 2 before and after the addition of $Fe(NO_3)_3$.

Table S1 The quantum yields of the compounds 1 and 2.

Compounds	Excitation ranges/nm	Luminescence ranges/nm	η
1	310.00 - 327.00	351.00 - 455.00	0.15
2	300.00 - 322.00	354.00 - 387.00	0.19

 Table S2 Selected crystallographic data for compounds 1 and 2.

		-
Compounds	1	2
Empirical formula	$C_{33}H_{35}Cd_3N_3O_{18}$	$C_{66}H_{75.5}Cd_4N_{5.5}O_{32.5}$
Formula mass	1098.87	1915.47
Crystal system	Monoclinic	Orthorhombic
Space group	P21/m	P212121
<i>a</i> [Å]	10.1085(13)	18.633(5)
<i>b</i> [Å]	18.918(2)	20.399(5)
<i>c</i> [Å]	11.0438(15)	20.852(5)
α/(°)	90	90
β/(°)	110.984(2)	90
γ/(°)	90	90
<i>V</i> [Å ³]	1971.9(4)	7926(3)
Ζ	2	4
$\mu [\mathrm{mm}^{-1}]$	1.682	1.134
F [000]	1080	3480
Reflections collected	3648	13861
Final <i>R</i> ^[a] indices	$R_1 = 0.0451$	$R_1 = 0.0360$
[I>2σ(I)]	$wR_2 = 0.1540$	$wR_2 = 0.1043$

[a] $R_1 = \sum ||F_0| - |F_c|| / \sum |F_0|$, $wR_2 = [\sum w(F_0^2 - F_c^2)^2 / \sum w(F_0^2)^2]^{1/2}$